
Optimal Policies and Heuristics To Match Supply With Demand
For Online Retailing

Qiyuan Denga,b • Xiaobo Lic,∗ • Yun Fong Limd • Fang Liue

aSchool of Management and Economics, The Chinese University of Hong Kong, Shenzhen, Guangdong

518172, China

bShenzhen Finance Institute, Shenzhen, Guangdong 518000, China

cDepartment of Industrial Systems Engineering and Management, National University of Singapore,

Singapore 117576

dLee Kong Chian School of Business, Singapore Management University, Singapore 178899

eDurham University Business School, Durham University, Durham DH1 3LB, United Kingdom

dengqiyuan@cuhk.edu.cn • iselix@nus.edu.sg • yflim@smu.edu.sg • fang.liu@durham.ac.uk

∗Corresponding author

Abstract

Problem definition: We consider an online retailer selling multiple products to different zones

over a finite horizon with multiple periods. At the start of the horizon, the retailer orders the

products from a single supplier and stores them at multiple warehouses. The retailer deter-

mines the products’ order quantities and their storage quantities at each warehouse subject to

its capacity constraint. At the end of each period, after random demands in the period are

realized, the retailer chooses the retrieval quantities from each warehouse to fulfill the demands

of each zone. The objective is to maximize the retailer’s expected profit over the finite horizon.

Methodology/results: For the single-zone case, we show that the multi-period problem is

equivalent to a single-period problem and the optimal retrieval decisions follow a greedy pol-

icy that retrieves products from the lowest-cost warehouse. We design a non-greedy algorithm

to find the optimal storage policy, which preserves a nested property: Among all non-empty

warehouses, a smaller-index warehouse contains all the products stored in a larger-index ware-

house. We also analytically characterize the optimal ordering policy. The multi-zone case is

unfortunately intractable analytically and we propose an efficient heuristic to solve it, which

involves a non-trivial hybrid of three approximations. This hybrid heuristic outperforms two

conventional benchmarks by up to 22.5% and 3.5% in our numerical experiments with various

horizon lengths, fulfillment frequencies, warehouse capacities, demand variations, and demand

correlations.

Managerial implications: A case study based on data from a major fashion online retailer

in Asia confirms the superiority of the hybrid heuristic. With delicate optimization, the heuris-

tic improves the average profit by up to 16% compared to a dedicated policy adopted by the

retailer. The hybrid heuristic continues to outperform the benchmarks for larger networks with

various structures.

1

Keywords: online seasonal sales, product ordering, inventory allocation, order fulfillment, multi-

ple periods

1 Introduction

In 2023, global retail e-commerce sales reached $5.78 trillion, making up 19.5% of the total retail

sales worldwide (Insider Intelligence, 2023). The revenues of e-retailing are projected to grow to

$8.03 trillion in 2027, which is equivalent to 23% of the total retail sales worldwide. The strong

growth in sales makes online retailing a significant industry to study. As more people shop online,

more online businesses emerge, resulting in fierce competitions.

Online seasonal sales have recently become one of the most popular online promotional events.

For example, Alibaba generated more than $84.54 billion of revenue on the “Singles Day” in 2021,

whereas JD.com reported a revenue of $54.60 billion in the same period (Kharpal, 2021). Online

seasonal sales also occur in the online fashion sample sales industry (Ferreira et al., 2016), where

retailers offer limited-time discounts, also known as “flash sales”, on a collection of products. For

example, Rue La La sells products through “events”, each of which might represent a collection

of products from the same designer or a collection of women’s accessaries. Other examples in-

clude Zulily, Gilt Groupe, and VIP.com. See Local Offer Network (2011), Ostapenko (2013), and

Wolverson (2012) for more examples of sample sales industries.

To offer a seasonal sale, one of the biggest challenges for online retailers is to operate a responsive

supply network. For each selling season, the online retailers need to rapidly fulfill random demands

of different zones (such as countries or regions). To study the challenge, consider an online retailer

selling multiple products to multiple zones over a finite horizon (the selling season). At the start of

the horizon, the retailer replenishes the products from a supplier and stores them in warehouses at

different locations. Demands are realized in each period of the horizon. At the end of each period,

the retailer ships the products from the warehouses to the different zones to fulfill their demands.

To better match supply with demand, the retailer has to strategically determine how much of each

product to replenish from the supplier (ordering decisions) and how much of each product to store

in each warehouse (storage decisions) at the start of the horizon. At the end of each period, after

knowing the demands in the period, the retailer has to determine how much of each product to

retrieve from each warehouse to fulfill the demands of the different zones (retrieval decisions). The

retailer’s objective is to maximize the expected profit over the finite horizon.

The operations of an online retailer for a seasonal sale have the following features:

1. Anticipative ordering and storage decisions. At the start of the selling season (horizon),

the online retailer makes anticipative ordering and storage decisions before knowing demand. Once

the products are stored in the warehouses, the retailer typically does not reshuffle the inventory

2

among the warehouses.

2. Limited warehouse capacity. Each warehouse has a finite capacity, which restricts the

retrieval quantity of each product from the warehouse. Furthermore, the total capacity of all the

warehouses sets an upper limit on the total order quantity of all the products.

3. Flexible fulfillment. The online retailer has the flexibility to fulfill the demands of a zone

from multiple warehouses. Thus, if the nearest warehouse to the zone is out of stock for a certain

product, then the retailer can choose another, farther, warehouse to satisfy the demand (this is

also known as demand spillover (Acimovic and Graves, 2017)). Note that although the fulfillment

flexibility can increase service levels, it may also incur a higher outbound transportation cost for

the retailer because the products may be shipped from farther warehouses. Furthermore, it also

complicates the storage and the ordering decisions.

If each warehouse serves only one zone and each zone is served by a dedicated warehouse,

then the above problem can be separated into independent capacitated multi-product inventory

management problems. However, since each warehouse can flexibly serve multiple zones in practice,

the retailer should take demand-pooling effect into account when making the ordering decisions.

Likewise, given that each zone can be served by multiple warehouses, the online retailer needs to

consider the demand-spillover effect when making the storage decisions. The problem is especially

challenging because the ordering and storage decisions are made in an anticipative manner before

knowing the actual demands of the selling season with limited warehouse capacity. Furthermore,

if each warehouse can serve multiple zones and each zone can be served by multiple warehouses,

the retrieval decisions are not straightforward in a multi-period setting.

