W Trewby
Long-lived ionic nano-domains can modulate the stiffness of soft interfaces
Trewby, W; Faraudo, J; Voïtchovsky, K
Abstract
Metal ions underpin countless processes at bio-interfaces, including maintaining electroneutrality, modifying mechanical properties and driving bioenergetic activity. These processes are typically described by ions behaving as independently diffusing point charges. Here we show that Na+ and K+ ions instead spontaneously form correlated nanoscale networks that evolve over seconds at the interface with an anionic bilayer in solution. Combining single-ion level atomic force microscopy and molecular dynamic simulations we investigate the configuration and dynamics of Na+, K+, and Rb+ at the lipid surface. We identify two distinct ionic states: the well-known direct electrostatic interaction with lipid headgroups and a water-mediated interaction that can drive the formation of remarkably long-lived ionic networks which evolve over many seconds. We show that this second state induces ionic network formation via correlative ion–ion interactions that generate an effective energy well of −0.4kBT/ion. These networks locally reduce the stiffness of the membrane, providing a spontaneous mechanism for tuning its mechanical properties with nanoscale precision. The ubiquity of water-mediated interactions suggest that our results have far-reaching implications for controlling the properties of soft interfaces.
Citation
Trewby, W., Faraudo, J., & Voïtchovsky, K. (2019). Long-lived ionic nano-domains can modulate the stiffness of soft interfaces. Nanoscale, 11(10), 4376-4384. https://doi.org/10.1039/c8nr06339g
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 12, 2019 |
Online Publication Date | Feb 25, 2019 |
Publication Date | Mar 14, 2019 |
Deposit Date | Feb 20, 2019 |
Publicly Available Date | Feb 26, 2019 |
Journal | Nanoscale |
Print ISSN | 2040-3364 |
Electronic ISSN | 2040-3372 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 10 |
Pages | 4376-4384 |
DOI | https://doi.org/10.1039/c8nr06339g |
Public URL | https://durham-repository.worktribe.com/output/1307746 |
Files
Published Journal Article
(3.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article (Advance online version)
(3.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
You might also like
The Effect of Ageing on the Structure and Properties of Model Liquid Infused Surfaces
(2020)
Journal Article
Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search