1. Lehmer, Mahler and Jensen

1.1 Background: Lehmer’s Paper

In 1933, D.H. Lehmer published a paper [Leh33] entitled ‘Factorization of
certain cyclotomic functions’. A by-product of his factorization method was
a way of manufacturing large primes: ‘large’ should be interpreted in the
light of available computing machinery in 1933 (see Section 1.6 below). The
construction was to take a monic, integral polynomial

F(z) =a2%+ ag12* '+ ...+ a1z + ag € Zz],

with factorization over C

d
An(F) = H(ay —1). (1.1)

It is better to assume that no o; is a root of unity (since if oY = 1 for
some N, then A, (F) =0 for all n divisible by N). In any case, the quantity
A, (F) is always an integer since the product (1.1) contains all the algebraic
conjugates of all the zeros of I (see Remark A.5 in Appendix A for the details;
alternatively, in Lemma 2.3 we show that A, (F') is the cardinality of a finite
group). Lehmer was able to produce some large primes as values of A, (F).
Substantial work on these sequences was also done by T.A. Pierce in his 1917
paper [Piel7], where the form of prime factors of A, (/') was described.

Ezample 1.1. Let F(z) = 23 — z — 1. Lehmer showed that
Aps(F) = 63,088, 004, 325, 217

and
Ayo7(F) = 3,233,514,251, 032,733

are primes.



2 1. Lehmer, Mahler and Jensen

The motivation in [Leh33] and [Piel7] may have been to generalize the clas-
sical notion of Mersenne number and Mersenne prime — Lehmer worked on
related problems before and after this paper (see [BLS75], [BLS+83], [Leh30],
[Leh32], [Leh47]). The Mersenne prime case is achieved by choosing the poly-
nomial
Fz) =2 -2,
so that
Ay(FY=M, =2" -1,

In his paper, Lehmer demonstrated that A, (') is more likely to produce
primes if it does not grow too quickly, and measured the rate of growth by
considering the ratio of successive terms,

! =
Lemma 1.2. Provided no root oy of F' has |a;| =1,
o [Anst )|
lim ’T(F)’ :gmaX{L o} (1.3)

Proof. This is clear since we can treat each term in the product separately:

lim
n—0o0

a1 fla] if o] > 1,
ar—1 | |1 iflel<1.

Exercise 1.1. [1] Give examples to show that in general an integral polyno-
mial may have zeros with unit modulus which are not unit roots.
[2] Show that a monic example of [1] can only occur in degree at least 4.

Exercise 1.2. Show that A, (F) is a divisibility sequence. That is, prove
that if n divides m then A, (#') divides A, (£).

Remark 1.3. Lehmer made the following remark concerning the non-trivial
problem of the convergence of (1.2) in the presence of possible unit modulus
zeros (he assumed that I was irreducible, and defined {2 to be the right-
hand side of (1.3): ‘It may happen that ¥ has a root o on the unit circle.
For || = 1, (1.2) contributes an oscillating factor which, although it never
vanishes or becomes infinite (since F' is not a cyclotomic function), cannot
be estimated readily. For lack of something better we use §2 to measure the
rate of increase of the sequence

Ay Ag, As, .

even when some of the zeros of F' lie on the unit circle.” In fact the expression
(1.2) only converges if there are no unit modulus zeros, whereas the expression
used in Lemma 1.10 below always converges.
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1.2 Mahler’s Measure

Thirty years later, Mahler used a generalization of the measure (1.3) of a
polynomial in a quite different setting (see Remark 1.5 below).

Definition 1.4. For any non-zero polynomial

d
F(z) = agr? +ag_ 2V + . tag =aq H(OE — )

i=1

in Clz], define the Mahler measure of ¥ to be

d
M(F) = |ag| - | [ max{1, [es]}.
i=1

In this definition, an empty product is assumed to be 1 so the Mahler measure
of the non-zero constant polynomial F'(z) = ag is |ag|.
Write
m(#) =log M (F)

for the logarithmic Mahler measure, and extend the definition to include
m(0) = oo. This convention looks a little strange, but makes sense in the
dynamical interpretation: see Exercise 2.4 and Theorem 2.12 in Chapter 2.
Since we often use m(F), it will also be called the Mahler measure below.

Remark 1.5. This measure is called the Mahler measure because of two pa-
pers written by Mahler in the early 1960s — [Mah60] and [Mah62]. His interest
in the quantity M (/") was not to study it for its own merits, but instead to
compare it with other kinds of measures — more natural ones in some sense.
For a polynomial F(z) = agz? + ... + a1z + ag € Clz], define

d
HP) = g o), LAF) = 2ol

the height and length of F' respectively. Mahler proved that
d .
la;] < | JM(F) foralli=0,...,d (1.4)
7
and also showed that all three measures are commensurate in the sense that

H(F) < M(F) < H(F) (1.5)

and
L(F) < M(F) < L(F), (1.6)
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with the implied constants depending only on the degree d (see Appendix
G for the notation <). Mahler [Mah64] also related the measure to the dis-
criminant of the polynomial. The absolute value of the discriminant of F' is

defined to be
A = laaP 2 [ T lew — oy
i
where F'(z) = aq [[;<;<4(% — @;). Mahler showed that
A(P)] < dM(F)2, (1.7)
Exercise 1.3. [1] Prove that
—dlog2 + {(F) < m(£) < L(F),

where we write ¢ = log L. This is equivalent to an exact description of the
implied constants in (1.6) above:

27L(F) < M(F) < L(F).

[2] Give examples to show that the inequalities in part [1] and in (1.4) cannot
be improved in general.
[3] Prove a weaker form of the inequality (1.7) as follows. Assume that

F(z) = 2t ag 2t 4 tag = H (x — o)
1<i<d

is monic, so the absolute value of the discriminant is
1A = [Tl = ayl.
i£]

Prove that
|A(F>| < 2d(d71)M(F)2d72.

The inequality (1.5) requires some later material and is given in Exercise
1.11 below.

