
Supporting Decision-Making for Self-Adaptive
Systems: From Goal Models to Dynamic

Decision Networks

Nelly Bencomo and Amel Belaggoun

INRIA Paris - Rocquencourt, France
nelly@acm.org, amel.belaggoun@inria.fr

Abstract. [Context/ Motivation] Different modeling techniques have
been used to model requirements and decision-making of self-adaptive
systems (SASs). Specifically, goal models have been prolific in support-
ing decision-making depending on partial and total fulfilment of func-
tional (goals) and non-functional requirements (softgoals). Different goal-
realization strategies can have different effects on softgoals which are
specified with weighted contribution-links. The final decision about what
strategy to use is based, among other reasons, on a utility function that
takes into account the weighted sum of the different effects on softgoals.
[Questions/Problems] One of the main challenges about decision-
making in self-adaptive systems is to deal with uncertainty during run-
time. New techniques are needed to systematically revise the current
model when empirical evidence becomes available from the deployment.
[Principal ideas/results] In this paper we enrich the decision-making
supported by goal models by using Dynamic Decision Networks (DDNs).
Goal realization strategies and their impact on softgoals have a corre-
spondence with decision alternatives and conditional probabilities and
expected utilities in the DDNs respectively. Our novel approach allows
the specification of preferences over the softgoals and supports reasoning
about partial satisfaction of softgoals using probabilities. We report re-
sults of the application of the approach on two different cases. Our early
results suggest the decision-making process of SASs can be improved by
using DDNs.

Keywords: requirements, specification-methodologies, goal models, dy-
namic decision networks, bayesian decision theory.

1 Introduction

Goal models have been used to model requirements and decision-making of self-
adaptive systems [8, 18, 12, 23]. Goal models support the reasoning about partial
and total fulfillment of functional (or goals) and non-functional requirements (or
softgoals). Measurement of softgoals fulfillment is difficult due to the vague or
fuzzy nature of softgoals satisfaction. Softgoals may not be absolutely fulfilled,
yet they can be labelled as sufficiently satisficed [4]. An area of limited study
has been the use of probability on goal models [14]. Probability theory can

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 221–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 N. Bencomo and A. Belaggoun

also be used to describe the lack of crispness about the satisfiability nature of
softgoals. Given a chosen goal realization strategy a probability of satisfaction
of a softgoal can be associated with it. The higher this probability the better the
satisfaction level associated with the softgoal. Information can be incorporated
as new knowledge is acquired.

In this paper we present a mathematical model supported by Dynamic Deci-
sion Networks (DDNs) [21] that enriches the decision-making support provided
by the goal-based approach and allows reasoning about partial satisfaction of
softgoals (expressed with probabilities) and expected utilities.With DDNs, pref-
erences among softgoals are specified using expected utilities with reward func-
tions but expected utilities are also associated with penalty functions. In this
paper we explore the usefulness of DDNs to support decision-making for self-
adaptation and we also describe a translation method from goal models to DDNs.
The resulting DDNs can then be used to trigger adaptation and automatically
make the best decision in SASs.

The remainder of this paper is organized as follows: Section 2 presents back-
ground on DDNs and previous work using goal models. Section 3 presents how
the requirements specification of requirements can be performed using DDNs.
Section 4 reports results of experiments. Section 5 described related work. Fi-
nally, Section 6 concludes the paper and overviews future research directions.

2 Background

This section briefly overviews DDNs and goal models explaining their relevance
for decision-making in SASs.

2.1 Dynamic Decision Networks

Dynamic decision networks (DDNs) extend decision networks, which in turn
extend Bayesian networks. Bayesian networks [16] are composed of chance nodes
with their associated conditional probabilities and influence arcs that collectively
form a directed acyclic graph. Decision networks [10] extend Bayesian networks
to provide a mechanism for making rational decisions by combining probability
and utility theory. In decision networks, in addition to chance nodes, utility and
decision nodes are also included. The decision nodes represent the choices of the
decision-maker while utility nodes model the decision-maker’s preferences.

DDNs [21] provide a principled approach to make rational decisions in the
face of uncertainty within changing environments. To cope with time varying
nodes, DDNs maintain a series of time slices to represent nodes at successive
moments in time. An arc connecting a node in a previous time slice to a node
in a later time slice encodes an influence on the node’s value from the previous
node value. DDNs provide a useful framework for modeling beliefs about the
world, associating preferences with states of the world, and making decisions.
Fig. 1 shows a DDN with its components and several time slices.

