Professor Simon Mathias s.a.mathias@durham.ac.uk
Professor
Professor Simon Mathias s.a.mathias@durham.ac.uk
Professor
Professor Stefan Nielsen stefan.nielsen@durham.ac.uk
Professor
Rebecca L. Ward
The porosity and permeability of coal change with pore pressure, due to changes in effective stress and matrix swelling due to gas adsorption. Three analytical models to describe porosity and permeability change in this context have been presented in the literature, all of which are based on poroelastic theory and uniaxial strain conditions. However, each of the three models provides different results. Review articles have attributed these differences to the use of stress formulations or strain formulations. In this article, the three aforementioned porosity models are used to derive three associated expressions for the storage coefficient. A single mathematical equation for the storage coefficient in an aquifer under uniaxial strain conditions is well established. The storage coefficient represents the volume of fluid released per unit volume of a porous rock following a unit decline in pore pressure. It is shown that only one of the aforementioned three coal-bed methane porosity models leads to the correct equation for the uniaxial strain storage coefficient in the absence of gas sorption-induced strain.
Mathias, S. A., Nielsen, S., & Ward, R. L. (2019). Storage Coefficients and Permeability Functions for Coal-Bed Methane Production Under Uniaxial Strain Conditions. Transport in Porous Media, 130(2), 627-636. https://doi.org/10.1007/s11242-019-01331-w
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 10, 2019 |
Online Publication Date | Aug 20, 2019 |
Publication Date | Nov 30, 2019 |
Deposit Date | Aug 21, 2019 |
Publicly Available Date | Aug 21, 2019 |
Journal | Transport in Porous Media |
Print ISSN | 0169-3913 |
Electronic ISSN | 1573-1634 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 130 |
Issue | 2 |
Pages | 627-636 |
DOI | https://doi.org/10.1007/s11242-019-01331-w |
Public URL | https://durham-repository.worktribe.com/output/1289684 |
Published Journal Article
(274 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article
(285 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s) 2019.
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Fracture Energy and Breakdown Work During Earthquakes
(2023)
Journal Article
Frictional power dissipation in a seismic ancient fault
(2023)
Journal Article
Scaling Seismic Fault Thickness From the Laboratory to the Field
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search