Definition 1.6. A polynomial is cyclotomic if all the zeros are roots of unity.
The word cyclotomic means literally ‘circle dividing’ and it refers to the way
that roots of unity divide up the unit circle.

Exercise 1.4. [1] Let I' € Z[z] denote a monic irreducible polynomial of
degree d with zeros aq, ..., ag. Prove that, for any prime p,

d
P <] (ef —oy) (1.8)
ij=1
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provided F' is not cyclotomic.
[2] Let p denote a prime with

eL(F) <p < 2eL(L)

(which exists by Bertrand’s postulate). Use this prime and (1.8) to deduce

that
log 2e 1

2¢  L(F) (1.9)
when F' is irreducible and not cyclotomic. This exercise is based on Do-
browolski [Dob81, Lemma 2], where it is the first step towards a much deeper
result. It follows from (1.9) that if £ varies over a sequence of non-cyclotomic
irreducible polynomials in Z[z] with L(F) uniformly bounded above, the re-
sulting non-zero values of M (}') are uniformly bounded below.

M(F)> 1+

Remark 1.7. [1] The polynomial £'(z) = 23 — 2 — 1 used in Example 1.1 has
turned out to be very special. Among a certain infinite family of polynomials
— the non-reciprocal polynomials — its measure is known to be minimal. See
Smyth [Smy71] for the details and the survey paper by Boyd [Boy81] for an
overview. We prove a weaker version of this result in Theorem 1.19 below.
[2] The quantity |A,(F)| has an important interpretation in the theory of
dynamical systems (see Section 2.1 below).

[3] In his paper, Lehmer mentioned that he could find no smaller measure of
growth than that of the polynomial

Glx) =20 +2% —2" =28 -2 — 2 — 2 + 2+ 1, (1.10)

and that is still the smallest known example. Of the ten zeros of (1.10), eight
lie on the unit circle and just one lies outside.

The problem of verifying that integral polynomials have a smallest posi-
tive measure is now known as ‘Lehmer’s problem’, and it seems to be a very
deep problem. See Waldschmidt [Wal80], Boyd [Boy81] and Stewart [Ste78b]
for surveys of this problem. In Sections 1.3, 1.4 and 1.5 below we show how
versions of this problem may be solved for certain classes of polynomials.
Lehmer’s problem arises in many different areas. In algebraic dynamical sys-
tems it is related to the existence of algebraic models for certain abstract
dynamical systems (see the discussions after Definition 2.7 and Theorem
4.2). Lehmer’s problem also turns up in statistical mechanics (see Moussa
[Mou83], [Mou90]; Barnsley, Bessis and Moussa [BBM79]) and in the study
of iteration of complex functions (see Moussa [Mou86]; Moussa, Geronimo
and Bessis [MGB84]).

The current best unconditional results on Lehmer’s problem itself are
probably the following. Blanksby and Montgomery [BM71] showed that if
F € Z[z] has m(F') # 0 and degree d, then

m(F) > log <1 (1.11)

* 52dlog 6d>'
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Dobrowolski, [Dob79] showed under the same hypotheses that

1 loglog d 3
F — . 1.12
m(t) > 1200( log d ) (1.12)

A similar estimate was also obtained independently by Cantor and Strauss
[CS82], and Rausch [Rau85] improved the bound for large values of d.
Louboutin [Lou83] strengthened the result, again for large d, and Voutier
[?] has proved a similar result for all values of d. In a different direction,
Dobrowolski [Dob81] proved that

log 2e

4 — 1.13
if £ is a non-cyclotomic irreducible polynomial in Z[z] with & non-zero coef-
ficients.

Dobrowolski, Lawton and Schinzel [DLS83] proved that if F' € Z[z] has

m(F') # 0 and has &k non-zero coefficients, then
m(F) > C=C(H(F),k), (1.14)

where H(F) is the maximum of the absolute values of the coefficients of #
(cf. Remark 1.5). They also proved a bound of the form

m(1) > C(k) (1.15)

involving only the number of non-zero cofficients. In Exercise 1.4 above some
simple steps in the direction of the bounds involving only the number of non-
zero coefficients are given. Dobrowolski [Dob91] gave an improved bound of
the same form, showing that if /' is a monic polynomial with £'(0) # 0 that
is not a product of cyclotomic factors then

1

MF) 214+ ——
() = +aexp(bkk)

where k is the number of non-zero coefficients of F' and a, b are constants
with @ < 13911 and b < 2.27.

A beautiful and important observation from Mahler’s paper [Mah60] is
the following.

Lemma 1.8. [MAHLER'S LEMMA| For any non-zero F' € Clz],

1
m(F) = /O log | F(e2™)|dg.
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Proof. This is a simple consequence of Jensen’s formula: for any o € C,

1
/ log [€*™ — a|df = log max{1, |o|}.
0

That is, the (potentially improper) Riemann integral exists and has the stated
value. This may be applied to each term in the factorization of F' over C.

For completeness, we include a proof of Jensen’s formula. For the more
interesting case (where || = 1) we give a standard complex analysis proof
and a short real analysis proof due to Young [You86].

Lemma 1.9. [JENSEN’S FORMULA]| For any o € C,
1 .
/ log o — €*™|df = log max{1, ||}
0

In the sequel it will be useful to write log™ A = log max{1, A}.

Proof. The statement is clear for & = 0 so assume that « # 0. First assume
that || # 1. Then

! ; ! _ o —1.2mi0 : .
/ log o — e29|qp = { 108 |l + [y log|1 — o™ eX™7|db if o] > 1;
0 Jo log|1 — e #™alde if |af < 1.