Decision-Making for SASs: From Goal Models to DDNs 223

Fig. 1. The General structure of DDN

Why DDNS to Support Decision-making in Self-adaptive Systems.
Dynamic decision networks address the problem of decision-making with the
following characteristics:

– The environment for making decisions changes over time.

– Information is available to the DDN (as a decision maker) based on data
provided by monitorables (i.e. entities in the environment and the system
itself that can be monitored) and human-made reports.

– The DDN can be prompted to make a decision at specific times (known or
unknown before the DDN is built).

– These decisions are best characterized as choices associated with meeting a
goal.

– New decision alternatives can arise at unexpected times. Decision alterna-
tives can also disappear (product of earlier decisions or by known/unknown
causes) [5].

Crucially, the above are characteristics exposed by SASs. If we assume that the
DDNs can provide support for decision-making in a SAS, the decision process
of a DDN-based approach must do the following:

– Define the uncertainty associated with the current situation.

– Balance different conflicting softgoals according to given preferences.

– Maintain the definition of uncertainty over time as new information arrives
in a consistent way with the past.

– Incorporate risk preferences (i.e., rewards and penalties) that properly ad-
dress the current situation modeled.

The above are the basis of the approach presented in this paper and represent
the assumptions we have used. The rest of the paper shows our ideas on the use
of DDNs for the case of SASs. The incorporation of new decision alternatives
and preferences at runtime are not the focus of this paper, but is discussed as
future work.

224 N. Bencomo and A. Belaggoun

2.2 Goal-Based Models to Support Decision-Making

In [8] and [23] goal-based approaches to reason under uncertainty have been
presented. A goal can be satisfied by different goal realization strategies also
called tasks. The set of alternative realization strategies that describe different
ways how a goal g can be realized is called a variation point associated with
goal g (VPg). Different realization strategies have different effects on softgoals.
Authors of [23] show how the automatic selection of the best strategy is based
on a utility function that sums the possible realization strategies′ impacts on the
softgoals and priorities of goals (see equation (1)).

The determination of the best realization (task) is as follows: Let the function
satisfices represent the contribution value for a task, softgoal:

satisfices : T × SG → C

where T is a set of tasks, SG a set of softgoals and C is the set of possible
contribution values break, hurt, neutral, help, make. These are interpreted as
corresponding to the range of integer values -2,-1,0,1,2. Moreover i is an index
in the set of tasks that represent alternative realizations of goals g, and tig is
thus one of these tasks. The task selected as the realization strategy for goal g is
the one with the greatest value of contribution link values for all of the softgoals
it influences as presented in the following objective function:

maxi

∑

sg∈SG

wsgsatisfices(tig, sg) (1)

Claims [4, 23] has been used to explicitly represent design assumptionsmade about
the contexts that a system may encounter at runtime, and their affect on the real-
ization of system goals.At runtime, such design assumptions can proof to be wrong
or not valid anymore, i.e., Claims can be seen as markers of uncertainty that can
be solved at runtime when more information in obtained. The authors in [23] have
shown how Claims are useful during execution to maximize the satisficement of a
system’s softgoals by dynamically choosing between alternative goal realizations
after the assumptions have proven to be not valid anymore. The verification of the
validity of aClaim is done based onmonitorables. At runtime and when the moni-
toring infrastructure notifies that a Claim does not hold anymore, system adapta-
tions to an alternative goal realization can be triggered. In terms of the variation
points (VPs), it means that a VP will be solved during runtime by the selection of
new alternative configurations that will correspond to the realization strategies.

Example: The Vacuum Cleaner. As an example to show the mapping con-
sider the fragment of a simple i* Strategic Rationale(SR) model of a robot vac-
uum cleaner for a domestic apartment in Fig.2. The vacuum cleaner has a goal
to clean apartment (clean apartment) and two softgoals; to avoid causing dan-
ger to people within the house (avoid tripping hazard) and to be economical to
run (minimize energy costs). The goal clean apartment can be satisfied by two
different realization strategies; Clean at night or Clean when empty. These are rep-
resented by two alternatives tasks connected to clean apartment by means-end
links. The expected effects of the two tasks on the two softgoals are represented
by the contribution links between the tasks and the softgoals clean at night task

Decision-Making for SASs: From Goal Models to DDNs 225

and the avoid tripping hazard softgoal. Cleaning at night partially denies trip-
ping hazard avoidance but completely satisfies energy cost minimization, while
cleaning when empty partially denies energy cost minimization but completely
satisfies tripping hazard avoidance. Therefore, the decision of what is the best
goal operationalization is not clear as the sum of both tasks’ effects on the soft-
goals is the same, hurt + make.