We formulate a stochastic optimization model for an online retailer selling multiple products to

different demand zones over a finite horizon with multiple periods. At the start of the horizon, the

retailer orders the products from a single supplier and stores them at multiple warehouses subject

to their capacity constraints. At the end of each period, after random demands in the period are

realized, the retailer retrieves products from the warehouses to fulfill the demands of the different

zones. Any unmet demand in each period is lost. The retailer jointly optimizes the ordering,

storage, and retrieval quantities to maximize the expected profit over the finite horizon.

We make the following contributions in this paper:

1. For the single-zone problem, we show that the multi-period problem is equivalent to a single-

period problem and characterize the structural properties of its optimal retrieval, storage, and or-

dering policies. Specifically, the optimal retrieval decisions follow a greedy policy. To find a storage

policy, we design a non-greedy algorithm (Algorithm 1) that allocates products to the warehouses

iteratively according to each warehouse’s target stockout probability. Under this algorithm, the

product assortment in the warehouses preserves a nested property: Among all non-empty ware-

3

houses, a smaller-index warehouse contains all the products stored in a larger-index warehouse.

We show that Algorithm 1 produces an ϵ-optimal storage policy in polynomial time. Algorithm

1 significantly outperforms conventional methods in our numerical experiments. We also provide

sufficient conditions to find the optimal ordering policy.

2. The multi-zone problem is unfortunately intractable analytically because the optimal retrieval

policy cannot be expressed in closed form. We develop a hybrid heuristic in Section 5.4 to de-

termine the order and the storage quantities. This heuristic involves a non-trivial hybrid of three

relatively special cases where either the optimal inventory solution or the objective function can be

efficiently computed. Although conceptually simple, the hybrid heuristic significantly outperforms

state-of-the-art approaches in our numerical experiments based on both synthetic data and real

data from a major fashion online retailer in Asia.

After reviewing the related literature in Section 2, we formulate the finite-horizon problem in

Section 3. Section 4 analyzes the single-zone problem. Section 5 introduces the hybrid heuristic for

the multi-zone problem. Section 6 benchmarks the hybrid heuristic against conventional methods

based on realistic problem settings. Section 7 evaluates the policies using data from the fashion

online retailer and Section 8 concludes the paper. All proofs are presented in Appendix A.

2 Related literature

This paper is related to two streams of literature: Online retail operations and allocation problems.

Online retail operations

Several papers analyze the fulfillment problem for an online retailer to select warehouses to

satisfy customer orders from different zones. Due to the fulfillment flexibility, a customer order

can be assigned to one or multiple warehouses. Since orders are typically batched before items

are physically picked, Xu et al. (2009) investigate the benefits of re-assigning some orders to

different warehouses during the batching period. The authors propose near-optimal heuristics for

re-assigning orders to warehouses to minimize the total number of shipments. Acimovic and Graves

(2015) determine the warehouses and shipping modes to fulfill orders arriving from different zones

such that the expected outbound shipping cost of an online retailer is minimized. They develop

a heuristic that outperforms a myopic policy. Jasin and Sinha (2015) solve a similar problem by

approximating a stochastic control formulation with a deterministic linear program (DLP). They

develop a heuristic by modifying the DLP solution through a correlated rounding scheme among

the decision variables and provide its theoretical performance guarantee. These papers address an

important problem of how to fulfill a multi-item order from multiple warehouses (that is, whether

through split shipping or through order consolidation).

4

Lei et al. (2018) consider a multi-product, multi-period setting where orders from different

zones are fulfilled by multiple warehouses. They maximize an online retailer’s expected profit

by dynamically pricing the products and determining the warehouse for each order jointly. The

authors propose two heuristics to solve the problem and prove that they perform well compared

to a benchmark. Harsha et al. (2019) consider an omni-channel retailer selling a product with no

replenishments in a finite horizon. In each zone, the retailer has a brick-and-mortar store (brick

store) that fulfills walk-in customers’ demand. The zone’s online demand can be fulfilled by a

warehouse, the zone’s brick store, or another zone’s brick store. The retailer charges the same

online price but different brick-store prices for different zones. The retailer maximizes her profit

over the horizon by optimizing the prices and fulfillment decisions. Ferreira et al. (2016) study a

multi-product pricing problem and conduct a field experiment with an online retailer. Miao et al.

(2022) develop an asymptotically optimal heuristic to find a multi-period fulfillment policy based

on predicted demand.

Some researchers study the problem of ordering the products and allocating them to different

warehouses. Acimovic and Graves (2017) study demand spillover: A stockout at a warehouse leads

to demand spilling over to another warehouse. They propose a heuristic to allocate inventory to

the warehouses, which considers possible demand spillover during the replenishment lead time.

Their simulation results suggest that the heuristic captures over 90% of the possible improvement

by a pseudo-optimal policy. Zhong et al. (2018) consider a manufacturer fulfilling multiple e-

distributors for a product with a centralized pool of inventory over one period. Each e-distributor

faces random demand and a fill-rate requirement. The manufacturer first chooses the centralized

pool’s inventory level. After the demands are realized, the manufacturer allocates some quantity

to each e-distributor. The authors obtain necessary and sufficient conditions for the minimum

inventory level, and develop an allocation policy to satisfy the e-distributors’ fill rates. In contrast,

we allocate the inventory to different warehouses before the demands are realized.

Our paper complements the above work by jointly determining the ordering, storage, and re-

trieval decisions for an online retailer. Lim et al. (2020) study a similar problem. They model the

product demands using uncertainty sets and develop heuristics based on robust optimization tech-

niques to solve the problem numerically. In contrast, we assume the demands follow a distribution

function and characterize the structural properties of the optimal ordering, storage, and retrieval

policies for the single-zone problem. For the multi-zone problem, we develop an efficient heuristic

that can handle more than 10,000 products (see Section 7), whereas the heuristics by Lim et al.

(2020) can only handle around 1,000 products for the same supply chain setting. In addition, our

heuristic is data driven, which uses demand samples as inputs to solve the problem, whereas the

robust formulation by Lim et al. (2020) can only incorporate the demand support information.

5

Allocation problems

The storage stage of our single-zone problem is closely related to papers studying the theory

and algorithms for general allocation problems, see Zipkin (1980), Eppen and Schrage (1981),

Federgruen and Groenevelt (1986), Federgruen et al. (1986), Groenevelt (1991), Ando et al. (1995),

Vidal et al. (2014), Liu (2017), Vidal et al. (2019), and Wu et al. (2021). In contrast to Groenevelt

(1991), Ando et al. (1995), Vidal et al. (2014), Vidal et al. (2019), and Wu et al. (2021), who

consider separable objective functions, our objective function of the single-zone storage problem

is not separable. Zipkin (1980) studies a simple algorithm for allocating one resource with a

nonlinear-additive separable objective function. In contrast, our model in the storage stage can

handle multiple resources (products) and a more general convex objective function compared to

separable objective functions. Federgruen and Groenevelt (1986) propose a greedy algorithm to

compute an allocation policy, and find sufficient conditions for the greedy algorithm to be optimal.

