Clare M. McCann
In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil
McCann, Clare M.; Peacock, Caroline L.; Hudson-Edwards, Karen A.; Shrimpton, Thomas; Gray, Neil D.; Johnson, Karen L.
Authors
Caroline L. Peacock
Karen A. Hudson-Edwards
Thomas Shrimpton
Neil D. Gray
Professor Karen Johnson karen.johnson@durham.ac.uk
Professor
Abstract
The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70 mg g−1 and 32 mg g−1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27 Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p < 0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils.
Citation
McCann, C. M., Peacock, C. L., Hudson-Edwards, K. A., Shrimpton, T., Gray, N. D., & Johnson, K. L. (2018). In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. Journal of Hazardous Materials, 342, 724-731. https://doi.org/10.1016/j.jhazmat.2017.08.066
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 23, 2017 |
Online Publication Date | Aug 30, 2017 |
Publication Date | Jan 15, 2018 |
Deposit Date | Sep 1, 2017 |
Publicly Available Date | Aug 30, 2018 |
Journal | Journal of Hazardous Materials |
Print ISSN | 0304-3894 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 342 |
Pages | 724-731 |
DOI | https://doi.org/10.1016/j.jhazmat.2017.08.066 |
Files
Accepted Journal Article
(999 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
A nation that rebuilds its soils rebuilds itself- an engineer's perspective
(2022)
Journal Article