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Huettig and Christiansen (2024) argue that large language models (LLMs) are benefi-
cial to address declining cognitive skills, such as literacy, through combating imbal-
ances in educational equity. However, we warn that this technosolutionism may be the
wrong frame. LLMs are labour intensive, are economically infeasible, and pollute the
environment, and these properties may outweigh any proposed benefits. For example,
poor quality air directly harms human cognition, and thus has compounding effects
on educators’ and pupils’ ability to teach and learn. We urge extreme caution in facil-
itating the use of LLMs, which like much of modern academia run on private technol-
ogy sector infrastructure, in classrooms lest we further normalise: pupils losing their
right to privacy and security, reducing human contact between learner and educator,
deskilling teachers, and polluting the environment. Cognitive scientists instead can
learn from past mistakes with the petrochemical and tobacco industries and consider
the harms to cognition from LLMs.

In a recent article, Huettig and Christiansen (2024,
hereafter: H&C) argue that cognitive science can
play an important role in how large language mod-
els (LLMs) could arrest a decline in literacy. The call
to arms for cognitive scientists is a welcome one (cf.
Avraamidou, 2024; van Rooij et al., 2024) — as H&C
rightly point out, the future of literacy is too impor-
tant to be left in the hands of tech firms motivated by
profit. H&C argue that under the guidance of cognitive
scientists, LLMs could address declining literacy levels
noted in multiple countries (Ahonen, 2021). Below we
argue that while cognitive scientists are certainly re-
quired to address declining literacy levels, the effects
of focusing on developing LLMs to improve literacy,
could in fact exacerbate the root causes of its decline.
In sum, we argue that H&C suggestions could be in fact
perilous since: a) almost all our distributed computa-
tional infrastructure is owned by the big three technol-
ogy companies (Amazon, Google, and Microsoft) and
any large model will run on these ecosystems (e.g. Ope-
nAI models run on Microsoft), thus escape is struc-
turally impossible (with worrying effects on academic
freedom, privacy, and security Birhane et al., 2022;
OHCHR, 2021; Fiebig et al., 2023); b) companies have
a history of inflating claims of benefits and downplay-
ing or hiding known downsides (O’Brien, 2024; Stol-

ley, 1991), which says nothing of yet-to-be-seen neg-
ative effects of their products and services; and c) the
root causes of declining literacy should be uncovered,
or at least, first outlined since it appears that LLMs and
related technologies contribute to harmful conditions
for pupils’ learning. In this letter, we focus on the last
point: uncritical technosolutionism.

Among the suggested areas for cognitive scientists
to use LLMs to improve literacy, H&C single out ed-
ucational equity (see also Berdejo-Espinola & Amano,
2023). Concern about the effects of inequity on lit-
eracy levels is well-founded: disparities in socioeco-
nomic status have been linked to literacy outcomes
both as general effects on development (see e.g. Romeo,
Uchida, & Christodoulou, 2022) and as specific ef-
fects (Dolean, Melby-Lervåg, Tincas, Damsa, & Lervåg,
2019). It is, however, worth noting that for children,
the socioeconomic effects of the school affect literacy
even when accounting for individual socioeconomic ef-
fects (Salas & Pascual, 2023). This of course makes
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sense in the context of literacy being a skill that is
(over)learned (e.g. Huettig & Hulstijn, 2024).

Unfortunately, LLMs are created and employed at
a substantial economic (Smith, 2023), human (Bender,
2024; Perrigo, 2023; Williams, Miceli, & Gebru, 2022),
and environmental cost (Bender, Gebru, McMillan-
Major, & Shmitchell, 2021; Crawford, 2024; Ren &
Wierman, 2024; O’Brien, 2024). While a focus of on-
going research is to make these models environmen-
tally sustainable (Jiang, Sonne, Li, You, & You, 2024;
Stojkovic, Choukse, Zhang, Goiri, & Torrellas, 2024),
these advancements at this stage are some way off
(Blunt & Hiller, 2024), if at all possible (van Rooij
et al., 2024). With due consideration for the scale at
which LLMs need to operate, the effect of investing
resources in LLMs rather than education could have
multiple negative effects. The direct effect of time and
money being spent on A and not B might be simplis-
tic, but the downstream effects of the investment look
set to widen economic disparities (Alonso, Kothari, &
Rehman, 2020).