Liu (2017) proposes a greedy algorithm to solve the general transportation problem. Unfortunately,

their algorithms cannot be applied to our setting because the constraints in our model do not satisfy

the submodularity condition in their papers. In fact, the optimal storage quantities in our paper

are not monotone in the order quantities, and so greedy algorithms are not optimal. Instead,

we propose a non-greedy algorithm that stores the products to the warehouses iteratively. In

each iteration, our algorithm identifies a warehouse to store the products and then reallocates the

products’ quantities among a subset of warehouses. We prove that the non-greedy algorithm finds

an ϵ-optimal storage policy in polynomial time.

3 Problem formulation

Consider an online retailer selling products i = 1, . . . , I to zones k = 1, . . . ,K over a time horizon

of T periods. Each zone k represents a geographical area (such as a country or region). For

each product i, let ρi be the unit purchase cost and pi (> ρi) be the unit selling price, which

are independent of the zones. At the start of the time horizon, the retailer orders the products

from a single supplier and stores them in warehouses j = 1, . . . , J at different locations. Each

warehouse j has a limited storage capacity cj . To store a unit of any product from the supplier to

warehouse j, a unit storage cost sj is incurred, which includes the transportation and the handling

costs. The inventory of the same product may be stored in multiple warehouses. In each period

t, the demand for product i of zone k is a random variable d̃tik distributed on
[
0, d̄tik

]
, where

d̄tik (> 0) can be infinity. Let d̂tik and dtik denote the mean and the realization, respectively, of

the demand d̃tik. Define d̃
t
=
(
d̃tik

)
I×K

and dt =
(
dtik
)
I×K . Let f tik(·) and F tik(·) denote the

p.d.f. and c.d.f., respectively, of the aggregate demand
∑t

τ=1 d̃
τ
ik. Assume F tik(·) is continuous and

differentiable. Define F̄ tik(·) = 1 − F tik(·). Define
(
F̄ tik
)−1

(·) as the inverse function of F̄ tik(·) with

6

(
F̄ tik
)−1

(·) =
∑t

τ=1 d̄
τ
ik if · < 0, and

(
F̄ tik
)−1

(·) = 0 if · > 1. To ensure that the inverse function(
F̄ tik
)−1

(·) is well defined, we assume that f tik(x) > 0, for x ∈
(
0,
∑t

τ=1 d̄
τ
ik

)
.

Due to fulfillment flexibility, the demands of each zone can be fulfilled by all the warehouses.

A unit retrieval cost rjk is incurred when a unit of any product is shipped from warehouse j to

satisfy the demand of zone k. The unit storage costs and the unit retrieval costs are independent

of the products. This assumption generally holds for products belonging to the same category. To

keep a unit of product i, a unit holding cost per period hi is incurred. Any unsatisfied demands

are lost. For convenience, define I = {1, ..., I}, J = {1, ..., J}, J − = {1, ..., J − 1}, K = {1, ...,K},

T = {1, ..., T}, T − = {1, ..., T − 1}, and s0 = rj0 = r0k = 0, for j ∈ J , k ∈ K. Assume

pi+ hiT > maxj∈J ,k∈K rjk, for i ∈ I, and each warehouse j ∈ J is initially empty. Let Π denote a

set of all feasible policies. Under any policy π ∈ Π, let qπi denote the order quantity for product i,

xπtij denote the quantity of product i stored in warehouse j at the start of period t, and yπtijk denote

the quantity of product i retrieved from warehouse j to fulfill the demand of zone k in period t.

We call qπi , x
π1
ij , and y

πt
ijk the ordering, storage, and retrieval decisions respectively. Note that we

only need to determine the storage quantities xπtij for t = 1. Figure 1 shows the sequence of events.

Period 1 Period 2 Period T……

Retailer decides the order
and storage quantities

Demand in
period 1 occurs

Retailer decides the
retrieval quantities
in period 1

Demand in
period 2 occurs

Retailer decides the
retrieval quantities
in period 2

Demand in
period T occurs

Retailer decides the
retrieval quantities
in period T

Figure 1: The sequence of events over T periods

Define ρ = (ρi)I×1, p = (pi)I×1, c = (cj)J×1, s = (sj)J×1, r = (rjk)J×K , rk = (rjk)J×1,

q = (qi)I×1, x
πt =

(
xπtij

)
I×J

, xπti =
(
xπtij

)
1×J

, xπtj =
(
xπtij

)
I×1

, yπt =
(
yπtijk

)
I×J×K

, and yπtk =(
yπtijk

)
I×J×1

. Let e be a column vector with all its entries equal 1 and its dimension changes

according to where it is used. Let X ′ be the transpose of a matrix X. For any matrices X

and Y , let X∧Y (X∨Y) denote their entry-wise minimum (maximum) matrix. Let X+= X∨0.

Similarly, X≤Y (X≥Y) implies Xij≤Yij (Xij≥Yij), for i ∈ I, j ∈ J . Define feasible sets Q =

{q |
∑I

i=1 qi ≤
∑J

j=1 cj ; q ≥ 0} and X = {x |
∑J

j=1 xij = qi, i ∈ I;
∑I

i=1 xij ≤ cj , j ∈ J ;x ≥ 0}.
The retailer’s objective is to maximize her expected profit over the T periods subject to various

constraints. Since qπi =
∑J

j=1 x
π1
ij , for i ∈ I, π ∈ Π, we can substitute qπi by

∑J
j=1 x

π1
ij . The retailer

optimizes the decisions xπ = (xπ1, ...,xπT) and yπ = (yπ1, ...,yπT) as follows:

max
π∈Π

u(xπ,yπ) = −
I∑

i=1

J∑
j=1

ρix
π1
ij −

I∑
i=1

J∑
j=1

sjx
π1
ij +W (xπ,yπ) (1)

7

s.t. W (xπ,yπ) =

T∑
t=1

I∑
i=1

E˜d
1
,...,

˜d
T

−hi J∑
j=1

xπ,t+1
ij +

J∑
j=1

K∑
k=1

(pi − rjk) yπtijk

 ; (2)

I∑
i=1

xπ1ij ≤ cj , j ∈ J ; (3)

xπ,t+1
ij = xπtij −

K∑
k=1

yπtijk, i ∈ I, j ∈ J , t ∈ T −; (4)

J∑
j=1

yπtijk ≤ d̃tik, i ∈ I, k ∈ K, t ∈ T ; (5)

K∑
k=1

yπtijk ≤ xπtij , i ∈ I, j ∈ J , t ∈ T ; (6)

xπtij ≥ 0, i ∈ I, j ∈ J , t ∈ T ; (7)

yπtijk ≥ 0, i ∈ I, j ∈ J , k ∈ K, t ∈ T . (8)

The first and second terms of the objective function (1) represent the total purchase cost and the

total storage cost respectively. The third term represents the expected total revenue minus total

holding and retrieval costs. Constraint (3) ensures that the inventory in each warehouse is within

its capacity. Constraint (4) ensures that the remaining inventory in one period is carried over to the

next period. Constraint (5) ensures that for each period the total quantity of product i retrieved

for each zone is at most the zone’s demand. Constraint (6) ensures that for each period the total

quantity of product i retrieved from each warehouse does not exceed the product’s inventory in

the warehouse.

Problem (1) can be divided into two parts: the ordering and the storage problems at the start

of period 1 and the retrieval problem in the following T periods. Given the ordering and the storage

decisions, the retrieval problem is a dynamic program with an initial state xπt and an action yπt

in each period t. If I, J , or K is large, the state space or the action space of the retrieval problem

is large, making Problem (1) challenging to solve. We first study some structural properties of the

single-zone problem in Section 4. Inspired by the single-zone problem, we then develop a heuristic

to find a feasible ordering and storage policy for the multi-zone problem in Section 5.

4 The single-zone problem

In this section, we study a special case with only a single zone but multiple warehouses. Thus, we

drop the subscript k and Problem (1) reduces to the following form:

max
π∈Π

u(xπ,yπ) = −
I∑

i=1

J∑
j=1

ρix
π1
ij −

I∑
i=1

J∑
j=1

sjx
π1
ij +W (xπ,yπ) (9)

s.t. W (xπ,yπ) =

T∑
t=1

I∑
i=1

E˜d
1
,...,

˜d
T

−hi J∑
j=1

xπ,t+1
ij +

J∑
j=1

(pi − rj) yπtij

 ; (10)

8

I∑
i=1

xπ1ij ≤ cj , j ∈ J ; (11)

xπ,t+1
ij = xπtij − yπtij , i ∈ I, j ∈ J , t ∈ T −; (12)

J∑
j=1

yπtij ≤ d̃πti , i ∈ I, t ∈ T ; (13)

yπtij ≤ xπtij , i ∈ I, j ∈ J , t ∈ T ; (14)

xπtij ≥ 0, i ∈ I, j ∈ J , t ∈ T ; (15)

yπtij ≥ 0, i ∈ I, j ∈ J , t ∈ T . (16)

We label the warehouses so that r1 ≤ r2 ≤ . . . ≤ rJ . If there exist two warehouses j and j′ such

that rj = rj′ , then we set j < j′ if and only if sj < sj′ . Define ψj = rj − rj−1, for j = 1, ..., J with

r0 = 0. We assume there exist no warehouses with an identical unit storage cost and an identical

unit retrieval cost because otherwise these warehouses can be combined.

Example 1 Figure 2 shows an example with J = 5 warehouses, each is represented by a filled

circle. Each product is shipped from the supplier O to some warehouses, before it is shipped to

the demand zone D. We travel along the grid lines and the travel cost between any two connected

grid points is 1 unit. Warehouse j has unit retrieval and storage costs (rj , sj) in the subscript.

O

D

5(4,2)

3(3,1)

1(2,2)

4(3,3)

2(2,4)

Figure 2: An online retailer’s network with five warehouses

Lemma 1 shows that Problem (9) can be simplified to a single-period problem.

Lemma 1 (Equivalence to A Single-Period Problem)

1. The optimal retrieval policy is a greedy policy that, in each period t, keeps retrieving each product

i from a warehouse with the smallest index that contains the product until the product is out of

stock or the product’s demand is fulfilled. That is, the optimal retrieval quantity is

ytij = min

{
j∑

ℓ=1

xtiℓ, d
t
i

}
−min

{
j−1∑
ℓ=1

xtiℓ, d
t
i

}
, i ∈ I, j ∈ J , t ∈ T .

2. Under the optimal retrieval policy, Problem (9) can be simplified to a single-period problem:

Z∗ = max u(x) = −
I∑

i=1

J∑
j=1

(ρi + sj)xij +W (x) (17)

s.t.

I∑
i=1

xij ≤ cj , j ∈ J ;

xij ≥ 0, i ∈ I, j ∈ J ;

9

where

W (x) =

I∑
i=1

−hi T∑
t=1

[
J∑

ℓ=1

xiℓ −Gt
i

(
J∑

ℓ=1

xiℓ

)]
+ (pi − rJ)GT

i

(
J∑

ℓ=1

xiℓ

)
+

J∑
j=2

ψjG
T
i

(
j−1∑
ℓ=1

xiℓ

) , (18)

and Gti(x) = E
[
min

(
x,
∑t

τ=1 d̃
τ
i

)]
.

4.1 Convergence and efficiency of first-order methods

Lemma 1 implies that Problem (17) is a single-period optimization problem. Since dGti(x)/dx =

P
(∑t

τ=1 d̃
τ
i > x

)
= F̄ ti (x), as long as F̄ ti (x) is known for all i ∈ I, t ∈ T , the gradient ∇u(x)

can be explicitly computed without demand samples. This means that one can readily apply

many first-order methods. We will show that the objective function and feasible region of Problem

(17) have some nice properties that ensure the convergence and computational efficiency of these

first-order methods.

Definition 1 A twice differentiable function g(x) defined on X has an L-Lipschitz continuous

gradient (or equivalently, g(x) is L-smooth) for L > 0 if λmax

(
∇2g(x)

)
≤ L,∀x ∈ X , where

λmax(A) = max (|λ1(A)|, |λ2(A)|, · · · , |λn(A)|) is the largest eigenvalue of a symmetric matrix A.

Definition 2 A function g : X 7→ R is α-strongly concave if the smallest eigenvalue of −∇2g(x)

is greater than or equal to α. That is, −w′∇2g(x)w ≥ α∥w∥2, ∀x ∈ X ⊆ Rn, ∀w ∈ Rn.

