Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption
(2023)
Presentation / Conference Contribution
Barker, J., Bhowmik, N., Gaus, Y., & Breckon, T. (2023). Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption. . https://doi.org/10.5220/0011684700003417
Anomaly detection is the task of recognising novel samples which deviate significantly from pre-established normality. Abnormal classes are not present during training meaning that models must learn effective representations solely across normal clas... Read More about Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption.