Skip to main content

Research Repository

Advanced Search

Professor Norbert Peyerimhoff's Outputs (4)

Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians (2015)
Journal Article
Lange, C., Liu, S., Peyerimhoff, N., & Post, O. (2015). Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians. Calculus of Variations and Partial Differential Equations, 54(4), 4165-4196. https://doi.org/10.1007/s00526-015-0935-x

We discuss a Cheeger constant as a mixture of the frustration index and the expansion rate, and prove the related Cheeger inequalities and higher order Cheeger inequalities for graph Laplacians with cyclic signatures, discrete magnetic Laplacians on... Read More about Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians.

Geometric properties of rank one asymptotically harmonic manifolds (2015)
Journal Article
Knieper, G., & Peyerimhoff, N. (2015). Geometric properties of rank one asymptotically harmonic manifolds. Journal of Differential Geometry, 100(3), 507-532. https://doi.org/10.4310/jdg/1432842363

In this article we consider asymptotically harmonic manifolds which are simply connected complete Riemannian manifolds without conjugate points such that all horospheres have the same constant mean curvature h. We prove the following equivalences for... Read More about Geometric properties of rank one asymptotically harmonic manifolds.

Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials (2015)
Journal Article
Leonhardt, K., Peyerimhoff, N., Tautenhahn, M., & Veselic, I. (2015). Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials. Reviews in Mathematical Physics, 27(04), https://doi.org/10.1142/s0129055x15500075

We study Schrödinger operators on L2(ℝd) and ℓ2(ℤd) with a random potential of alloy-type. The single-site potential is assumed to be exponentially decaying but not necessarily of fixed sign. In the continuum setting, we require a generalized step-fu... Read More about Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials.

Harmonic Functions on Rank One Asymptotically Harmonic Manifolds (2015)
Journal Article
Knieper, G., & Peyerimhoff, N. (2015). Harmonic Functions on Rank One Asymptotically Harmonic Manifolds. Journal of Geometric Analysis, 26(2), 750-781. https://doi.org/10.1007/s12220-015-9570-1

Asymptotically harmonic manifolds are simply connected complete Riemannian manifolds without conjugate points such that all horospheres have the same constant mean curvature hh. In this article we present results for harmonic functions on rank one as... Read More about Harmonic Functions on Rank One Asymptotically Harmonic Manifolds.