Lemma 2 The objective function (17) has an L-Lipschitz continuous gradient with L = J(pmax +

hmaxT − r1)fmax, where pmax = max
i∈I

pi, hmax = max
i∈I

hi, and fmax = max
i∈I,t∈T

max
x∈[0,

∑T
τ=1 d̄

τ
i]
f ti (x).

Furthermore, if ψj > 0, j ∈ J , and 0 < w < f ti (x), for 0 ≤ x ≤
∑J

j=1 cj, i ∈ I, t ∈ T , the

objective function (17) is α-strongly concave with

α =
1

2
w

I∑
i=1

min

(
pi + hiT − rJ , min

j=2,...,J
ψj

)
.

Lemma 2 guarantees the convergence of many first-order methods. Furthermore, it implies that

if f ti (x), i ∈ I, t ∈ T , follows a truncated normal, log-normal, or exponential distribution, or if

it follows a uniform distribution in [0, U] for a sufficiently large U , then u(x) is strongly concave,

which ensures faster convergence.

Besides having nice properties of the objective function, Problem (17) has a feasible region that

can be efficiently projected onto. This feasible region is the intersection of J separable simplices

∆j ≜ {
∑

i∈I xij ≤ cj , xij ≥ 0, i ∈ I}, j ∈ J . We just need to project xj onto the simplex

∆j separately for each warehouse j ∈ J . Many efficient algorithms can achieve this, which is

much faster than projecting it onto a general polytope. Section 5 develops a first-order method

to approximately solve the multi-zone problem based on the theoretical properties in Lemma 2.

Section 6 investigates the performance of this heuristic in various numerical experiments.

10

4.2 Structural properties of the optimal storage policy

In this section, we further analyze the structure of the storage decisions x∗(q) given the order

quantities q. Through this analysis, we develop an algorithm given q that can find a near optimal

storage policy x∗(q) in polynomial time, which is significantly faster than conventional first-order

algorithms in convex optimization (see Appendix E for details).

Problem (17) can be reformulated as two subproblems. We drop the superscript T from fTi (x),

F Ti (x), F̄
T
i (x), and G

T
i (x) for convenience. In the first subproblem, given the ordering decisions q,

the retailer finds the storage decisions x∗(q) by solving the storage problem:

V (q) = max G(x) = −
I∑

i=1

J∑
j=1

sjxij +

I∑
i=1

J∑
j=2

ψjGi

(
j−1∑
ℓ=1

xiℓ

)
(19)

s.t.

J∑
j=1

xij = qi, i ∈ I;

I∑
i=1

xij ≤ cj , j ∈ J ;

xij ≥ 0, i ∈ I, j ∈ J .

The retailer then determines the optimal ordering decisions q∗ by solving the ordering problem:

max −
I∑

i=1

[
(ρi + hiT)qi − (pi − rJ)Gi (qi)− hi

T∑
t=1

Gt
i (qi)

]
+ V (q) (20)

s.t.

I∑
i=1

qi ≤
J∑

j=1

cj ;

qi ≥ 0, i ∈ I.

4.2.1 Solving the storage problem

Since q is fixed in the storage problem (19), we drop it from the notation and write x∗(q) as x∗. We

assume qi ≤
∑T

t=1 d̄
t
i, for i ∈ I. We introduce Algorithm 1 to find x∗. The main idea of Algorithm

1 is to iteratively produce intermediate storage matrices of the form z∗ =
(
z∗ij

)
I×J

, where z∗ij

represents the storage quantity of product i in warehouse j for one iteration. Specifically, for each

iteration, starting with an initial storage matrix v, Algorithm 1 produces a subsequent intermediate

storage matrix z∗ that satisfies a certain structured property and stores more products than v.

After that, v is updated to z∗ and the algorithm proceeds to the next iteration. When Algorithm

1 terminates, all the inventory q is properly stored, producing an optimal storage matrix. Now,

we illustrate Algorithm 1 in detail. Given q, c, and an initial storage matrix v, define the feasible

set of z∗ as Z(v) =
{
z|
∑J

j=1 vij ≤
∑J

j=1 zij ≤ qi, i ∈ I;
∑I

i=1 vij ≤
∑I

i=1 zij ≤ cj , j ∈ J
}
. The

first set of inequalities in Z(v) ensures that the total amount of product i allocated to different

warehouses is non-decreasing, but does not exceed its order quantity. The second set of inequalities

requires that the total amount of all the products in warehouse j is also non-decreasing, but does

11

not exceed the warehouse’s capacity. Let P be a set of products with remaining quantities to be

stored and Γ be a set of non-full warehouses. Let A = {(i, j)|i ∈ P, j ∈ Γ}. Each pair (i, j) in A

indicates that product i can be stored to warehouse j. N

Algorithm 1 (Storage Algorithm)
Given order quantities q, initialize v = 0 and q̂ = q.

1. Set P = {i|q̂i > 0, i ∈ I}, set Γ = Γ (v), and set A = {(i, j)|i ∈ P, j ∈ Γ}.
2. If A = ∅, then terminate and return x = v; otherwise, call Algorithm 3 to compute z∗ ∈ Z(v).

3. Set v ← z∗, q̂ ← q − z∗e, and go to step 1.

Step 1 of Algorithm 1 updates the sets P, Γ , and A. Section 4.2.2 describes how to select the set

Γ (v) of non-full warehouses. Step 2 chooses an itermediate storage matrix z∗ by calling Algorithm

3 in Appendix B. Section 4.2.3 provides the details of finding z∗. Step 3 updates the inventory

levels v. Algorithm 1 terminates and outputs a storage policy x when A becomes empty. In each

iteration, Algorithm 1 increases the product quantities in the warehouses. As required by Z(v),

the algorithm ensures that
∑J

j=1 z
∗
ij ≥

∑J
j=1 vij , i ∈ I and

∑I
i=1 z

∗
ij ≥

∑I
i=1 vij , j ∈ J . However,

it is possible to have z∗ij < vij for some i, j. This non-monotonicity property of z∗ij differentiates

Algorithm 1 from the greedy algorithms by Lovász (1983), Federgruen and Groenevelt (1986), and

Liu (2017). Thus, Algorithm 1 is a non-greedy algorithm.

4.2.2 Selecting warehouses for storage: Pareto frontier

The optimality properties in the following theorem help us to construct Γ (v) in Algorithm 1.

Theorem 1 (Prioritizing Warehouses)

For any two non-full warehouses j < j′ (rj ≤ rj′), if sj < sj′, then it is optimal to fill up warehouse

j before filling warehouse j′. In this situation, we say warehouse j dominates warehouse j′.