A Claim with the value break is attached to the contribution link with the
value hurt that connects the clean at night task and the avoid tripping haz-
ard softgoal. According to the semantics of Claim propagation [23], this has the
effect of changing the contribution link value to neutral. This in turn has the
effect of favouring the task cleaning at night over the task cleaning when empty
because the former has a more positive net contribution to satisfaction of the
two softgoals; neutral + make > hurt + make. During runtime the goal models
are kept in memory to support reasoning. Let us suppose that during the exe-
cution and when the vacuum cleaner is cleaning the apartment, the monitoring
infrastructure may sense a person is at home. In this case, the Claim No tripping
hazard is falsified and the run-time reasoning engine (supported by the runtime
goal models) is able to evaluate the consequences and order an adaptation from
cleaning at night strategy to cleaning when empty. The focus of this paper is to
evaluate decisions supported by DDNs instead of the goal-based reasoning ca-
pabilities shown above, during both development time and runtime. DDNs are
briefly described in the next section.

Fig. 2. A robot vacuum cleaner

3 Requirements Specifications of SASs Using Dynamic
Decision Networks

In this section we describe and justify the process to map goal models, as
presented in Section 2.2, into DDN-based specifications of decision-making for

226 N. Bencomo and A. Belaggoun

self-adaptive systems. A set of mapping rules are described and discussed in the
context of the vacuum cleaner example.

3.1 Mapping from Goal Models into DDNs

To construct a DDN, we need to specify 5 kinds of information:

– Chance nodes (Ck) also called random variables. Each chance node is as-
sociated with a conditional distribution that is indexed by the state of the
parent nodes (i.e., the decision node) [20].

– A set of decisions D1, ..., Dm related to the decision node Dt.
– Utility node and its utility function U .
– The evidence node (Et)(also called observation node).
– The dependencies between the different nodes described above.

In the rest of this section we explain the mapping process from the goal model
(GM) to DDNs.

a) DDNs Correspond to Variation Points and their Subgraphs in Goal
Models. We adopt a separate DDN for each goal and its required decision-
making. Specifically, a DDN corresponds to the variation point of a given goal
g and its subgraph (i.e., realization strategies, softgoals, and claims). In the
running example of the vacuum cleaner the VP associated with the goal Clean
apartment and its subgraph is mapped into a DDN (see Fig 3).

b) Decision Nodes and Goal Realization Strategies. Goal-realization
strategies in the goal model represent the set of the possible design alterna-
tives. In the context of DDNs, these strategies correspond to the set of possible
decisions in the DDN. The following is the corresponding mapping rule:

Mapping Rule 1. Each goal-realization strategy Tk ∈ {T1, ..., Tl} in GM cor-
responds to a Dk ∈ {D1, ..., Dm}, where Dk represents a value of the decision in
the DDN.

c) Chance Nodes and Softgoals. The softgoals represent the non-functional
requirements to be satisficed [4]. Different design decisions may have positive
or negative effects, and in different proportions, towards meeting a softgoal.
Different from goals, softgoals can hardly ever be labelled 100% satisfied or %100
unsatisfied in an unambiguous sense. Satisficement of a softgoal needs a decision-
making strategy that attempts to meet an acceptability threshold rather than an
absolute value [4]. In the case of goal models, like the one in Fig. 2, whether the
softgoals are considered satisficed or not depends on the realization strategies
and their effects on each softgoal (represented by the contribution links).

In the context of DDNs, each softgoal SGj in the goal model is viewed as a
chance node Ck whose values are dictated by some probability distribution.

Definition 1. The probability distribution represents the probability of being sat-
isficed given a decision (i.e., realization strategy).

Decision-Making for SASs: From Goal Models to DDNs 227

Therefore, each contribution link that departs from a realization strategy to a
SGj in the goal model is translated into a conditional probability distribution
(CPD) associated with each softgoal SGj . Given that the realization strategies
are mutually exclusive, the Bayes theorem can be applied to calculate the prob-
ability of satisficement for each SGj . Table 1 and Table 2 show examples of the
conditional probabilities tables for the example of the vacuum cleaner. Given
the above the following is the corresponding mapping rule:

Mapping Rule 2. Each softgoal SGj ∈ {SG1, ..., SGn} in GM corresponds to
a chance node Ck ∈ {C1, ..., Cn} in the DDN.