The integral in the |@| < 1 case may also be written (via the substitution
6 — —0) as

1
/ log |1 — e2™a|dp.
0
It is therefore enough to prove that for any 8 € C with |3] < 1,

1
/ log |1 — Be®™|df = 0.
0

Write R(z), $(z) for the real and imaginary parts of a complex number z.
Notice that log|z| = Rlog 2, so

1 1
/ log|1 — Be*™|df = §R/ log (1 — Be*™) do
0 0
1 [e%e]
B" anio
:§R/ =y =™ ) dp
(=5
_ = ﬁn ! 2mwifn
_§R< nz::l n/oe 9

:07
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where the summation being taken out of the integral is justified because the
sum is absolutely convergent.
We are left with the case |3 = 1, for which we give two proofs.

COMPLEX ANALYSIS PROOF. The integral is now singular, so we define

! ; 1 1
/ log [e2™ — B|df = lim —/ ~log|z — B|dz
0 r

e—0 274 (B,€) z

(if this limit exists), where I'(53, €) is the contour indicated in Figure 1.1.

I(8,¢)

Fig. 1.1. The contour I'(3,¢€)

Now llog|z — 8] = 1Rlog(z — 3), which is 2 times the real part of a
function which is analytic in the closed disc except for the point 3. The
residue from the singularity at 0 vanishes, so by Cauchy’s theorem it does
not contribute to the integral. It follows that

1

1 1 1
— “log(z — B)dz = — ~log(z — B)d
57 oy, 3108 ) = o / s

where v(8, €) is the circle of radius € around 3. Parametrize (53, €) by setting
2=+ e for 6 € [0,1). Then % = 2mice®™ 50

dog
1 1 1 66271'1'0 )
— =1 —Bdz=|] ————1 2mi0ydp.
20 Jy(p,e) # 8tz =P /0 B+ ce?mit oglee™)
Now
66271'1'0
ﬁ+6627ri0

is bounded, so the integral is bounded in modulus by
C - ¢|loge|

which goes to zero as € — 0.
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REAL ANALYSIS PROOF. Write the integral in the form
27 )

— log o — €| df,

27T 0

1

and assume that |«| = 1; indeed, after translating by o~ ! we may as well

assume that o = 1. Consider then
27 )
J = / log |1 — €|df.
0
Since |1 — €| = 2sin § for ¢ € [0, 2n], it is enough to know that
J= / log sin zdx = —mlog 2.
0

This exists as an improper Riemann integral since sinz ~ z for small = (see
Appendix G for the meaning of ~). Write sinz = 2sin § cos 5, then

J:7r10g2—|—/ log sin %dx—l—/ log cos dx.
0 0

Substituting § = ¢ in the first integral and § = 7 —¢ in the second, we get

/2
J:7r10g2—|—4/ logsintdt = wlog2 + 2.J.
0
This ends the proof of Lemma 1.9.

Exercise 1.5. Justify the steps in the following alternative proof of the hard
case in Lemma 1.9: fol log [€2™% — 1|df = fol log [2™ + 1|df, so

1 1
/ log |2 — 1]df = / log [*™ — 1|df
0 0

1 1
:/ 1og|627”‘9—1|d9+/ log |2 + 1|d#,
0 0

and therefore fol log [e2™% 4 1|df = fol log |€2™% — 1|df = 0.

Another proof appears in the solution to Exercise 3.4[3].
A better (more robust) measure of the exponential growth rate of the
quantity |A, (F)] is
1
lim —log|A.(F)],

n—oo 1

if this limit exists. The ratio (1.2) in fact only converges if there are no zeros
with unit modulus — see Chothi, Everest and Ward [CEW97, Theorem 6.3]
or Theorem 2.16 below for the details.
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Lemma 1.10. Provided no zero of F' is a root of unity, the limait

1
lim = log |A,(F)],

n—oo 1N

always exists for non-zero F' € Z[x], and the limit is m(F).

Proof. First notice that
d
log[A,(F)] =) log|a} — 1],
i=1

so each term can be treated separately. Recall that we write log™ A for
log max{1, A}.
If |o| > 1, then

1
Elog|a? — 1| — log|ey| = log™ |ay].
If |oy| < 1, then
1 n +
Elog|ai — 1| — 0=1log™ |a.

If |o;| = 1 then there is a subsequence n; — oo with the property that

"
7 —1, %0

a;

log o7 — 1] — —o0.
The question is this: how fast does it happen? This is answered using a simple
application of Baker’s theorem (see Lemma 1.11 below). We claim that for
any algebraic number «;, not a unit root,

A
-1 — for all 1.16
o] | > e or all n, ( )
for positive constants A and B, independent of n. It follows that
log ey — 1| = O (logn),
SO )
—log|al — 1] — 0= log™ |y
n
again (see Appendix G for the meaning of O(logn)).

In fact the statement of Lemma 1.10 is much weaker than Baker’s theorem
— which is used to prove the estimate (1.16). An earlier estimate — due to
Gelfond [Gel60] — is exactly equivalent to Lemma 1.10. This is pointed out in
the context of the dynamical interpretation (cf. Chapter 2) in Lind’s paper
[Lin82, Section 4]. We have chosen to use Baker’s theorem because it is more
accessible in the literature and is more widely known.

We have left the proof of the estimate (1.16) to one side.
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Lemma 1.11. For a € Q, not a root of unity, |a| =1,

A

1> —=
a" 1> J5
for all n > 1 and constants A and B depending only on .

Recall the notation < (cf. Appendix G): (1.16) may be written
1
"1 —.
o | > B

For the proof we use Baker’s theorem.

Theorem 1.12. [BAKER'S THEOREM| Let a1, ..., a, be algebraic numbers,
n € Z" an integer vector, and write |n| = max{|n;|}. Then for any choices of
the logarithm branches, if |nylogoq+. . .+n, loga,| is non-zero, it is bounded
below by

1
|nylog ey + ...+ nylog oy | > W7 (1.17)

where ¢ is a constant depending only on aq, ..., c.

Proof. Various versions of this were proved in Baker’s series of papers [Bak66],
[Bak67a], [Bak67b], [Bak68]. An expository treatment of the stronger inho-
mogeneous form of (1.17) is in [Bak75, Chapter 3].

