Dr Wilhelm Klingenberg wilhelm.klingenberg@durham.ac.uk
Associate Professor
Building on work by S. M. Webster \ref[J. Differential Geom. 13 (1978), no. 1, 25--41; MR0520599 (80e:32015)] the author studies the geometry of the second fundamental form of a real hypersurface in a Kähler manifold. As an application he proves that a compact strictly pseudoconvex hypersurface $M\subsetC^n$ is isometric to a sphere provided that $M$ has constant horizontal mean curvature and the CR structure $T_{1,0}(M)$ is parallel in $T^{1,0}(C^n)$.
Klingenberg, W. (2001). Real hypersurfaces of Kahler manifolds. Asian Journal of Mathematics, 5(1), 1 -18. https://doi.org/10.4310/ajm.2001.v5.n1.a1
Journal Article Type | Article |
---|---|
Online Publication Date | Jan 1, 2001 |
Publication Date | Mar 1, 2001 |
Deposit Date | Jul 9, 2007 |
Publicly Available Date | Feb 22, 2011 |
Journal | Asian Journal of Mathematics |
Print ISSN | 1093-6106 |
Publisher | International Press |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Issue | 1 |
Pages | 1 -18 |
DOI | https://doi.org/10.4310/ajm.2001.v5.n1.a1 |
Publisher URL | http://www.ims.cuhk.edu.hk/~ajm/ |
Published Journal Article
(215 Kb)
PDF
Copyright Statement
Copyright © International Press. <br />
First published in Asian journal of mathematics 5 (1) 2001, <br />
published by International Press.
Regularity and Continuity properties of the sub-Riemannian exponential map
(2023)
Journal Article
Weyl Estimates for spacelike hypersurfaces in de Sitter space
(2022)
Journal Article
Evolving to Non-round Weingarten Spheres: Integer Linear Hopf Flows
(2021)
Journal Article
Prescribed $k$ symmetric curvature hypersurfaces in de Sitter space
(2020)
Journal Article
Fredholm-regularity of holomorphic discs in plane bundles over compact surfaces
(2020)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search