Each contribution link lk (Ti , SGj) that describes the effect of a Ti on a SGj

corresponds to a conditional probability P(SGj |Ti). A simple way to propose
the values of these conditional probabilities is to make a direct map from the
five point range of values {break, hurt, neutral, help, make} to the probability
values {0.0, 0.25, 0.5, 0.75, 1.0}. However, if more information is available a
more sophisticated mapping can be performed.

In the case of the example of the vacuum cleaner, two realization strategies
T1 , T2 exist that affect the softgoal SG1 (i.e., Avoid tripping hazard)and SG2

(i.e.,Minimize energy costs). The conditional probability tables associated to SG1

and SG2 are shown in Tables 1 and 2.

Table 1. CPT of the node Avoid Tripping Hazard

Avoid tripping hazard node (SG1)
Ti P(SG1=F) P(SG1=T)

Clean when empty 0.45 0.55
Clean at night 0.11 0.89

Table 2. CPT of the node Minimize energy Costs

Minimize energy Costs node (SG2)
Ti P(SG2 = F) P(SG2 = T)

Clean when empty 0.25 0.75
Clean at night 0.1 0.9

d) Preferences in the Utility Node and Softgoal Priorities. In decision
theory, a utility function is a scalar that assigns a cardinal scale to each outcome
and decision indicating its desirability [9].

Softgoals can have an associated priority, that indicates how important it is
to satisfice that particular softgoal. The specification of the weights in the utility
function (utility node in the DDN) can be based on the softgoals priorities.

Table 3 defines the utility table with all the possible combinations of effects
on the softgoals (using the values true T and false F) given a cleaning strategy.

The weights are ranged from 0 until 200 in this case. The following is the
corresponding mapping rule:

228 N. Bencomo and A. Belaggoun

Table 3. Utility table (preferences)

Utility node
Cleaning Strategy Avoid tripping hazard Minimize energy costs Weight

1 Clean When empty F F 0
2 Clean When empty F T 15
3 Clean at night F F 0
4 Clean at night F T 30
5 Clean When empty T F 200
6 Clean When empty T T 90
7 Clean at night T F 150
8 Clean at night T T 90

Mapping Rule 3. For each goal realization Ti (i.e., decisions in DDNs) and
each softgoal SGj (i.e., the chance nodes in DDNs) we assign a weight wji that
expresses the preferences which is set as a function U (SGj |Ti).

wji: T× SG → U (SGj |Ti)

where SG is the set of softgoals, T is the set of goal realizations and wji repre-
sents the set of the priorities over the goal realizations. The domain expert sets
the weights of the utility table. These weights are known as rewards or penal-
ties. Table 3 shows an example of a possible set of weights that describes the
domain expert preferences. The weight 0 in the 1st and 3rd rows means that
the domain expert penalizes those combinations as they have negative effects
on both softgoals (note the value false F related to both softgoals). Similarly,
the 2nd and 4th row also have low weights (respectively 15 and 30) what means
a low level of preference. The 5th and 7th rows, on the contrary, show high
weights, 150 and 200 respectively. These highest weights mean that these com-
binations are considered by the expert as the most suitable. The domain expert
has a preference on the strategy “Clean when empty” over the strategy “Clean
at night”. Furthermore, both combinations represent positive effects on the soft-
goal “Avoid tripping hazard” and negative effects on “Minimize energy costs”
what means that for the expert it is more important to favor ‘Avoid tripping
hazard” than “Minimize energy costs” (see that 6th and 8th rows have lower
weights, specifically 90).

e) Evidence Node and Claim Monitoring Claim monitoring offers the
appropriate mechanism to support the observation model and provide the ob-
servations required by the DDNs.

An example of an Observation or Evidence can be the fact that a Claim has
been falsified, e.g. the Claim No tripping hazard goes from True to False). This
falsification could trigger the need to make a decision about what adaptation to
realize, if any.

The observationmodel should include the possibility of failure, i.e., the possibil-
ity that the observationmay not be 100% accurate due to problems and failures as-
sociated to monitorables. In terms of the observation of the falsification of aClaim,
this refers to the fact that such a falsification may not be true.

Decision-Making for SASs: From Goal Models to DDNs 229

In the running example, if we have consider an ideal world where failures do
not exist (i.e., the monitorables are 100% reliable) when Evidence is observed
the probability is believed to be P(E) = 1. Otherwise, if the monitorables are
not 100% reliable, P(E) is less than 1. P(Obs | (no shock detected AND light
level constant)) < 1. A graphic showing the mapping is depicted in Fig 3.