Proof (of Lemma 1.11). We are only concerned with values of n for which
o™ is very close to 1. Writing o = €% for some 0 € R, we see that ™ is close
to 1 if and only if there is an m € Z for which the real number nf + 2xm is
close to 0. Now

ot — 1= I _ o i(nf + 27m) (1.18)

for small values of nf + 27m. It is sufficient therefore to find a lower bound
of the right form for
inf + 2wim. (1.19)

Choosing any branch of the logarithm we may write o = ¢ = el°8® and
choosing a non-principal branch we may write 1 = ¢?*. Thus (1.19) can be
written in the form

nloga + mlogl.

Since this expression cannot be zero (recall that o is not a unit root), Theorem
1.12 says that

1

|ing + 2mim| = |nloga + mlogl| » ——————.
(max{|nl, [m|})

On the other hand, n6 + 27m is small, so n and m are close to constant
multiples of each other, which shows that
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1
|nloga+mlogl| » —.
]
The desired estimate follows since |z — 1| > |log z| for |z — 1] < 1.

Exercise 1.6. [1] Prove that

for all n > 1.
[2] Let I € C[z] have degree d. Mahler proved in [Mah61] that

m(F") <m(F) +logd.

Prove that this is equivalent to the statement that for any complex numbers
A1y ...,04,

1 d
1
j=1

Give examples to show that the estimate cannot be improved for all F'.
A proof of (1.20) using complex analysis is given in Appendix D.
Question 1. Can you find an elementary proof of (1.20)7

Question 2. Is there a meaningful lower bound for m(#”)? Any lower bound
for m(+") in terms of m(#") must necessarily involve some dependence on the
constant coefficient F'(0), as the example F'(z) = z— N shows. Experiment to
find a sharp lower bound for m(£”). As a starting point, notice that F'(z) =
x — N satisfies

m(1) +logld/F(0)] < m (k).

Lehmer calculated the following measures:

M(z% -2 —1)=1.370...,
M(z"—2% —1)=1.379....

M(z? —2z—1)=1618...,
M(* —z—1)=1324...,
M(z* —2—1)=1.380...,
M(z® —2® —1) =1.362. ..,
)
)

He also studied the ‘symmetric’ polynomials (we now call these polynomials
reciprocal, see Definition 1.17 below). Among these he found

M(z® —2* —2® —2% + 1) = 1.401.. .,

and
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M(® —2° —2* —2® +1)=1.280.. .,

but found no polynomials with smaller measure than
M(G)=1.176...,

where
G(x):xlo+xg—x7—xﬁ—x5—x4—x3+$+1~

This polynomial does indeed generate some large primes: he found that
v As79(G) = 37,098, 890, 596, 487

is prime (another prime appears in his paper, but it would appear this is what
was intended). Notice that the values of A,, will be squares for a symmetric
polynomial, so it is natural to look for prime values of the square root.

In the next few sections partial results in the direction of Lehmer’s prob-
lem are described.

1.3 Lehmer’s Problem I: Schinzel’s Theorem

The result in this section concerns polynomials all of whose zeros are real.
This is a special case of a more general result due to Schinzel, [Sch73] con-
cerning heights of polynomials over totally real fields.

Lemma 1.13. For any d > 1, let y1,...,yq > 1 be real numbers. Then

(1 —1)...(ya—1) < ((yl...yd)l/d—l)d. (1.21)

Proof. This is a well-known application of the convexity of = — log(e® — 1);
see Hardy, Littlewood and Polya [HLP34, Section 3.6].

Theorem 1.14. [SCHINZEL] Suppose that F' € Z[x] is monic with degree d,
F(=1)F(1) # 0 and F'(0) = £1. If the zeros of F' are all real then

d/2
1+\/3> !

M(F)z( .

with equality if and only if F' is a product of a power of 22 —z — 1 and a

power of 1 —z — x2.

Proof. Consider I = H?zl |2 — 1]; this is greater than or equal to 1 since I’
is monic. Now

II les®=1x JJ la? =11

|| <1 Jai|>1
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By Lemma 1.13, it follows that

1 d d
< 4/d _ _ 2/d _ —2/d\"
R VIV (M(F) 1) (M(F) M(F) )
Since 1 < F, it follows that
M(F)?4 — M(F)~%4 > 1,

SO

M(F) > <1+\/g>d/2.
- 2

Exercise 1.7. Explain why the condition '(—1)F(1) # 0 must be imposed
for Theorem 1.14. Where is the real zeros condition used? Prove that equality
can only occur as stated in the theorem.

Corollary 1.15. If F' € Z[z] has real zeros then

m(F) > log <1+\/3> =0.481....

2

Proof. If F' does not have £1 as leading and constant coefficient, then m(#") >
log2 = 0.693... (cf. start of proof of Theorem 1.19), so this follows from
Theorem 1.14.

Remark 1.16. For a general polynomial F' € Z[z] with real zeros and
FO)F(=1)F(1) £0

a similar result to Theorem 1.14 holds. Let

d

with constant coefficient F'(0) = ¢ # 0. Then [],,

H|a¢|<1 la;| = ¢y - Now consider

I>1 log| = @ Similarly

d
E:a2H|a? -1,
i=1
which is an integer greater than or equal to 1. Rearranging the product gives

E = a? H o |? x H jof — 1]

[ | <1 lai|>1

1
1— —
a?

7
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a’c?

M2
|evi <1

a2c? M2 A2 1/d d
SNVl <——> -1

2/d (ac)Q/d ‘
=\M T T pM2/d

1
1— —
of

x I le? 1]

|| >1

by Lemma 1.13. Hence, since £ > 1,

oya _ (ac)*?

1< M2 —

SO ( )2/d
2/d ac

M > 14

Since |ac| > 1, this implies
1+M72/d S M2/d
and the result follows as before.

A short proof of Schinzel’s theorem appears in the paper of Hoehn and
Skoruppa [HS93]. Improved lower bounds appear in a paper of Flammang
[F1a97]. See also Smyth’s papers [?] and [?] for further results in the real
case.

