B. Guilfoyle
Mean Curvature Flow of Compact Spacelike Submanifolds in Higher Codimension
Guilfoyle, B.; Klingenberg, K.
Abstract
We prove the longtime existence for mean curvature flow of a smooth n-dimensional spacelike submanifold of an (n + m)-dimensional manifold whose metric satisfies the timelike curvature condition.
Citation
Guilfoyle, B., & Klingenberg, K. (2019). Mean Curvature Flow of Compact Spacelike Submanifolds in Higher Codimension. Transactions of the American Mathematical Society, 372(9), 6263-6281. https://doi.org/10.1090/tran/7766
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 29, 2018 |
Online Publication Date | Feb 1, 2019 |
Publication Date | Nov 30, 2019 |
Deposit Date | Nov 29, 2018 |
Publicly Available Date | Feb 1, 2019 |
Journal | Transactions of the American Mathematical Society |
Print ISSN | 0002-9947 |
Electronic ISSN | 0002-9947 |
Publisher | American Mathematical Society |
Peer Reviewed | Peer Reviewed |
Volume | 372 |
Issue | 9 |
Pages | 6263-6281 |
DOI | https://doi.org/10.1090/tran/7766 |
Files
Accepted Journal Article
(320 Kb)
PDF
Copyright Statement
© 2019 American Mathematical Society. First published in 1 February 2019 Guilfoyle, B. & Klingenberg, K. (2019). Mean Curvature Flow of Compact Spacelike Submanifolds in Higher Codimension. Transactions of the American Mathematical Society 372(9): 6263-6281, published by the American Mathematical Society.
You might also like
Regularity and Continuity properties of the sub-Riemannian exponential map
(2023)
Journal Article
Weyl Estimates for spacelike hypersurfaces in de Sitter space
(2022)
Journal Article
Evolving to Non-round Weingarten Spheres: Integer Linear Hopf Flows
(2021)
Journal Article
Prescribed $k$ symmetric curvature hypersurfaces in de Sitter space
(2020)
Journal Article
Fredholm-regularity of holomorphic discs in plane bundles over compact surfaces
(2020)
Journal Article