Fig. 3. The robot vacuum cleaner system’s i* goal model mapped into a condensed
form of DDN

3.2 Evaluating the DDN

A DDN is evaluated in order to make a decision based on the realization strate-
gies with the highest utilities. The DDN is evaluated using the formula (2) for
every realization realization strategy Ti to compute the probability-weighted av-
erage utility for that realization strategy, also known as the expected utility. The
set of preferences over every softgoal is represented by U(SGj |Ti) and the condi-
tional probability of each softgoal given the available evidence E is represented
by P (SGj |E, Ti). The realization strategy with the highest expected utility is
chosen.

EU(Ti|E) =
∑

j

P (SGj |E, Ti)× U(SGj |Ti) (2)

Next, we present an application of DDNs to decision-making in SASs.

4 Experiments

This section describes experimental results for demonstrating the value of our
approach using DDNs to support decision-making for self-adaptation. Section
4.1 describes the Remote Data Mirroring (RDM) example. Section 4.2 shows the
application of our approach based on DDNs for the case of the RDM application.

230 N. Bencomo and A. Belaggoun

4.1 Remote Data Mirroring

RDM [19] is a classic technique for tolerating failures by keeping copies of impor-
tant data at physically isolated locations to protect data against inaccessibility,
to reliability and provide resistance to data loss. An RDM system can be config-
ured in terms of the topology of the network (e.g. using a minimum spanning tree
algorithm) and also in terms of how data is distributed among data servers. There
are two modes to configure data distribution: synchronous and asynchronous.
The synchronous mode is the only mode in which non-catastrophic multiple fail-
ures will ever provoke the lose of data. In contrast, in the asynchronous remote
mirroring mode, data that hasn’t propagated to other sites can be lost at certain
risk. Each configuration provides different levels of data protection, performance
and costs. For example, the synchronous mode provides better data protection
than the asynchronous mode, but it also incurs a network performance penalty
as every change must be distributed across the network. The asynchronous
mode provides better network performance, however it also provides weaker data
protection.

Fig. 4 shows the i* SR goal models for the RDM application. The RDM appli-
cation must achieve functional goals such as constructing a connected network
and distributing data. These functional goals can be achieved through alter-
native goal realization strategies that includes constructing different network
topologies, such as a Minimum Spanning Tree or Redundant Topology and Chang-
ing Propagation Parameters. The application has three softgoals Minimize Oper-
ational Expense, Maximize Data Reliability and Maximize Network Performance.
A Claim Redundancy Prevent Network Partition has been attached to the goal
model [19] to make explicit the uncertainty about the usefulness of the choice of
Redundant Topology at any point at runtime. The Claim can become disproven
at runtime for several reasons, for example it can be provoked due to simultane-
ous failures of two or more links. Monitorables and sensor allow the the system
to check the validity of the Claim at any point during runtime.

4.2 Experiments

Netica [1], a tool for Decision and Bayesian networks, has been used for the
experiments. A DDN to support the decision-making of the best topology to use
has been associated with the the variation point Select Topology (see Fig. 4).
The DDN constructed (with three unrolled time slices) is shown in Fig. 5 . Djt

represents the decision node with two possible decisions D1andD2 which corre-
spond with the realization strategies T1:Use MST Topology and T2:Use Redundant
Topology respectively. The DDN also presents a set of three chance nodes MRt,
MP and MO used to model the softgoals Maximize Reliability, Maximize Per-
formance and Minimize Operational Costs respectively. Notice that MRt comes
from a softgoal with a contribution link with a Claim attached. MRt is therefore
an observable chance node. MP and MO are modeled as static chance nodes.
The evidence node Et represents the event that the Claim Redundancy Prevents
Network Partitions is changes is value True or False at time t.

Decision-Making for SASs: From Goal Models to DDNs 231

Fig. 4. i* SR goal model for the remote data mirroring application (RDM) (from [19])

Fig. 5. DDN for the case of the RDM application (with three time-slices)

In order to evaluate the DDN we have considered the following probabilities:
P (MRt= true|Mst Topology)= 0.3, P (MRt= true|Redundant Topology)= 0.9,
P (MP = true |Mst Topology)= 0.5, P (MP = true|Redundant topology)= 0.5,
P (MO = true |Mst Topology)= 0.75, P (MO = true|Redundant topology)= 0.3.