Theorem 1 implies that we should fill up warehouses with lower unit retrieval and storage costs

before filling warehouses with higher unit retrieval and storage costs.

Definition 3 A function s = fp(r|v) on an r-s plane is a Pareto frontier if it is a lower envelope

of the set
{
(rj , sj) |

∑I
i=1 vij < cj , j ∈ J

}
and is piecewise-linear non-increasing convex.

We choose Γ (v) =
{
j|fp (rj |v) = sj ,

∑I
i=1 vij < cj , j ∈ J

}
as the set of warehouses on the

Pareto frontier, which are not dominated by other warehouses. According to Theorem 1, in each

iteration of Algorithm 1, it is optimal to select the warehouses on the Pareto frontier for storage.

Example 2 Figure 3 plots the warehouse indices of Figure 2 on an r-s plane. Suppose v = 0,

the Pareto frontier s = fp(r|0) is a solid line in Figure 3(a). We have Γ (0) = {1, 3}. Now suppose

warehouse 3 is completely filled, the inventory levels become v ≥ 0. The Pareto frontier s = fp(r|v)

changes to a solid line in Figure 3(b). We now have Γ (v) = {1, 5}.

12

×

O r

s
s = fp(r|0)

(a) All warehouses are empty.
O r

s
s = fp(r|v)

(b) Warehouse 3 is full.

5(4,2)

3(3,1)

1(2,2)

4(3,3)

2(2,4)

5(4,2)

3(3,1)

1(2,2)

4(3,3)

2(2,4)

Figure 3: Warehouses on the Pareto frontier are selected for storage

As we run Algorithm 1, the warehouses on the Pareto frontier are gradually filled up. The ware-

houses below the frontier are fully filled, while the warehouses above it remain empty.

4.2.3 Determining the itermediate storage matrix z∗

In step 2 of each iteration of Algorithm 1, our goal is to construct an intermediate storage matrix

z∗ that satisfies the Karush–Kuhn–Tucker (KKT) conditions of the storage problem (19) with

order quantities z∗e. We will show that if z∗ is a structured storage matrix defined in Definition 4

below, then it will also satisfy these KKT conditions. Furthermore, at the start of each iteration of

Algorithm 1, if v is structured, then the algorithm will generate the next storage matrix z∗ that is

also structured (as will be shown in Lemma 3 below). This structured matrix z∗ will become the

storage matrix at the start of the next iteration. Since in the first iteration, v = 0 is structured,

the final output of Algorithm 1 must also be structured and thus satisfy the KKT conditions.

Therefore, Algorithm 1 generates an optimal storage matrix (subject to numerical errors).

To define a structured storage matrix, we need the following definitions. Recall that G(x) de-

notes the objective function (19). Given v, define the marginal cost of storing a unit of product i to

warehouse j as Dij(v) = − ∂G(x)
∂xij

∣∣∣
x=v

= sj−
∑J

u=j+1 ψuF̄i

(∑u−1
ℓ=1 viℓ

)
. Since the KKT conditions

involve the marginal costs Dij(v), which are expressed in stockout probabilities F̄i

(∑j
ℓ=1 viℓ

)
, it

is more straightforward to use the stockout probabilities than the storage matrix v when analyzing

the KKT conditions. Define i∗ = argmini∈I F̄i (qi) and j∗v = max
{
j|j = argminℓ∈Γ (v)Di∗ℓ(v)

}
.

A target warehouse j∗v is the largest-index warehouse to store product i∗ with the least marginal

cost. Part 1 of Lemma 1 shows that it is optimal to retrieve a product from the smallest-index

warehouse to the largest-index warehouse containing the product. Based on this optimal retrieval

policy, for a given v, define a target stockout probability for warehouse j as χj(v) = F̄i∗
(∑j

ℓ=1 vi∗ℓ

)
.

Let χ(v) = (χ1(v), χ2(v), · · · , χJ(v)) denote a target stockout probability vector. For convenience,

let χ0(·) = 1. To solve the set of equations corresponding to the KKT conditions of the storage

problem (19), we will first solve for χ(v). Then, we use the target stockout probability χj(v) to

determine the storage quantity of product i in warehouse j, for all i ∈ I. Note that j∗v and χ(v)

13

are uniquely determined by v in each iteration of Algorithm 1.

Definition 4 A storage matrix v is structured if it satisfies the following property:

1. G(v) ≥ G(ẑ) for all ẑ ∈
{
z
∣∣∣∑J

j=1 zij =
∑J

j=1 vij ≤ qi, i ∈ I;
∑I

i=1 zij ≤ cj , j ∈ J ; z ≥ 0
}
.

2. For i ∈ P, j∗v = max
{
j|j = argminℓ∈Γ (v)Diℓ(v)

}
.

3. For i ∈ P, F̄i
(∑j

ℓ=1 viℓ

)
= χj(v) for j ∈ J ; for i /∈ P, F̄i

(∑j
ℓ=1 viℓ

)
≥ χj(v) for j ∈ J .

4. vij = min
{
F̄−1i (χj(v)) , qi

}
−min

{
F̄−1i (χj−1(v)) , qi

}
, i ∈ I, j ∈ J .

For i ∈ I, there exists a critical warehouse jc(i) ∈ J such that

for j < jc(i), we have F̄i

(∑j
ℓ=1 viℓ

)
= χj(v) and vij ≥ 0;

for j = jc(i), we have F̄i

(∑j
ℓ=1 viℓ

)
≥ χj(v) and vij ≥ 0; and

for j > jc(i), we have F̄i

(∑j
ℓ=1 viℓ

)
> χj(v) and vij = 0.

5. Each warehouse j > j∗v is either empty or completely filled.

Remark 1: Part 1 of Definition 4 implies that v is iteration-wise optimal. Part 2 ensures that

the target warehouse j∗v is the largest-index warehouse with the least marginal cost for all product

i ∈ P. Part 3 implies that the products that have not been stored completely meet the target

stockout probability for all the warehouses, whereas the products that have been stored completely

may result in a larger stockout probability for some warehouses. Part 4 shows an optimality

condition for v. It also implies that for any product i, there exists a critical warehouse jc(i) such

that the target stockout probability can be met at warehouse j < jc(i). For the critical warehouse

jc(i), its target stockout probability may not be met because we have exhausted all the quantity

of product i. For warehouse j > jc(i), we no longer have any product i. Part 5 ensures that each

warehouse j > j∗v is not partially filled.

