Skip to main content

Research Repository

Advanced Search

All Outputs (1)

Autoencoders Without Reconstruction for Textural Anomaly Detection (2021)
Presentation / Conference Contribution
Adey, P., Akcay, S., Bordewich, M., & Breckon, T. (2021, July). Autoencoders Without Reconstruction for Textural Anomaly Detection. Presented at 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China

Automatic anomaly detection in natural textures is a key component within quality control for a range of high-speed, high-yield manufacturing industries that rely on camera-based visual inspection techniques. Targeting anomaly detection through the u... Read More about Autoencoders Without Reconstruction for Textural Anomaly Detection.