J. Aldegunde
Hyperfine energy levels of alkali-metal dimers: Ground-state homonuclear molecules in magnetic fields
Aldegunde, J.; Hutson, Jeremy M.
Abstract
We investigate the hyperfine energy levels and Zeeman splittings for homonuclear alkali-metal dimers in low-lying rotational and vibrational states, which are important for experiments designed to produce quantum gases of deeply bound molecules. We carry out density-functional theory calculations of the nuclear hyperfine coupling constants. For nonrotating states, the zero-field splittings are determined almost entirely by the scalar nuclear spin-spin coupling constant. By contrast with the heteronuclear case, the total nuclear spin remains a good quantum number in a magnetic field. We also investigate levels with rotational quantum number N=1, which have long-range anisotropic quadrupole-quadrupole interactions and may be collisionally stable. For these states the splitting is dominated by nuclear quadrupole coupling for most of the alkali-metal dimers and the Zeeman splittings are considerably more complicated.
Citation
Aldegunde, J., & Hutson, J. M. (2009). Hyperfine energy levels of alkali-metal dimers: Ground-state homonuclear molecules in magnetic fields. Physical Review A, 79(1), Article 013401. https://doi.org/10.1103/physreva.79.013401
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2009 |
Deposit Date | Jun 19, 2013 |
Publicly Available Date | Jul 12, 2013 |
Journal | Physical Review A |
Print ISSN | 1050-2947 |
Electronic ISSN | 1094-1622 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 79 |
Issue | 1 |
Article Number | 013401 |
DOI | https://doi.org/10.1103/physreva.79.013401 |
Files
Published Journal Article
(475 Kb)
PDF
Copyright Statement
© 2009 The American Physical Society
You might also like
Formation of Ultracold Molecules by Merging Optical Tweezers
(2023)
Journal Article
Pinpointing Feshbach resonances and testing Efimov universalities in 39K
(2023)
Journal Article
Feshbach Spectroscopy of Cs Atom Pairs in Optical Tweezers
(2022)
Journal Article