1.4 Lehmer’s Problem II: Smyth’s Theorem

The polynomials that are not ‘symmetric’ turn out to have a uniform lower
bound for their Mahler measures, so candidates for smaller Mahler measures
than Lehmer’s example must be among the symmetric polynomials. Boyd
has carried out extensive calculations of measures for reciprocal polynomials
in [Boy80], [Boy89]. It is a remarkable fact that it is sufficient to look only
at polynomials of height 1 (that is, with coefficients in {0,41, —1}; for an
explanation of why this is so see Mossinghoff [Mos98, Section 3.2]). Further
calculations have been done by Mossinghoff [Mos95], [Mos98]; he has also
found a new limit point near 1.309 in the set of (exponential) Mahler mea-
sures of integer polynomials. The paper [MPV98] by Mossinghoff, Pinner and
Vaaler explores the polynomials obtained by adding a monomial to a prod-
uct of cyclotomics, giving some small examples of Mahler measures. As they
point out, Lehmer’s best example (1.10) is given by such a procedure:

G)=(z-1)*(z+ 1)@ +z+1)>*@* -z +1)—2°.
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Definition 1.17. Suppose F' € C[z] has degree d; write F'*(z) = 2¢F (z71).
Then F' is reciprocal if ' = F*, and is non-reciprocal otherwise.

For example, Lehmer’s best (smallest measure) example is reciprocal,
while the polynomial #3 — z — 1 is not.

In 1971 C.J. Smyth published the following remarkable theorem (see
[Smy71]).

Theorem 1.18. [SMYTH] If I'(x) € Z[z] is a non-reciprocal polynomial, and
F(0)F(1) # 0, then

m(F) > m(z® —2 —1) =log(1.324...) = 0.281...

The condition that /'(0) # 0 simply means /' is not divisible by x, and
F(1) # 0 means F' is not divisible by = — 1. Clearly some condition about
divisibility by z —1 is required for if we multiply any reciprocal polynomial by
z—1 the measure does not change but the polynomial becomes non-reciprocal.

In his thesis, Smyth also proved a stronger result:

M(F)> M@ —z—1)+10"*

unless F' is reciprocal or is the minimum polynomial of (:I:@O)l/ " for some
k > 1, where g = 1.324 ... is the real zero of > — 2 — 1.

We shall prove a weaker result, which is a good account of Smyth’s basic
method and gives a uniform lower bound for the measure of non-reciprocal
polynomials. This result was known to Smyth before he proved Theorem
1.18 and has been proved independently by several people, including Stewart
[SteT8a).

Theorem 1.19. If F' € Z[x] is non-reciprocal and F'(0)F(1) # 0, then

m(F) > Log3 =0.111....

In the proof we will need the following.

Exercise 1.8. Suppose I € Z[z| is monic and irreducible, F'(1) # 0, and F
has a zero 6 with |#| = 1. Show that F' must be reciprocal. (Hint: € is also a
root).

Proof (of Theorem 1.19). We can assume that F' is irreducible, monic (since
if F(z) =a]](z — ;) then m(F) > log|al), F'(0)F'(1) # 0, and F'(0) = £1:
if F(0) # £1, then

2 < [F(0)] =[] el < M(F),

so m(F) > log2 > %log32 (here and below write [] to denote the product
taken over all the roots of F).
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Notice that

L POFE) PO o)

G ="FE T 0

FO)TI(z = o))
[1(1 = zay)

since {o;} = {q;}.

It is clear that F'(1) = F*(1), so if F* = —F then F*(1) = —F(1) hence
F'(1) = 0, which is impossible. We deduce that £ is not identically equal to
— b,

We now claim that

G(z) =1+ a2 + ... € Z[[2]],

convergent in some neighbourhood of zero (that G(0) = 1 is clear). This
remark (due to Raphael Salem [Sal45]) is seen as follows. Since I’ is monic,

F*(2) =14 ...+ 2%

SO

by the binomial theorem.
Now by Exercise 1.8 we may write

FO Mo (£52)  52)

G(Z = Hlaj|>1 (1;7—02;) g(z)

where f and g are holomorphic functions in an open region containing the
closed unit disc.
Notice that |2| = 1 if and only if Z = 1. Assume that |2| = 1 and consider

a typical factor (ﬁ) of f(2):

lonjz
Z— oy zZ— oy . zZ— oy Z— oy
l—djz l—djz - l—djz l—ajé
_(z—ay 1—ajz 1
- 1—ajz z—ay -

z—aj

SO

1—ajz

for all j, and therefore |f(2)| = 1.
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A similar argument applies to g. We deduce that

|f(2)] = lg(2)| = 1 for |z| = 1. (1.22)
Now write
fE)=b+biz+...

and
g(z)=c+eaz+...

absolutely convergent in the closed unit disc. It follows that

G(z) =1 P = 1.2
(=) ot ct+cz+ ... (1.23)

in some (smaller) disc. Now b and ¢ are real and (without loss of generality)
positive; moreover

b= 1701 =TT sl = 37075
lej|<1

1

(since []]ey| = 1) and similarly g(0) = so b = ¢ > 0. Now compare

M(F)
terms in (1.23) to see that
1
b = = -—
T MTE)
bl = C1,

br 1 =cr1
cap, +cp = by

If max{|ck|, |bx|} < £ = £, then

C
20

e < |ecar| = |br — cx] < |br] + |ex| < b,
which contradicts b = ¢. It follows that

C

b
max{ler, brl} = 5 = 5 (1.24)

Assume without loss of generality that (1.24) holds with

b
|bx| > B

(if not, repeat the argument that follows with g replacing f, noting that
lck| > §). Consider
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f(2)=b4bi(2)+... +b2"+ ...

