Dr Mark Lovell m.r.lovell@durham.ac.uk
Technical Manager
Local group star formation in warm and self-interacting dark matter cosmologies
Lovell, M.R.; Hellwing, W.; Ludlow, A.; Zavala, J.; Robertson, A.; Fattahi, A.; Frenk, C.S.; Hardwick, J.
Authors
W. Hellwing
A. Ludlow
J. Zavala
Dr Andrew Robertson andrew.robertson@durham.ac.uk
Academic Visitor
Dr Azadeh Fattahi Savadjani azadeh.fattahi-savadjani@durham.ac.uk
Associate Professor
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
J. Hardwick
Abstract
The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper, we use high-resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the EAGLE galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of 2 in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by ∼200 Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100 Myr, and to address degeneracies with the redshift of reionization – and potentially other baryonic processes – in order to use these observables to distinguish between dark matter models.
Citation
Lovell, M., Hellwing, W., Ludlow, A., Zavala, J., Robertson, A., Fattahi, A., …Hardwick, J. (2020). Local group star formation in warm and self-interacting dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 498(1), 702-717. https://doi.org/10.1093/mnras/staa2525
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 17, 2020 |
Online Publication Date | Aug 21, 2020 |
Publication Date | 2020-10 |
Deposit Date | Oct 20, 2020 |
Publicly Available Date | Oct 22, 2020 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 498 |
Issue | 1 |
Pages | 702-717 |
DOI | https://doi.org/10.1093/mnras/staa2525 |
Public URL | https://durham-repository.worktribe.com/output/1253693 |
Files
Published Journal Article
(4.2 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
Pre-supernova stellar feedback in nearby starburst dwarf galaxies
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search