Recall that Algorithm 1 iteratively generates a sequence of structured storage matrices v0,v1, ...,vn̂

with v0=0 and vn̂ satisfying
∑J

j=1 v
n̂
ij = qi, i ∈ I. Due to part 1 of Definition 4, vn̂ is an optimal

storage matrix for the storage problem. We now describe the procedure of finding the next struc-

tured storage matrix given the current one, which is the main goal of Algorithm 3 called in step 2

of Algorithm 1 (the details of Algorithm 3 are provided in Appendix B).

Specifically, given vn for n < n̂, our goal is to allocate products to the target warehouse j∗vn ,

where the marginal cost is the smallest among the non-full warehouses. When allocating products

to the target warehouse, we need to maintain the structured property in Definition 4. To ensure

that the new storage matrix z∗ adheres to parts 3 to 5 of Definition 4, we impose the following

conditions on z∗:

(i) The inventory levels of warehouse j < j∗vn remain unchanged.

(ii) For the target warehouse j∗vn ,
∑I

i=1 z
∗
ij∗vn

>
∑I

i=1 v
n
ij∗vn

.

14

Remark 2: If v is a structured storage matrix, then it has a nested property : If a warehouse stores

a certain product, this product is also stored in all the non-empty warehouses with a smaller index

(with a lower unit retrieval cost in general). In other words, among all the non-empty warehouses,

a smaller-index warehouse contains all the products stored in a larger-index warehouse. Figure 4

illustrates the nested property. Note that the nested property is non-trivial as we should consider

both the unit storage and retrieval costs when making the storage decisions (for example, if one

warehouse has a smaller unit retrieval cost but a larger unit storage cost than another). The unit

storage costs are sunk costs when the products are replenished, whereas the unit retrieval costs are

incurred only if the products are demanded. See Lemma 5 in Appendix A for details.

1 2 3 𝑗! (𝑖) 𝐽
////// ////// ////// ////// //////////// //////

… …

Product 𝑖 No product 𝑖

Meet target stockout probability
Does not meet target
stockout probability

Warehouses

////// Non-empty warehouse

Figure 4: Nested property

(iii) For j > j∗vn , χj(z
∗) satisfies

∑I
i=1

[
min

{
F̄−1i (χj(z

∗)) , qi
}
−min

{
F̄−1i (χj−1(z

∗)) , qi
}]

=
∑I

i=1 v
n
ij .

(iv) z∗ij = min
{
F̄−1i (χj(z

∗)) , qi
}
−min

{
F̄−1i (χj−1(z

∗)) , qi
}
, for all i ∈ I and j ∈ J .

To make n̂ as small as possible, in each iteration of Algorithm 1, we aim to fill as much as

possible the target warehouse j∗vn that satisfies part 2 of Definition 4. Three scenarios may arise:

1. The total volume of the remaining unallocated products equals or exceeds a threshold. In

this case, we fill the target warehouse to its capacity while ensuring the storage matrix z∗

satisfies parts 3 to 5 of Definition 4. This is executed by the first part of step 2 of Algorithm

3 in Appendix B. Furthermore, if the marginal cost at the target warehouse remains the least

among the non-full warehouses, then step 3a of Algorithm 3 returns z∗.

2. The total volume of the remaining unallocated products is smaller than the threshold. The

second part of step 2 of Algorithm 3 addresses this situation. Furthermore, if the marginal

cost at the target warehouse remains the least among the non-full warehouses, then step 3a

of Algorithm 3 returns z∗.

3. After partially filling the target warehouse, the marginal cost at the target warehouse is no

longer the least among the non-full warehouses. This scenario is called crossing, prompting

a new iteration of Algorithm 1 with a new target warehouse. Figure 13 in Appendix B

illustrates this scenario. Step 3a of Algorithm 3 checks whether crossing happens. If so,

a binary search in step 3b locates the exact crossing point and returns the corresponding

15

storage matrix z∗.

The above principle underpins the methodology of Algorithm 3. The following lemma rigorously

shows that Algorithm 1 preserves the structured property in Definition 4.

Lemma 3 For each iteration of Algorithm 1, if the initial storage matrix v is structured, then

the intermediate storage matrix z∗ is also structured, and z∗ satisfies the KKT conditions of the

storage problem (19) with order quantities q = z∗e.

Furthermore, we can show that the total number of iterations in Algorithm 1 is no more than

2J − 1. We call x an ϵ-optimal storage matrix if there exists an optimal storage solution x∗ such

that maxi∈I,j∈J |xij − x∗ij | ≤ ϵ. The following theorem shows that by setting the accuracy ϵ of the

binary search in Algorithm 3, Algorithm 1 finds an ϵ-optimal storage matrix in polynomial time.

Theorem 2 Given q and ϵ > 0, Algorithm 1 obtains an ϵ-optimal storage matrix in no more than

2J − 1 iterations. Furthermore, its computational cost is at most O
(
IJ2T log2

(
2L̄/ϵ

)
C
(
F̄−1

))
,

where C
(
F̄−1

)
is the maximum computational effort to call the function F̄−1i (·), and L̄ is the

maximum Lipschitz constant of F̄−1i (·).

Note that I is generally large for online retailing. Fortunately, Theorem 2 shows that the run time

of Algorithm 1 is linear in I. The total run time of Algorithm 1 is polynomial if F̄−1i (·) can be

evaluated in polynomial time. Appendix E demonstrates that Algorithm 1 numerically outperforms

the first-order methods in finding x∗. Our analysis of the storage problem (19) not only identifies

the structure of x∗ (the nested property in Figure 4), but also provides a computationally efficient

algorithm to compute x∗ given q.

The following example demonstrates the storage procedure described in Algorithms 1 and 3.

Example 3 Consider a retailer with two warehouses. We set r1 = 1, r2 = 9, s1 = 4, s2 = 2, and

c1 = c2 = 20. Assume two products i ∈ {A,B} and d̃i, i = A,B, follow a uniform distribution on

[0, 20]. Suppose qA = 15 and qB = 16. In the first iteration of Algorithm 1, the Pareto frontier

defined in Section 4.2.2 implies Γ = {1, 2}. Since v = 0, we have the target stockout probability

χ1(v) = χ2(v) = 1. The marginal cost of storing a unit of product i to warehouses 1 and 2 is

Di1(0) = −4 and Di2(0) = 2, for i = A,B, respectively. By definition, j∗v = 1. Note that when

zi1 = 5 and zi2 = 0, we have Di1(z) = Di2(z) = −4.75, for i = A,B. Thus, the crossing occurs

and Algorithm 3 returns z∗i1 = 5 and z∗i2 = 0, for i = A,B.