(where k is the power appearing in G(z)in equation (1.23)). We know by
(1.22) that |f(2)] =1 on |z| =1, so

1
/ |£ (2™ 2do = 1. (1.25)
0

Lemma 1.20. [PARSEVAL’S FORMULA] Suppose that ¢ : C — C is holomor-
phic in an open region containing the closed unit disc, with Taylor expansion

P(z)=e+ez+...,

e; € C. Then
1 0o
[ 1ot pa =3 e
0 i=0
Applying Parseval’s formula to f we see that
4 b2+ )P+ =1,
SO
b2 + |bk|2 <1.
On the other hand
|br| > b
k|l Z 27
SO
52 <1

Since b = M(IF), we deduce that

proving Theorem 1.19.

Remark 1.21. Smyth uses the third coefficient of G, together with a more
sophisticated use of Parseval’s formula to arrive at his definitive result, The-
orem 1.18.

It remains to prove Parseval’s formula. This is a simple application of the
standard orthogonality relations for the family of functions {e?™"!}.

Proof (of Lemma 1.20). Notice that

|¢(627ri0)|2 _ ¢(62‘n’i0) . (b(egﬂ—w)?

SO
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1 1 e e] fe%e]
/ |¢(62‘m‘0>|2d0 _ / (Z 6m627rim0> (Z 6n627rim9> do
0 0

m=0 n=0
/ (Z Ze én 62‘11'1(711 n)&) do
m=0n=0
— Z Z </ n62‘n’i(mn)0d9>
m=0n=0
by the absolute convergence of the Taylor series on |z| = 1. On the other

hand

1 .
; 1 if m =n;
27wi(m—n)@ _ )
/O ‘ de—{o if not.

So the integral reduces to

Z Z </ 627ri(mn)0d9> _ i |€m|2
m=0n=0 m=0

as required.

To close this section we give another application of Parseval’s formula by
proving Gongalves’ formula.

Theorem 1.22. [GONGALVES’ FORMULA| Let F' € R[z] be a monic polyno-
mial with |#(0)] > 1. Then

d
MF)? + M(F) 2 <> al, (1.26)
3=0
where F(z) = 24 + ag_12¢ 1 +... +ag.
Proof. Write

Z—CEJ

E&

j=1
By Parseval’s formula (Lemma 1.20)

1
Za?:/ | (27 |do
=0 0
1 . .
:/O H |627”0—aj|2~ H |627m9_aj|2 do

lej|>1 o<1

1
_ M(F)Q/O H |627ru9 —a;1|2~ H |627m9 _aj|2 do

[ >1 o<1

1
? [ lee ) pas,
0
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Q(z) = H (z—a;')- H (2 —aj) =29+ ... % (ag/M(F)?).

loj>1 loj| <1
Apply Parseval’s formula to G to get

2

d
;a? > M(#)? (1 + W%)‘J > M(F)2 4+ M(F) 2.

Remark 1.23. [1] The original proof is due to Gongalves [Gon50]. The proof

presented here is taken from Smyth’s doctoral thesis.

[2] Schinzel [Sch82] gives a different proof starting from the observation that
. Vo . d

F'(2)F(27") has constant coefficient Y %, a.

Exercise 1.9. Prove the complex version of Gongalves’ formula: if /' € C[z]

has |ag| > 1, prove that

d
M(F)+ M) 2 <Y o).
3=0

The next two exercises show how lower bounds for Mahler’s measure may
be used to deduce irreducibility results for certain trinomials. Let H (x) denote
the polynomial ™ £ z™ £+ 1.

Exercise 1.10. [1] Prove that H has at most one non-reciprocal factor over
Q. (Hint: use Theorems 1.18 and 1.22).
[2] Show that the reciprocal factors of H are cyclotomic.

Exercise 1.11. Prove the inequality (1.5) by finding the best possible values
for the implied constants.

1.5 Lehmer’s Problem III: Zhang’s Theorem

In the previous section, the involution I’ — F™ on the ring of integral polyno-
mials was used to make non-trivial estimates for the measure of polynomials
not fixed by the involution (Definition 1.17 and Theorem 1.18). In a similar
spirit, we introduce another involution: for I € Z[z]| define

Fi(z) = F(1-z). (1.27)

It is clear that F' +— F, is an involution on the set of polynomials.



22 1. Lehmer, Mahler and Jensen

Theorem 1.24. [ZHANG, ZAGIER] Let w denote a primitive 6th root of
unity. Suppose I' € Z[x] has degree d, and F'(0)F(1)F (w) # 0. Then

1+\/3>

2

m(F) +m(F,) > %llog ( (1.28)

with equality if and only if F' or F, is a power of o* — 2> +2? —z + 1.

Exercise 1.12. Explain why the condition #'(0)F(1)F(w) # 0 must be im-
posed for Theorem 1.24.

This theorem was proved originally as an application of a theorem of
Zhang [Zha92] in the context of heights of algebraic numbers (cf. Section
5.8). His proof used Arakelov theory and did not give the optimal lower
bound in (1.28). Zagier [Zag93] gave a beautiful elementary proof, also in
the context of heights, yielding the optimal bound. We follow Zagier’s proof,
although phrased in terms of Mahler’s measure. The proof is similar in spirit
to the proof of Theorem 1.19.

Let w,@ denote the roots of 22 — 2 + 1 = 0. Theorem 1.24 will follow
directly from Lemma 1.27 below. To motivate this, we first consider the
special case where I and [}, are monic and both have constant term +1. An
example is F(z) = 2% —z — 1.

Lemma 1.25. There is a constant A > 1 such that for every complex number
z¢{0,1,w,@},

log|2? — =+ 1]+ 1 < A(flog 2] + [log |1 — []).

