Skip to main content

Research Repository

Advanced Search

Long Starphene Single Molecule NOR Boolean Logic Gate

Soe, W.H.; Manzano, C.; de Mendoza, P.; McGonigal, P.R.; Echavarren, A.M.; Joachim, C.

Long Starphene Single Molecule NOR Boolean Logic Gate Thumbnail


W.H. Soe

C. Manzano

P. de Mendoza

A.M. Echavarren

C. Joachim


Using a low temperature scanning tunneling microscope (LT-UHV-STM), local electronic tunneling spectroscopy and differential conductance mapping are performed to investigate how by extending one phenyl more each branch of the conjugated board of a trinaphthylene starphene molecule, the corresponding longer trianthracene starphene new molecule is functioning like a NOR Boolean logic gate according to a Quantum Hamiltonian Computing (QHC) design. Here the STM tip is used to manipulate single Au atoms one at a time for contacting a trianthracene molecule. Each Au atom is acting like a classical digital input on the molecule encoding for a logical “0” when the atom is not interacting with the trianthracene input branch and for a logical “1” when interacting. The inputs are converted in quantum information inside the trianthracene molecule and the logical output status available on the output branch. QHC is demonstrated to be robust since quantum information transfer can be used on the long range along the trianthracene for the NOR logic gate to function properly as compared to the shorter trinaphthylene molecule.


Soe, W., Manzano, C., de Mendoza, P., McGonigal, P., Echavarren, A., & Joachim, C. (2018). Long Starphene Single Molecule NOR Boolean Logic Gate. Surface Science, 678, 163-168.

Journal Article Type Article
Acceptance Date Apr 27, 2018
Online Publication Date Apr 30, 2018
Publication Date Dec 1, 2018
Deposit Date May 1, 2018
Publicly Available Date Apr 30, 2020
Journal Surface Science
Print ISSN 0039-6028
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 678
Pages 163-168


You might also like

Downloadable Citations