Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Indirect measurement of atomic magneto-optical rotation via Hilbert transform (2024)
Journal Article
Briscoe, J. D., Pizzey, D., Wrathmall, S. A., & Hughes, I. G. (2024). Indirect measurement of atomic magneto-optical rotation via Hilbert transform. Journal of Physics B: Atomic, Molecular and Optical Physics, 57(17), 175401. https://doi.org/10.1088/1361-6455/ad5e24

The Kramers–Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach i... Read More about Indirect measurement of atomic magneto-optical rotation via Hilbert transform.

A device for magnetic-field angle control in magneto-optical filters using a solenoid-permanent magnet pair. (2024)
Journal Article
Alqarni, S. A., Briscoe, J. D., Higgins, C. R., Logue, F. D., Pizzey, D., Robertson-Brown, T. G., & Hughes, I. G. (2024). A device for magnetic-field angle control in magneto-optical filters using a solenoid-permanent magnet pair. Review of Scientific Instruments, 95(3), Article 035103. https://doi.org/10.1063/5.0174264

Atomic bandpass filters are used in a variety of applications due to their narrow bandwidths and high transmission at specific frequencies. Predominantly, these filters are in the Faraday (Voigt) geometry, using an applied axial (transverse) magnetic... Read More about A device for magnetic-field angle control in magneto-optical filters using a solenoid-permanent magnet pair..

Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters (2023)
Journal Article
Briscoe, J. D., Logue, F. D., Pizzey, D., Wrathmall, S. A., & Hughes, I. G. (2023). Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters. Journal of Physics B: Atomic, Molecular and Optical Physics, 56(10), Article 105403. https://doi.org/10.1088/1361-6455/acc49c

Cascading light through two thermal vapour cells has been shown to improve the performance of atomic filters that aim to maximise peak transmission over a minimised bandpass window. In this paper, we explore the atomic physics responsible for the ope... Read More about Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters.

Laser spectroscopy of hot atomic vapours: from ’scope to theoretical fit (2022)
Journal Article
Pizzey, D., Briscoe, J. D., Logue, F. D., Ponciano-Ojeda, F. S., Wrathmall, S. A., & Hughes, I. G. (2022). Laser spectroscopy of hot atomic vapours: from ’scope to theoretical fit. New Journal of Physics, 24, https://doi.org/10.1088/1367-2630/ac9cfe

The spectroscopy of hot atomic vapours is a hot topic. Many of the work-horse techniques of contemporary atomic physics were first demonstrated in hot vapours. Alkali-metal atomic vapours are ideal media for quantum-optics experiments as they combine... Read More about Laser spectroscopy of hot atomic vapours: from ’scope to theoretical fit.

Better magneto-optical filters with cascaded vapor cells (2022)
Journal Article
Logue, F. D., Briscoe, J. D., Pizzey, D., Wrathmall, S. A., & Hughes, I. G. (2022). Better magneto-optical filters with cascaded vapor cells. Optics Letters, 47(12), 2975-2978. https://doi.org/10.1364/ol.459291

Single-cell magneto-optical Faraday filters find great utility and are realized with either ‘wing’ or ‘line center’ spectral profiles. We show that cascading a second cell with independent axial (Faraday) or transverse (Voigt) magnetic field leads to... Read More about Better magneto-optical filters with cascaded vapor cells.