E. Spagnuolo
An empirically based steady state friction law and implications for fault stability
Spagnuolo, E.; Nielsen, S.; Violay, M.; Di Toro, G.
Abstract
Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1–20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest.
Citation
Spagnuolo, E., Nielsen, S., Violay, M., & Di Toro, G. (2016). An empirically based steady state friction law and implications for fault stability. Geophysical Research Letters, 43(7), 3263-3271. https://doi.org/10.1002/2016gl067881
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 24, 2016 |
Online Publication Date | Apr 14, 2016 |
Publication Date | Apr 16, 2016 |
Deposit Date | May 4, 2016 |
Publicly Available Date | May 5, 2016 |
Journal | Geophysical Research Letters |
Print ISSN | 0094-8276 |
Electronic ISSN | 1944-8007 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 43 |
Issue | 7 |
Pages | 3263-3271 |
DOI | https://doi.org/10.1002/2016gl067881 |
Public URL | https://durham-repository.worktribe.com/output/1405518 |
Files
Published Journal Article
(732 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
You might also like
Fracture Energy and Breakdown Work During Earthquakes
(2023)
Journal Article
Frictional power dissipation in a seismic ancient fault
(2023)
Journal Article
Scaling Seismic Fault Thickness From the Laboratory to the Field
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search