Corollary 1.26. Suppose I' and F, in Z[z] are both monic with constant
term £1 and F'(0)F (1)F(w) # 0. Then

m(F) +m(Fy) > YR

Proof. Apply Lemma 1.25 to each z = «; to obtain

d d d
D loglaf —a; +1]+d < AY [loglagl| + A [log |1 — ail.
i=1 i=1 i=1
Since F and F), are monic, m(F) =" log" |oy| and m(F,) = Y log™ |1 —ayl.
On the other hand, the assumption on the constant terms means that

d d
[Tl =T - )l =1
i=1 i=1

SO
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m(F) =1 YL, |log|ay|
and
m(Fy) = %Z?:l |log |1 — ay].
Thus

d d d
d < loglaf —a;+1[+d < A [loglai||+ A [log|l — o]
i=1 i=1 i=1

<2A (m(F) +m(Fy))
giving the required inequality.

Proof (of Lemma 1.25). Consider the function

1) log |22 —z+ 1| +1
Z) =

|log ||| + [log |1 — ]|
for z € C\{0,1,w,@}. As |z| — o0, f(2) — 1. For values of z near the points
z = w or @, f(z) is large and negative. Finally, the function is continuous
everywhere except at the intersection of the circles |z| = |1 — z| = 1, where it

is large and negative. It follows that the function is bounded above uniformly
on all of C.

Theorem 1.24 follows from a refined version of Lemma 1.25 that makes
the constant explicit and uses log™ | - | instead of ‘10g| . H

Lemma 1.27. For any z € C\{0,1,w, @},
V5 —1
2v5
L

2V5

with equality holding if and only if z or 1 — z equals e

log™ |2| +logt |1 — 2| > log|2% — 2]

1
1og|22—z+1|—|—§10g< 5

1+\/3>

+7i/5 i3‘n’i/5'

ore
Proof (of Theorem 1.24). First notice that e®™/5 ¢*37/5 are the roots of

2t -3 422 -z +1=0.
If F' is monic, then applying Lemma 1.27 to each zero o; in turn gives

VB — 1<
F)4+m(F,) > log [a? — oy
M) m(F) 2 S0 3 logaf e

d
1 d 1++5
+—§ log |a? —a; 4+ 1|+ = lo
2/5 = el +3 g( 2 )

d 1++5
> 1
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since
d d

|H(a?—ai)|and|H(a?—ai—|—l)|

i=1 i=1
are positive integers.

If F has leading coefficient a then add 2log|a| to the left-hand side of
Lemma 1.24, which then becomes m(F) + m(F). Add log |a| to the right-

hand side to obtain, after writing log |a| = ‘/_ = log|al* + \/g log |al?,

\/— 1og|a2H ;)| + —\/_10g|a2H —a;+ 1)

+§10g<1+\/—> %ll g<1+2\/3>

since a2 [[, (a2 — ay)| and |a® []_, (@2 — a; + 1)| are positive integers.

Proof (of Lemma 1.27). Define a function g by

V5 —
9(2): 2\/—

10g|z 2| +

2f

—log™" |2| — log™ |1 — 2|.

log | 2* —z+1|—|——1 (

145
2

If || is large then g(z) behaves like —log|z| and, in particular, g(z) — —o0
as |z| — oo. Similarly, if z is close to one of the points 0, 1, w, & then g(z) is
large and negative. Away from these points, g is continuous, and so attains its
maximum on some finite point or points. Off the circles |2| = 1and |1—2| =1
the function is the real part of a holomorphic function, so by the maximum
principle for harmonic functions (see [CKP83, p. 46] for example) the maxima
must be attained on these circles (cf. Appendix D). The involutions z — 1—z
and z — Z preserve g, so it is enough to restrict attention to z = ¢ for
0<8<m.
First suppose that 0 <0 < Z, so |1 — 2] <1. Then

g(z) = \é_f log (2sin &) + 5vz log (2cosf — 1) + %bg(

1+2¢5 ) .

Write § = 4sin® § (so that 0 < S <1 for 0 <0 < Z). Then

g(z) = f LlogS + 2\/— log(1 — 5) + L1log (HI)

Differentiating with respect to S shows that the unique maximum of g for

S € (0,1) is attained at S = 355 where g =0 and 6 = T.

A similar argument holds for % <O <m;herel <5 <4and
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g9(2) = }ngllog (2sinf) + ﬁgbg(l —2cosf) + Llog <1+2\/g)

= ’Z\%l log S + QL\/glog(S —1)+ Llog (#)

The unique maximum of g is attained at S = 3+2‘/5, where g = 0 and # = 3T,

To close this section, we mention some related results. Rhin and Smyth
[RS97] showed that if H € Z[z] is divisible by z but is not £ for any n,
and G € Z[z] is irreducible, then

m(G(H (x))) > Cd
for some constant C, where d is the degree of the composition G(H (z)).

Exercise 1.13. Prove that for any polynomial ¥ € Z[z], the polynomial
I'I, can be written in the form

Fx)Fo(z) = G(z(1 — 2))
for some polynomial G € Z[z].

Dresden [Dre98] has extended Theorem 1.24 in a different direction. If
o is an algebraic integer, and Fj is the minimum polynomial of «, F5 the
minimum polynomial of lioz and F3 the minimum polynomial of 1 — ﬁ,
then he shows that the two smallest values of

S (m(E) +m(#3) + (k)

are 0 and 0.4218 .. ., where d is the degree of c.. As he points out (p. 819, ibid.)
this has the following consequence: if /' € Z[z] is a polynomial of degree d
with the property that the cyclic group of order three generated by the map
z+ 1 — L is a subgroup of its Galois group, then

m(F) > 2(0.4218...).

1.6 Large Primes in 1933

Lehmer’s calculations, including the 16-digit prime 3233514 251032 733 were
not aimed at generating record-breaking primes, but rather at understanding
primes appearing in a novel fashion. Appendix E contains some extensions
of Lehmer’s calculations (and their elliptic analogues).

