Skip to main content

Research Repository

Advanced Search

Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making

Boulitsakis Logothetis, Stelios; Green, Darren; Holland, Mark; Al Moubayed, Noura

Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making Thumbnail


Authors

Stelios Boulitsakis Logothetis

Darren Green

Mark Holland



Contributors

Abstract

The emergency department (ED) is a fast-paced environment responsible for large volumes of patients with varied disease acuity. Operational pressures on EDs are increasing, which creates the imperative to efficiently identify patients at imminent risk of acute deterioration. The aim of this study is to systematically compare the performance of machine learning algorithms based on logistic regression, gradient boosted decision trees, and support vector machines for predicting imminent clinical deterioration for patients based on cross-sectional patient data extracted from electronic patient records (EPR) at the point of entry to the hospital. We apply state-of-the-art machine learning methods to predict early patient deterioration, based on their first recorded vital signs, observations, laboratory results, and other predictors documented in the EPR. Clinical deterioration in this study is measured by in-hospital mortality and/or admission to critical care. We build on prior work by incorporating interpretable machine learning and fairness-aware modelling, and use a dataset comprising 118, 886 unplanned admissions to Salford Royal Hospital, UK, to systematically compare model variations for predicting mortality and critical care utilisation within 24 hours of admission. We compare model performance to the National Early Warning Score 2 (NEWS2) and yield up to a 0.366 increase in average precision, up to a 21.16% reduction in daily alert rate, and a median 0.599 reduction in differential bias amplification across the protected demographics of age and sex. We use Shapely Additive exPlanations to justify the models’ outputs, verify that the captured data associations align with domain knowledge, and pair predictions with the causal context of each patient’s most influential characteristics. Introducing our modelling to clinical practice has the potential to reduce alert fatigue and identify high-risk patients with a lower NEWS2 that might be missed currently, but further work is needed to trial the models in clinical practice. We encourage future research to follow a systematised approach to data-driven risk modelling to obtain clinically applicable support tools.

Citation

Boulitsakis Logothetis, S., Green, D., Holland, M., & Al Moubayed, N. (2023). Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making. Scientific Reports, 13(1), Article 13563. https://doi.org/10.1038/s41598-023-40661-0

Journal Article Type Article
Acceptance Date Aug 16, 2023
Online Publication Date Aug 21, 2023
Publication Date 2023
Deposit Date Aug 29, 2023
Publicly Available Date Aug 30, 2023
Journal Scientific Reports
Publisher Nature Research
Peer Reviewed Peer Reviewed
Volume 13
Issue 1
Article Number 13563
DOI https://doi.org/10.1038/s41598-023-40661-0
Public URL https://durham-repository.worktribe.com/output/1726303

Files

Published Journal Article (3.4 Mb)
PDF

Licence
http://creativecommons.org/licenses/by/4.0/

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.





You might also like



Downloadable Citations