Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling
(2024)
Presentation / Conference Contribution
Corona-Figueroa, A., Shum, H. P. H., & Willcocks, C. G. (2024, June). Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling. Presented at 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, Washington
All Outputs (3)
Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers (2023)
Presentation / Conference Contribution
Corona-Figueroa, A., Bond-Taylor, S., Bhowmik, N., Gaus, Y. F. A., Breckon, T. P., Shum, H. P., & Willcocks, C. G. (2023, October). Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers. Presented at ICCV23: 2023 IEEE/CVF International Conference on Computer Vision, Paris, FranceGenerating 3D images of complex objects conditionally from a few 2D views is a difficult synthesis problem, compounded by issues such as domain gap and geometric misalignment. For instance, a unified framework such as Generative Adversarial Networks... Read More about Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers.
MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray (2022)
Presentation / Conference Contribution
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H. P., & Willcocks, C. G. (2022, July). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. Presented at 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, ScotlandComputed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, inclu... Read More about MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray.