G. Zhao
N-body simulations for f(R) gravity using a self-adaptive particle-mesh code
Zhao, G.; Li, B.; Koyama, K.
Abstract
We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al. [Phys. Rev. D 78, 123524 (2008)] and Schmidt et al. [Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k∼20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.
Citation
Zhao, G., Li, B., & Koyama, K. (2011). N-body simulations for f(R) gravity using a self-adaptive particle-mesh code. Physical Review D, 83(4), Article 044007. https://doi.org/10.1103/physrevd.83.044007
Journal Article Type | Article |
---|---|
Publication Date | Feb 2, 2011 |
Deposit Date | Jan 20, 2012 |
Publicly Available Date | Jul 16, 2014 |
Journal | Physical Review D |
Print ISSN | 1550-7998 |
Electronic ISSN | 1550-2368 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 83 |
Issue | 4 |
Article Number | 044007 |
DOI | https://doi.org/10.1103/physrevd.83.044007 |
Files
arXiv version
(1.1 Mb)
PDF
Copyright Statement
arXiv version
You might also like
Upscaling ExaHyPE – on each and every core
(2023)
Report
Galaxy clustering from the bottom up: A Streaming Model emulator I
(2023)
Journal Article
Higher order initial conditions with massive neutrinos
(2022)
Journal Article
Fingerprints of modified gravity on galaxies in voids
(2022)
Journal Article