Dr Alessandro Giampieri alessandro.giampieri@durham.ac.uk
Postdoctoral Research Associate
An integrated smart thermo-chemical energy network
Giampieri, A.; Roy, S.; Shivaprasad, K.V.; Smallbone, A.J.; Roskilly, A.P.
Authors
Dr Sumit Roy sumit.roy@durham.ac.uk
Academic Visitor
K.V. Shivaprasad
Professor Andrew Smallbone andrew.smallbone@durham.ac.uk
Professor
Professor Tony Roskilly anthony.p.roskilly@durham.ac.uk
Professor
Abstract
Managing the intermittency of renewable sources together with transient (hourly to daily to seasonal) energy demands is one of the principal challenges of delivering a net-zero energy system. Smart multifunctional thermo-chemical energy networks represent an alternative energy network and storage system, a solution based on the distribution of energy via thermo-chemical material rather than thermal energy, gas, fuels or electricity– an option that has scope for integrated short- and long-term energy storage. This is the first research work to realise such a system and demonstrate how it might operate using smart control strategies and how thermo-chemical fluids (TCFs) can be used as a medium for timely energy storage and distribution. The experimental study also describes the effect of steady and variable heat sources on TCF regeneration performance and estimates the potential of thermo-chemical energy networks, which would be particularly beneficial in buildings with high energy consumption for humidity control. This research proves the practicality of the design idea for such a network, which would be governed by centralised control, regenerated by steady or transient heat loads and capable of supplying a variety of demands in an experimental setting. The energy and economic potential of the network were also assessed, identifying temperature and humidity control application scenarios with energy savings of more than 60% compared to conventional operation and payback periods of 6.6–9.7 years.
Citation
Giampieri, A., Roy, S., Shivaprasad, K., Smallbone, A., & Roskilly, A. (2022). An integrated smart thermo-chemical energy network. Renewable and Sustainable Energy Reviews, 168, Article 112869. https://doi.org/10.1016/j.rser.2022.112869
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 15, 2022 |
Online Publication Date | Aug 27, 2022 |
Publication Date | Aug 27, 2022 |
Deposit Date | Aug 25, 2022 |
Publicly Available Date | Sep 6, 2022 |
Journal | Renewable and Sustainable Energy Reviews |
Print ISSN | 1364-0321 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 168 |
Article Number | 112869 |
DOI | https://doi.org/10.1016/j.rser.2022.112869 |
Public URL | https://durham-repository.worktribe.com/output/1193672 |
Files
Published Journal Article
(10.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
You might also like
Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search