The weights associated with the possible combination of nodes are given in
Table 4. Take note that these weights express the preferences that represent the
relative importance of each combination of effects of the topology used on the
softgoals. For example, the 3rd row in Table. 4 has the highest weight value (200)
in the utility table what means that the 3rd row is the most favored combination
as it encodes that the cost of using Redundant Topology has a positive effect on
the three softgoals Maximize Reliability,Minimize Operational Costs andMaximize
Performance(see the values T for the three softgoals). Note also the 2nd row has
a weight value that is much lower (i.e., 10) what means that even if we have the
same Redundant topology this time, it is not suitable as it has negative effects
on Maximize Reliability and Minimize Operational costs.

Fig. 6 shows the computation of the expected utility (EU) of the possible
topologies from time t = 0 to t = 7, based on the probability of Maximize
Reliability node, Maximize Performance node, Minimize Operational Costs and

232 N. Bencomo and A. Belaggoun

Table 4. Utility table

Utility node
Topology MR MP MO Weight
1 Use MST Topology F F F 0
2 Use Redundant Topology F T F 10
3 Use Redundant Topology T T T 200
...
15 Use Redundant Topology T F F 10
16 Use MST Topology T T F 80

utility node predicted by each decision taken at the next time slice (as shown in
Fig. 5 topology decisions have influence on the Maximize Reliability node on the
next time slice).

At development time (i.e. at time slice 0), the designer selects Redundant
Network Topology as the best decision to use with synchronous propagation as the
initial configuration. This configuration is based on the validity of the assumption
Redundancy Prevents Network Partitions that states that a redundant network
topology prevents network link failures from partitioning the network (the reason
why the Claim c1 has been made to explicitly record that assumption). In terms
of a DDN this mean that with no evidence about the fact that Redundancy
Prevent Networks Partitions entered yet in the DDN the most likely decision is to
use Redundant Topology as the expected utility EU(Redundant Topology)>the
expected utility EU(MST Topology).

At some points during runtime (i.e., from time slice 1 to 7 in Fig. 6), however,
new information is collected that concludes the Claim c1 Redundancy Prevent
Networks Partitions is false meaning that according to current environmental
conditions, the Use of redundant Topology decision does not necessarily prevent
network partitions anymore. EU(MST Topology) >EU(Redundant Topology)
and therefore, the decision to use MST Topology is considered by the DDN as
the best one. The DDN triggers an adaptation accordingly. Fig. 7 shows the
case of the monitored falsification of the Claim c1 at slice time 3 and the mon-
itored value True of Claim c1 at slice time 6; the DDN has correctly suggested
the adaptations from the original design decision Redundant Topology to MST
Topology after slice time 3 to go back to Redundant Topology after slice time 6.

The results appear to be consistent with the evidence (observations) that
provoked the adaptations and furthermore, they agree with those presented in
[19]. Our approach using DDNs has also been successfully applied on the case
study of the sensor network GridStix [11] with results also compatible with those
shown in [23]. The results of the evaluation of the DDN to the robot vacuum
cleaner, RDM system, and GridStix, reported in [2], while somewhat preliminary,
are positive as the DDNs allowed both (1) the analyst to make design decisions
during development time and (2) the applications to make decisions to adapt to
new situations at runtime.

Decision-Making for SASs: From Goal Models to DDNs 233

Fig. 6. Expected utilities during seven time slices

Fig. 7. Expected Utilities during eight time slices

5 Related Work

The related work described in this section is divided in two categories, work on
uncertainty tackled using goal-based models for the case of SASs and decision-
making using Bayesian theory.

Researchers have tackled uncertainty in SASs in different ways. As discussed
by [3, 13], there is a dearth of applicable techniques for handling uncertainty
in this setting. Welsh et al [23] introduced REAssuRE to use goal models and
Claims for driving self-adaptation. In contrast to REAssuRE, in our case and
when using DDNs, preferences among softgoals are specified using both expected
utilities with reward functions and also penalty functions. Uncertainty in adap-
tive systems has also been tackled by RELAX [22], a requirements language
that explicitly addresses uncertainty inherent in adaptive systems. While RE-
LAX uses fuzzy logic to specify more flexible requirements within a goal model
to handle the uncertainty, we use probabilities. Emmanuel et al. [14] specify
partial degrees of goal satisfaction and quantify the impact of different system
alternatives on high level goals that can be used to guide requirements elabo-
ration and design decision-making. The degree of satisfaction of such goals is

