Duncan H. Mackay
Magnetic Helicity Condensation and the Solar Cycle
Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.; Yeates, Anthony R.
Authors
Abstract
Solar filaments exhibit a global chirality pattern where dextral/sinistral filaments, corresponding to negative/positive magnetic helicity, are dominant in the northern/southern hemisphere. This pattern is opposite to the sign of magnetic helicity injected by differential rotation along east–west oriented polarity inversion lines, posing a major conundrum for solar physics. A resolution of this problem is offered by the magnetic helicity-condensation model of Antiochos. To investigate the global consequences of helicity condensation for the hemispheric chirality pattern, we apply a temporally and spatially averaged statistical approximation of helicity condensation. Realistic magnetic field configurations in both the rising and declining phases of the solar cycle are simulated. For the helicity-condensation process, we assume convective cells consisting of positive/negative vorticities in the northern/southern hemisphere that inject negative/positive helicity. The magnitude of the vorticity is varied as a free parameter, corresponding to different rates of helicity injection. To reproduce the observed percentages of dominant and minority filament chiralities, we find that a vorticity of magnitude 2.5 × 10−6 s−1 is required. This rate, however, is insufficient to produce the observed unimodal profile of chirality with latitude. To achieve this, a vorticity of at least 5 × 10−6 s−1 is needed. Our results place a lower limit on the small-scale helicity injection required to dominate differential rotation and reproduce the observed hemispheric pattern. Future studies should aim to establish whether the helicity injection rate due to convective flows and/or flux emergence across all latitudes of the Sun is consistent with our results.
Citation
Mackay, D. H., DeVore, C. R., Antiochos, S. K., & Yeates, A. R. (2018). Magnetic Helicity Condensation and the Solar Cycle. Astrophysical Journal, 869(1), Article 62. https://doi.org/10.3847/1538-4357/aaec7c
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 25, 2018 |
Online Publication Date | Dec 12, 2018 |
Publication Date | Dec 12, 2018 |
Deposit Date | Dec 14, 2018 |
Publicly Available Date | Jan 8, 2019 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 869 |
Issue | 1 |
Article Number | 62 |
DOI | https://doi.org/10.3847/1538-4357/aaec7c |
Public URL | https://durham-repository.worktribe.com/output/1311685 |
Files
Published Journal Article
(8.8 Mb)
PDF
Copyright Statement
© 2018. The American Astronomical Society. All rights reserved
You might also like
Surface Flux Transport on the Sun
(2023)
Journal Article
Spherical winding and helicity
(2023)
Journal Article
Automated driving for global non-potential simulations of the solar corona
(2022)
Journal Article
Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search