K Nguyen
Non-conforming multipatches for NURBS-based finite element analysis of higher-order phase-field models for brittle fracture
Nguyen, K; Augarde, CE; Coombs, WM; Nguyen-Xuan, H; Abdel-Wahab, M
Authors
Professor Charles Augarde charles.augarde@durham.ac.uk
Head Of Department
Professor William Coombs w.m.coombs@durham.ac.uk
Professor
H Nguyen-Xuan
M Abdel-Wahab
Abstract
This paper proposes an effective computational tool for brittle crack propagation problems based on a combination of a higher-order phase-field model and a non-conforming mesh using a NURBS-based isogeometric approach. This combination, as demonstrated in this paper, is of great benefit in reducing the computational cost of using a local refinement mesh and a higher-order phase-field, which needs higher derivatives of basis functions. Compared with other approaches using a local refinement mesh, the Virtual Uncommon-Knot-Inserted Master-Slave (VUKIMS) method presented here is not only simple to implement but can also reduce the variable numbers. VUKIMS is an outstanding choice in order to establish a local refinement mesh, i.e. a non-conforming mesh, in a multi-patch problem. A phase-field model is an efficient approach for various complicated crack patterns, including those with or without an initial crack path, curved cracks, crack coalescence, and crack propagation through holes. The paper demonstrates that cubic NURBS elements are ideal for balancing the computational cost and the accuracy because they can produce accurate solutions by utilising a lower degree of freedom number than an extremely fine mesh of first-order B-spline elements.
Citation
Nguyen, K., Augarde, C., Coombs, W., Nguyen-Xuan, H., & Abdel-Wahab, M. (2020). Non-conforming multipatches for NURBS-based finite element analysis of higher-order phase-field models for brittle fracture. Engineering Fracture Mechanics, 235, Article 107133. https://doi.org/10.1016/j.engfracmech.2020.107133
Journal Article Type | Article |
---|---|
Acceptance Date | May 30, 2020 |
Online Publication Date | Jun 4, 2020 |
Publication Date | 2020-08 |
Deposit Date | Jun 4, 2020 |
Publicly Available Date | Jun 4, 2021 |
Journal | Engineering Fracture Mechanics |
Print ISSN | 0013-7944 |
Electronic ISSN | 1873-7315 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 235 |
Article Number | 107133 |
DOI | https://doi.org/10.1016/j.engfracmech.2020.107133 |
Public URL | https://durham-repository.worktribe.com/output/1300805 |
Files
Accepted Journal Article
(3.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Simulation of strain localisation with an elastoplastic micropolar material point method
(2024)
Presentation / Conference Contribution
Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search