Professor Mathew Bullimore mathew.r.bullimore@durham.ac.uk
Professor
Vortices and Vermas
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin; Kim, Hee-Cheol
Authors
Tudor Dimofte
Davide Gaiotto
Justin Hilburn
Hee-Cheol Kim
Abstract
In three-dimensional gauge theories, monopole operators create and destroy vortices. We explore this idea in the context of 3d N=4 gauge theories in the presence of an Ω-background. In this case, monopole operators generate a non-commutative algebra that quantizes the Coulomb-branch chiral ring. The monopole operators act naturally on a Hilbert space, which is realized concretely as the equivariant cohomology of a moduli space of vortices. The action furnishes the space with the structure of a Verma module for the Coulomb-branch algebra. This leads to a new mathematical definition of the Coulomb-branch algebra itself, related to that of Braverman–Finkelberg–Nakajima. By introducing additional boundary conditions, we find a construction of vortex partition functions of 2d N=(2,2) theories as overlaps of coherent states (Whittaker vectors) for Coulomb-branch algebras, generalizing work of Braverman–Feigin–Finkelberg–Rybnikov on a finite version of the AGT correspondence. In the case of 3d linear quiver gauge theories, we use brane constructions to exhibit vortex moduli spaces as handsaw quiver varieties, and realize monopole operators as interfaces between handsaw-quiver quantum mechanics, generalizing work of Nakajima.
Citation
Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J., & Kim, H.-C. (2018). Vortices and Vermas. Advances in Theoretical and Mathematical Physics, 22(4), 803-917. https://doi.org/10.4310/atmp.2018.v22.n4.a1
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 14, 2018 |
Online Publication Date | Dec 5, 2018 |
Publication Date | 2018 |
Deposit Date | Jul 2, 2018 |
Publicly Available Date | May 1, 2019 |
Journal | Advances in Theoretical and Mathematical Physics |
Print ISSN | 1095-0761 |
Electronic ISSN | 1095-0753 |
Publisher | International Press |
Peer Reviewed | Peer Reviewed |
Volume | 22 |
Issue | 4 |
Pages | 803-917 |
DOI | https://doi.org/10.4310/atmp.2018.v22.n4.a1 |
Public URL | https://durham-repository.worktribe.com/output/1322801 |
Related Public URLs | https://arxiv.org/abs/1609.04406 |
Files
Accepted Journal Article
(1.2 Mb)
PDF
Copyright Statement
Copyright © International Press. First published in Bullimore, Mathew, Dimofte, Tudor, Gaiotto, Davide, Hilburn, Justin & Kim, Hee-Cheol (2018). Vortices and Vermas. Advances in Theoretical and Mathematical Physics 22(4): 803-917 published by International Press.
You might also like
Non-invertible symmetries and higher representation theory II
(2024)
Journal Article
Non-invertible symmetries and higher representation theory I
(2024)
Journal Article
Anomalies of generalized symmetries from solitonic defects
(2024)
Journal Article
Generalized symmetries and anomalies of 3d N = 4 SCFTs
(2024)
Journal Article
3d N = 4 Gauge Theories on an Elliptic Curve
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search