D. Forero-Sánchez
Analytical and EZmock covariance validation for the DESI 2024 results
Forero-Sánchez, D.; Rashkovetskyi, M.; Alves, O.; de Mattia, A.; Padmanabhan, N.; Seo, H.; Nadathur, S.; Ross, A.J.; Gil-Marín, H.; Zarrouk, P.; Yu, J.; Ding, Z.; Andrade, U.; Chen, X.; Garcia-Quintero, C.; Mena-Fernández, J.; Ahlen, S.; Bianchi, D.; Brooks, D.; Burtin, E.; Chaussidon, E.; Claybaugh, T.; Cole, S.; de la Macorra, A.; Enriquez-Vargas, M.; Gaztañaga, E.; Gutierrez, G.; Honscheid, K.; Howlett, C.; Kisner, T.; Landriau, M.; Le Guillou, L.; Levi, M.E.; Miquel, R.; Moustakas, J.; Palanque-Delabrouille, N.; Percival, W.J.; Pérez-Ràfols, I.; Rossi, G.; Sanchez, E.; Schlegel, D.; Schubnell, M.; Sprayberry, D.; Tarlé, G.; Vargas-Magaña, M.; Weaver, B.A.; Zou, H.
Authors
M. Rashkovetskyi
O. Alves
A. de Mattia
N. Padmanabhan
H. Seo
S. Nadathur
A.J. Ross
H. Gil-Marín
Dr Pauline Zarrouk pauline.s.zarrouk@durham.ac.uk
Academic Visitor
J. Yu
Z. Ding
U. Andrade
X. Chen
C. Garcia-Quintero
J. Mena-Fernández
S. Ahlen
D. Bianchi
D. Brooks
E. Burtin
E. Chaussidon
T. Claybaugh
Professor Shaun Cole shaun.cole@durham.ac.uk
Professor
A. de la Macorra
M. Enriquez-Vargas
E. Gaztañaga
G. Gutierrez
K. Honscheid
C. Howlett
T. Kisner
M. Landriau
L. Le Guillou
M.E. Levi
R. Miquel
J. Moustakas
N. Palanque-Delabrouille
W.J. Percival
I. Pérez-Ràfols
G. Rossi
E. Sanchez
D. Schlegel
M. Schubnell
D. Sprayberry
G. Tarlé
M. Vargas-Magaña
B.A. Weaver
H. Zou
Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full-Shape two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on an ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full-Shape analyses, which motivates the use of a corrected mock covariance for DESI's 2024 Full Shape analysis.
Citation
Forero-Sánchez, D., Rashkovetskyi, M., Alves, O., de Mattia, A., Padmanabhan, N., Seo, H., Nadathur, S., Ross, A. J., Gil-Marín, H., Zarrouk, P., Yu, J., Ding, Z., Andrade, U., Chen, X., Garcia-Quintero, C., Mena-Fernández, J., Ahlen, S., Bianchi, D., Brooks, D., …Zou, H. (2025). Analytical and EZmock covariance validation for the DESI 2024 results. Journal of Cosmology and Astroparticle Physics, 2025(04), 055. https://doi.org/10.1088/1475-7516/2025/04/055
| Journal Article Type | Article |
|---|---|
| Acceptance Date | Apr 3, 2025 |
| Online Publication Date | Apr 17, 2025 |
| Publication Date | 2025-04 |
| Deposit Date | May 27, 2025 |
| Publicly Available Date | May 27, 2025 |
| Journal | Journal of Cosmology and Astroparticle Physics |
| Electronic ISSN | 1475-7516 |
| Publisher | IOP Publishing |
| Peer Reviewed | Peer Reviewed |
| Volume | 2025 |
| Issue | 04 |
| Article Number | 055 |
| DOI | https://doi.org/10.1088/1475-7516/2025/04/055 |
| Public URL | https://durham-repository.worktribe.com/output/3795820 |
Files
Published Journal Article
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Constraining νΛCDM with density-split clustering
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search