Professor Ian Vernon i.r.vernon@durham.ac.uk
Professor
Professor Ian Vernon i.r.vernon@durham.ac.uk
Professor
Mr Jonathan Owen jonathan.owen@durham.ac.uk
PGR Student Doctor of Philosophy
J. Aylett-Bullock
C. Cuestra-Lazaro
Mr Jonathan Frawley jonathan.frawley@durham.ac.uk
PGR Student Doctor of Philosophy
A. Quera-Bofarull
A. Sedgewick
Dr Difu Shi difu.shi@durham.ac.uk
Science Translation Fellow
Mr Henry Truong henry.truong@durham.ac.uk
PGR Student Doctor of Philosophy
M. Turner
Mr Joseph Walker j.j.walker@durham.ac.uk
PGR Student Doctor of Philosophy
T. Caulfield
K. Fong
Professor Frank Krauss frank.krauss@durham.ac.uk
Royal Society Wolfson Fellow
We analyse JUNE: a detailed model of Covid-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the Uncertainty Quantification approaches of Bayes linear emulation and history matching, to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods.
Vernon, I., Owen, J., Aylett-Bullock, J., Cuestra-Lazaro, C., Frawley, J., Quera-Bofarull, A., …Krauss, F. (2022). Bayesian Emulation and History Matching of JUNE. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2233), Article 20220039. https://doi.org/10.1098/rsta.2022.0039
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 7, 2022 |
Online Publication Date | Aug 15, 2022 |
Publication Date | Oct 3, 2022 |
Deposit Date | Jun 8, 2022 |
Publicly Available Date | Jun 8, 2022 |
Journal | Philosophical Transactions A |
Print ISSN | 1364-503X |
Electronic ISSN | 1471-2962 |
Publisher | The Royal Society |
Peer Reviewed | Peer Reviewed |
Volume | 380 |
Issue | 2233 |
Article Number | 20220039 |
DOI | https://doi.org/10.1098/rsta.2022.0039 |
Public URL | https://durham-repository.worktribe.com/output/1202890 |
Accepted Journal Article
(2.2 Mb)
PDF
Copyright Statement
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Published Journal Article
(2.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Using neural networks for efficient evaluation of high multiplicity scattering amplitudes
(2020)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search