234 N. Bencomo and A. Belaggoun

modeled by objective functions on quality variables. The non-functional goals
are specified formally using a probabilistic model and interpreted in terms of
application specific measures. Their approach is different from ours. They tackle
decision about alternative system designs during requirements and design engi-
neering. In our case we are concerned about decision-making between alternative
decisions to meet a functional goal due to environmental changes what crucially
includes also decision-making at runtime. The work of Giorgini et al. [7] deals
with formal reasoning about goal models. They use a probabilistic model and
label propagation to calculate the evidence for satisfiability and deniability of
goals. Their approach deals with conflicts between softgoals, however, different
from our work, they do not resolve conflicts but just tackle their identification.
Instead of probability they use evidence which can be seen as less precise than
calculating the exact probability. In this paper, we have not taken into account
uncertainties about quality of observations, i.e. we have assumed no errors or
noise introduced by the monitoring infrastructure and therefore we trust 100%
the monitoring infrastructure. Hence, we have assumed the following values for
the evidence node P (Observation|Redundant Prevents Network Partitions =
true)=0.0 and P(Observation|Redundant Prevents Network Partitions =false
)= 1.0. However, different from our earlier research [23], the DDN approach can
take into account those uncertainties what we leave for future work. As in the
case of DDNs, the approach presented in [19] can tackle the uncertainty related
to lack of confidence of sensor’s reports.

Liaskos et al. [15] present a framework for specifying both mandatory and
optional requirements, along with quantitative preferences over the optional re-
quirements, within the context of a goal model. The goal tree and the specified
preferences are translated into the Hierarchical Task Network (HTN) and Plan-
ning Domain Description Language (PDDL) planning formalisms, respectively;
the HTNPlan-P planning tool is then used to obtain the most preferred design.
Similar to our work, [15] focus on on modeling and reasoning about proper-
ties and alternative solutions and working on preferences-based exploration of
alternatives requirements. However, they do not use probability theory.

Bayesian networks have been used to enable reasoning over probabilistic causal
model and to make predictions about partially satisfied affirmation [6]. However
the Bayesian paradigm does not provide any direct means for modelling dynamic
systems [21]. In contrast to our model in which we combine Bayesian networks
and decision networks to achieve a sophisticated architecture that could be used
as a powerful decision-making tool for solving complex or real-time decision
problems and to model a system that is dynamically changing or evolving over
time such as SASs. A number of interesting and related research approaches
using DDNs can be found in the area of AI, Portinale and Raiteri [17] have
proposed a formal model for FDIR(Fault Detection, Identification and Recovery)
analysis in autonomous systems based on a formal Fault Tree modeling language
able to express stochastic dependencies and multi-state components which is
called Extended Dynamic Fault Tree (EDFT). In their approach, a compilation
process producing from EDFT an equivalent DDN on which to exploit standard
DDN algorithms to perform the required FDIR analysis. Their approach is very

Decision-Making for SASs: From Goal Models to DDNs 235

relevant in our case because we are using similar model to trigger the adaptations
needed by the systems however we have different focus.

6 Conclusion and Future Work

In this paper we have argued how decision analysis of a SAS can be defined
as a formal quantitative technique based on Bayesian and decision theory to
guide an informed decision making process under uncertainty. Using our ap-
proach the best choices to meet a goal are identified from a range of alternatives
decisions (i.e., goal realization strategies). Satisficement of softgoals is modeled
using conditional probabilities (probability of satisficement of SGj given that a
goal realization strategy was chosen). Preferences are modeled using weights as-
sociated to pairs of alternative solutions and softgoals. A typical problem arising
during the construction of the DDN model is the choice of this quantitative pa-
rameters (i.e., weights). More experience in this direction is expected in the near
future. Further work is also required towards systematic techniques for studying
the value of the probabilities, and even utility weights, that change over time
(due to the machine learning process) an their impact on the evaluation of the
alternative decisions.

We also want to take advantage of the dynamic structure of the DDNs. We
are studying the suitability of DDNs for domains where requirements, goals,
and their respective expected values change over time (i.e., during execution).
Interesting issues for future research concern the possibility of the utilization of
the model with imprecise evidences (e.g. low level of confidence of sensors) to
study how the quality of the infrastructure monitoring affect the decisions made
by a DDNs. Also the development of new tools to help the requirement engineer
to design a DDNs would be certainly very helpful as the current tool support
imposes limitations; there is not enough software that supports DDNs.

Acknowledgments. We thank Pete Sawyer and Valerie Issarny for their useful
feedback. Also thanks to Andres Ramirez for the support on the use of the
RDM case study. This research is partially supported by Marie Curie Fellowship
“Requirements@run-time”.

