Juhan Aru
A characterisation of the continuum Gaussian free field in arbitrary dimensions
Aru, Juhan; Powell, Ellen
Abstract
e prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition of the underlying functional space in terms of radial processes and spherical harmonics
Citation
Aru, J., & Powell, E. (2022). A characterisation of the continuum Gaussian free field in arbitrary dimensions. Journal de l’École polytechnique — Mathématiques, 9, 1101-1120. https://doi.org/10.5802/jep.201
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 17, 2022 |
Online Publication Date | Jun 30, 2022 |
Publication Date | 2022 |
Deposit Date | Jul 27, 2022 |
Publicly Available Date | Jul 27, 2022 |
Journal | Journal de l’École polytechnique — Mathématiques |
Print ISSN | 2429-7100 |
Publisher | École polytechnique |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Pages | 1101-1120 |
DOI | https://doi.org/10.5802/jep.201 |
Files
Published Journal Article
(1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Cet article est mis à disposition selon les termes de la licence<br />
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.<br />
https://creativecommons.org/licenses/by/4.0/
You might also like
Brownian half‐plane excursion and critical Liouville quantum gravity
(2022)
Journal Article
Lecture notes on the Gaussian free field
(2021)
Book
Critical Gaussian multiplicative chaos: a review
(2021)
Journal Article
Conformal welding for critical Liouville quantum gravity
(2021)
Journal Article
(1+𝜀) moments suffice to characterise the GFF
(2021)
Journal Article