The above examples demonstrate that it may be
that LLMs exacerbate, rather than alleviate, inequality
(Kalluri, 2020). But what of an increase in equality as
to who can access literacy, despite a potential rise in
economic and environmental inequality? H&C argue
that LLMs may be claimed to encourage writing, and
specifically-tailored texts created to reach — and en-
gage — more people, improving both writing and lit-
eracy. This appears to be an attractive solution, even
considering the wider inequality, if we were to just fo-
cus on literacy. This purported solution too, though,
must be approached with a degree of scepticism and
caution (recall a and b above). An LLM — even one
guided by cognitive scientists with expertise in literacy
— is no replacement for explicit instruction in read-
ing, human contact, and the pedagogical process of
reading and writing independently (Buijzen, Van Rei-
jmersdal, & Owen, 2010; Marriott & Pitardi, 2024).
Careful, explicit, and tailored instruction from a hu-
man teacher is needed to ensure that literacy reaches
the level of proficiency required to not be at a disad-
vantage in education, employment, and daily life. A
carefully-curated LLM might appear to be able to pro-
vide enough instruction to bridge that gap, but equally,
we must first ensure that due to inbuilt biases or a lack
of quality controls, the LLM does not have the oppo-
site effect, producing unhelpful or harmful materials
for learners and normalising the lack of human con-
tact during education (Bender et al., 2021; Birhane et
al., 2022; Weidinger et al., 2022). It is noteworthy here
that in all likelihood, the wealthy would still continue
to receive high-quality personal instruction while the

less wealthy would be taught by these potentially prob-
lematic LLMs due to resource constraints. Any poten-
tial positive effects of LLMs could be annulled, when
we notice that it shuts out people with lower literacy
from access to high-quality personal instruction (see
e.g. Coghlan et al., 2023, for related discussion on chat-
bots and therapy).

H&C also suggest LLMs might be used to create
more diverse materials; we share the enthusiasm of
H&C for diverse materials, but again must urge cau-
tion. An LLM cannot create material vastly more di-
verse than its training set, and so diverse texts must
first exist in order to be able to be created (Birhane et
al., 2022; Dornis & Stober, 2024). An LLM derivative of
these texts might be able to be used alongside the orig-
inals, or might be examples of poor writing or other
problems outlined above when trained on a compara-
tively small sample. The option to train these models
on their own output to eventually create entirely dif-
ferent and diverse texts is likely not an option, as the
evidence points to models losing all diversity of out-
put when trained on their own input (Shumailov et
al., 2024). Using automated techniques like LLMs also
risks deskilling the creators of these diverse materials,
i.e. educators, from having the required training to
produce more of them (Thrall et al., 2018; Whittaker,
2020; Wood, 1987).

Extra caution should be taken by cognitive scientists
in looking to align with technology companies to shape
LLMs as their goals may not be directly aligned. In fact,
we may be duty bound to determine if we have aligned
goals and to abstain if those principles are not reflected
in the companies we collaborate with, e.g. respect for
the ecosystems and the environment and therefore to
minimise pollution, respect for society and cultural
heritage and therefore to minimise our teaching ma-
terials containing inaccuracies or garbled text, and a
responsibility for AI and related technologies, if used
in research, to be verifiable and replicable and there-
fore to specify our conflicts of interest openly (ALLEA,
2023; KNAW and NFU and NWO and TO2-federatie
and Vereniging Hogescholen and VSNU, 2018).

Even something seemingly indirect such as environ-
mental costs of LLMs may also harm literacy. Poor
air quality has been demonstrated to have deleterious
effects on cognition in adults (Chen et al., 2023) and
young children (Spencer et al., 2023). As literacy re-
lies on these general cognitive foundations, a decline
in literacy could mirror a decline in air quality — in-
deed H&C point to an existing overall decline in cog-
nition, for which poor air quality may bear part of the
blame. It is worth highlighting that poor air quality
also bears economic costs as above, and these are not
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borne equally (Pandey et al., 2021), since automation
(cf. Bainbridge, 1983) is likely to increase, rather than
decrease economic disparities. What applies to child
learners also applies indirectly for caregivers working
in harmful or low-paying jobs in the Global South. In
other words, if your caregivers and broader community
are subject to adverse working conditions, described
as “toxic” (Williams et al., 2022; Perrigo, 2023), and
harmful to their mental health, the attention parents
and others can provide to children is likely negatively
affected. These environmental costs might be address-
ablle through emerging or different technologies — in-
deed the history of AI in Education (AIED) shows inno-
vations can be made without the environmental costs
(Azevedo & Gašević, 2019), though other ethical issues
remain (Holmes et al., 2022).

Your scientists were so preoccupied with
whether they could, they didn’t stop to think
if they should. —Dr Malcolm, Jurassic Park

H&C sound a call to arms for cognitive scientists to
involve themselves in the development of LLMs for im-
proving reading, lest it be left to large technological
companies. Above we argue that although enthusiasm
about new technology is welcome, the intrinsic harms
of LLMs in the classroom — and in general — are such
that cognitive scientists need to tread carefully before
determining how — or whether — they should be em-
ployed to this purpose (Avraamidou, 2024). We argue
not that the technology should or can be ignored, but
that we must think carefully about the costs to be cer-
tain this is the best chance of benefiting learners. The
positives that LLMs may bring are attractive, but due to
the economic, environmental, human, and educational
costs of routinely employing LLMs in a classroom con-
text, the costs and harms should be weighed up by cog-
nitive scientists, who are indeed uniquely equipped for
this role.
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