References

[1] Norsys software corporation. netica - user guide (1997)

[2] Belaggoun, A.: Exploring the Use of Dynamic Decision Networks for Self-Adaptive
Systems. Master’s thesis, Univ. de Versailles Saint-Quentin-En-Yvelines (2012)

[3] Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software engineer-
ing for self-adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos,
R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive
Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

[4] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, vol. 5. Springer (1999)

236 N. Bencomo and A. Belaggoun

[5] da Costa, P.C.G.: The Fighter Aircrafts Autodefense Management Problem: A
Dynamic Decision Network Approach. Master’s thesis, School of Information Tech-
nology and Engineering, George Mason University (1999)

[6] Fenton, N.E., Neil, M.: Making decisions: using bayesian nets and mcda. Knowl.-
Based Syst. 14(7), 307–325 (2001)

[7] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning
techniques for goal models. In: Spaccapietra, S., March, S., Aberer, K. (eds.)
Journal on Data Semantics. LNCS, vol. 2800, pp. 1–20. Springer, Heidelberg (2003)

[8] Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.: Goal-based
modeling of dynamically adaptive system requirements. In: IEEE Int. Conference
on the Engineering of Computer Based Systems, ECBS (2008)

[9] Horvitz, E.J., Breese, J.S., Henrion, M.: Decision theory in expert systems and
artificial intelligence. Int. Journal of Approximate Reasoning 2, 247–302 (1988)

[10] Howard, R., Matheson., J.: Influence diagrams. In: Readings on the Principles
and Readings on the Principles and Applications of Decision Analysis II. Strategic
Decisions Group, Menlo Park (1984)

[11] Hughes, D., Greenwood, P., Coulson, G., Blair, G.: Gridstix: Supporting flood
prediction using embedded hardware and next generation grid middleware. In:
Proceedings of the 2006 International Symposium on on World of Wireless, Mobile
and Multimedia Networks, pp. 621–626. IEEE Computer Society, USA (2006)

[12] Lapouchnian, A.: Exploiting Requirements Variability for Software Customization
and Adaptation. Ph.D. thesis, University of Toronto (2011)

[13] de Lemos, R., Giese, H., Müller, H., Shaw, M.: Software Engineering for Self-
Adpaptive Systems: A second Research Roadmap. In: Software Engineering for
Self-Adaptive Systems. No. 10431 in Dagstuhl Seminar Proceedings, Schloss
Dagstuhl, Germany (2011)

[14] Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. SIGSOFT Softw. Eng. Notes 26 (2004)

[15] Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Representing and reason-
ing about preferences in requirements engineering. Requir. Eng. 16(3), 227–249
(2011)

[16] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

[17] Portinale, L., Raiteri, D.C.: Using dynamic decision networks and extended fault
trees for autonomous fdir. In: ICTAI, pp. 480–484 (2011)

[18] Qureshi, N.A., Peini, A.: Engineering adaptive requirements. In: Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2009
(2009)

[19] Ramirez, A.J., Cheng, B.H.C., Bencomo, N., Sawyer, P.: Relaxing claims: Cop-
ing with uncertainty while evaluating assumptions at run time. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp.
53–69. Springer, Heidelberg (2012)

[20] Russell, S.J., Norvig, P.: Artificial intelligence - a modern approach: the intelligent
agent book. Prentice Hall series in artificial intelligence. Prentice Hall (1995)

[21] Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach, 2nd edn. Pren-
tice Hall series in artificial intelligence. Prentice Hall (2003)

[22] Sawyer, P., Bencomo, N., Letier, E., Finkelstein, A.: Requirements-aware systems:
A research agenda for re self-adaptive systems. In: Proc. of the 18th IEEE Inter-
national Requirements Engineering Conference, pp. 95–103 (2010)

[23] Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-
time resolution of design-time assumptions. In: ASE, pp. 560–563 (2011)

	Lecture Notes in Computer Science
	Introduction
	Background
	Dynamic Decision Networks
	Goal-Based Models to Support Decision-Making

	Requirements Specifications of SASs Using Dynamic Decision Networks
	Mapping from Goal Models into DDNs
	a) DDNs Correspond to Variation Points and their Subgraphs in Goal Models.
	b) Decision Nodes and Goal Realization Strategies.
	c) Chance Nodes and Softgoals.
	d) Preferences in the Utility Node and Softgoal Priorities.
	e) Evidence Node and Claim Monitoring

	Evaluating the DDN

	Experiments
	Remote Data Mirroring
	Experiments

	Related Work
	Conclusion and Future Work
	Acknowledgments.