Essentially all large primes arise from the sequences 2" +1, for which there
are special primality tests. The famous Mersenne problem asks if M,, = 2" —1
is prime for infinitely many values of n. It is well-known that 2" + 1 can only
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be prime when n is a power of 2 and very few instances of 22" 41 being prime
are known; however 2" + 1 is sometimes a product of a small factor and a
large prime. For comparison, Table 1.1 shows some record primes, breaking
off with the largest prime to be found without the use of electronic computing
machines and ending with the current largest known prime, found by Clark-
son, Woltman and Kurowski as part of GIMPS. Some of the information in
this section is taken with permission from Chris Caldwell’s Prime Page on
the world wide web at http://www.utm.edu/research/primes/.

Notice that Robinson’s — and all subsequent — calculations were performed
on a computer. The computer age, far from killing the subject off, seems
to have caused a revival. Laura Nickel and Curt Noll were at high-school
when they discovered their record-breaking prime. The Euler—Fermat theo-
rem, which was generalized by Pierce [Piel7] and Lehmer [Leh33], is described
below. Table 1.1 is far from complete — see Ribenboim [Rib95b] for more de-
tails. Large primes of other forms (notably (2" +1)/3) continue to be studied
using methods from Elliptic Curve theory (see Bateman et al. [BSW89] and
Morain [Mor90]).

Number || Digits | Year Prover and Method
217 1 6 1588 Cataldi; trial division
2 1 6 1588 Cataldi; trial division
231 1 10 1722 Euler; Euler—Fermat theorem
(2°9 —1)/179 951 13 1867 Landry; Euler-Fermat theorem
2127 _ 1 39 1876 Lucas; Lucas—Lehmer test
(2 4 1)/17 44 1951 Ferrier; Proth’s theorem
Mgy 687 1952 Robinson; Lucas—Lehmer test
Mii1213 3376 1963 Gillies; Lucas—Lehmer test
Ma1701 6533 1978 Nickel & Noll; Lucas—Lehmer test
Mgg243 25962 1982 Slowinski; Lucas—Lehmer etc.
M216091 65 050 1985 Slowinski; Lucas—Lehmer etc.
Mgs9433 || 268716 | 1994 Slowinski & Gage; Lucas—Lehmer etc.
Msop21377 || 909526 | 1998 | Clarkson, Woltman & Kurowski; GIMPS

Table 1.1. A brief history of large primes.

Lemma 1.28. [EULER-FERMAT THEOREM| If p and q are odd primes, and
p divides 21 — 1, then p =1 (mod q) and p = £1 (mod 8).

Exercise 1.14. Prove the Euler-Fermat theorem.

The Lucas—Lehmer test is the following.
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Theorem 1.29. [LUCAS-LEHMER TEST| Let p be an odd prime. Then the
Mersenne number 2P — 1 is prime if and only if 2P — 1 divides S,—1, where
Sn+1 = 5721 — 2 and Sl =4.

Exercise 1.15. Prove Theorem 1.29.

The last result mentioned above is part of a long list of results for numbers
of special forms.

Theorem 1.30. [PROTH’S THEOREM, 1878] Let n = h-2F + 1 with 28 > h.
If there is an integer a such that a”"~/2 is congruent to —1 (mod n), then
n 1S prime.

This is a special case of a more general result; see Ribenboim [Rib95b] for
the whole story.

GIMPS (the Great Internet Mersenne Prime Search), founded by George
Woltman and others, is a very efficient system for using idle time on many
different computers scattered all over the world to perform a coordinated
search for Mersenne primes.

Question 3. Let /'(z) = 2 —2 — 1. Are there infinitely many primes in the
sequence Ay, (1)? For some calculations in this direction, see Appendix E.

Question 4. Can the arithmetic properties of the sequences considered by
Lehmer be developed in the same way that the arithmetic properties of binary
sequences have? See Ribenboim [Rib95a], Stewart [Ste77] for background,
and van der Poorten [Poo89] and references therein for an introduction to
the large body of results on recurrence sequences in general.

1.7 When Does the Measure Vanish?

Lehmer’s problem asks about small positive values of m(#'). In this section
we show that the situation where m(#') = 0 can be completely understood
using Kronecker’s lemma.

Theorem 1.31. [KRONECKER| Suppose that o: # 0 is an algebraic integer
and the algebraic conjugates ey = «, ..., aq of & all have modulus |a | < 1.
Then « is a root of unity.

Proof. Consider the polynomial

d
Fo(z) = H(x — o), (1.29)

where F is the minimal polynomial for o. The coefficients of F,, are sym-
metric functions in the algebraic integers o so they are (rational) integers.
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Each of the coefficients is uniformly bounded as n varies because |ozj| <1 for
all 7, so the set

{3 }nen

must be finite. It follows that there is a pair ny # no for which
bvnl = l'”nw

SO
{0, o Y ={a]?, .. a2}

For each permutation 7 € Sy (the permutation group on d symbols), define

an action of 7 on the set of roots by

ot

— A2
O

Then if 7 has order r in Sy,

SO

K

a?{ (aﬁg*n{ — 1) =0,
which shows that «; must be a unit root since «; # 0.

Remark 1.32. Kronecker’s lemma relates an analytic property of algebraic
numbers (a condition on the modulus of the zeros) to an algebraic property
(that the zeros must be torsion points in the group of complex numbers of
modulus one).

A polynomial in Z[z] is called primitive if the coefficients have no non-
trivial common factor.

Theorem 1.33. Suppose I' € Zlx] is non-zero, primitive and I'(0) # 0.
Then m(F) =0 if and only if all the zeros of F' are roots of unity.

Proof. Assume that all the zeros of F' are roots of unity. Then the leading
coefficient of F must be £1 since F divides % — 1 for some N > 1. So, from
the definition, m(F) = 0.

Conversely, if m(F) = 0 then it is clear that /' must be (plus or minus) a
monic polynomial, so all the zeros are algebraic integers, and all must have
modulus less than or equal to 1. Apply Kronecker’s lemma to see they must
all be unit roots.

Remark 1.34. We could restate this by saying that for primitive F', m(¥) =0
if and only if F' is a monomial times a cyclotomic polynomial.

Exercise 1.16. If I' € Z[z] is cyclotomic, prove that F™* =+ I