In the second iteration of Algorithm 1, vi1 = 5 and vi2 = 0, for i = A,B. The target stockout

probability for warehouses 1 and 2 is χ1(v) = χ2(v) = 0.75. The Pareto frontier implies Γ = {1, 2}.

Since Di1(v) = Di2(v) = −4.75, for i = A,B, by definition, j∗v = 2. Note that Di2(z) is always less

16

than Di1(z), for i = A,B, when filling up warehouse 2. Thus, according to Algorithm 3, z∗i1 = 5

and z∗i2 = 10, for i = A,B, and warehouse 2 is now full.

In the third iteration of Algorithm 1, vi1 = 5 and vi2 = 10, for i = A,B. The target stockout

probability for warehouses 1 and 2 is χ1(v) = 0.75 and χ2(v) = 0.25. The Pareto frontier implies

Γ = {1} and hence j∗v = 1. Note that the output of Algorithm 3 needs to balance the stockout

probabilities of all the products in warehouse 1 and satisfies the structured optimality in Definition

4. Therefore, z∗A1 = z∗B1 = 5.5, z∗A2 = 9.5, and z∗B2 = 10.5. The final output of Algorithm 1 is

x∗A1 = x∗B1 = 5.5, x∗A2 = 9.5, and x∗B2 = 10.5.

Example 3 demonstrates that a product’s quantity allocated to a warehouse may decrease

in the course of Algorithm 1. For instance, in the second iteration, we allocate 10 units of A

to warehouse 2, but this amount reduces to 9.5 in the third iteration. This non-monotonicity

property differentiates Algorithm 1 from the greedy algorithms by Lovász (1983), Federgruen and

Groenevelt (1986), and Liu (2017). It also implies that the sub-modularity property of the rank

function discussed in Lovász (1983), Federgruen and Groenevelt (1986), and Liu (2017) is important

for the conventional greedy algorithms to be optimal. The above non-monotonicity property also

implies that x∗ij is not always increasing in qi. Algorithm 1 also exhibits an irreversibility property:

Once a warehouse is used in an iteration, it will be used for all the future iterations, even though

the products allocated to the warehouse may change over the iterations.

4.3 The structure of the optimal ordering policy

Now, we study the ordering problem (20). For each product i ∈ I, define j(i) = max
{
j|x∗ij > 0, j ∈ J

}
and j̄(i) = max

{
j|x∗ij > 0,

∑I
ℓ=1 x

∗
ℓj < cj , j ∈ J

}
. Note that j̄(i) is the largest index of a non-full

warehouse storing product i. If such a warehouse does not exist, then we set j̄(i) = 0. The following

theorem characterizes the structure of q∗.

Theorem 3 The optimal order quantities are characterized as follows:

µ∗
i (q

∗) = ρi + hiT − (pi − rJ)F̄i(q
∗
i)− hi

T∑
t=1

Pr

(
q∗i >

t∑
τ=1

d̃iτ

)
+K, (21)

where K ≥ 0 satisfies K
(∑I

i=1 q
∗
i −

∑J
j=1 cj

)
= 0, and

µ∗
i (q) =

 −Dij̄(i)(x
∗(q)), if j̄(i) > 0,

Di∗j(i)(x
∗(q))−Dij(i)(x

∗(q))−Di∗ j̄(i∗)(x
∗(q)), if j̄(i) = 0.

µ∗i (q) is non-increasing in qℓ, for ℓ ∈ I.

Equation (21) characterizes the optimal ordering policy. The value of K is unique from the

KKT conditions. Note that the optimal ordering policy is different from the newsvendor-type

17

ordering policy because of the holding cost incurred in each period of the retrieval stage. If the

holding cost is zero, then Equation (21) degenerates to a newsvendor-type ordering policy. In that

case, ρi−µ∗i (q∗)+K represents the overall cost of ordering one more unit of product i and pi− rJ

represents the smallest effective revenue from the additional unit of product i.

4.4 Special case: The single-warehouse single-zone problem

We consider a special case with J = 1 warehouse. Since q = x, the optimal ordering and storage

policies are equivalent. Problem (17) can be simplified to

Z∗ = max

I∑
i=1

ωi(qi) (22)

s.t.

I∑
i=1

qi ≤ c;

qi ≥ 0, i ∈ I;

where ωi(q) = −(ρi + s)q − hi
∑T

t=1

[
q −Gti (q)

]
+ (pi − r)GTi (q). Algorithm 6 in Appendix B

describes a procedure to find the optimal order quantities. Furthermore, Theorem 5 in Appendix

B shows that Algorithm 6 finds an ϵ-optimal ordering policy within polynomial time. The single-

warehouse single-zone problem is quite common in practice. We will apply Algorithm 6 to find the

order quantities for the single-warehouse single-zone problem in Sections 6 and 7.

5 The multi-zone problem

Problem (1) with multiple zones is extremely challenging because of its complex network structure

and multi-period dynamic feature. To solve the multi-zone problem, we first approximate Problem

(1) using three different approximation methods presented in Sections 5.1–5.3. After that we

design a hybrid heuristic in Section 5.4 that combines the three approximation methods. This

hybrid heuristic only optimizes the ordering and storage decisions. We will compare the ordering

and storage decisions produced by the hybrid heuristic against other benchmark heuristics using a

common evaluation method in Section 6.

5.1 LP-Mean approximation

Under the first approximation method, we replace the random demands in (1)–(8) with their means

d̂tik and jointly optimize the storage and retrieval decisions. This results in a linear program:

max −
I∑

i=1

J∑
j=1

ρix
1
ij −

I∑
i=1

J∑
j=1

sjx
1
ij +

T∑
t=1

I∑
i=1

−hi J∑
j=1

xt+1
ij +

J∑
j=1

K∑
k=1

(pi − rjk) ytijk

 (23)

s.t.

I∑
i=1

x1ij ≤ cj , j ∈ J ;

18

xt+1
ij = xtij −

K∑
k=1

ytijk, i ∈ I, j ∈ J , t ∈ T −;

J∑
j=1

ytijk ≤ d̂tik, i ∈ I, k ∈ K, t ∈ T ;

K∑
k=1

ytijk ≤ xtij , i ∈ I, j ∈ J , t ∈ T ;

xtij ≥ 0, i ∈ I, j ∈ J , t ∈ T ;

ytijk ≥ 0, i ∈ I, j ∈ J , k ∈ K, t ∈ T .

We call Problem (23) the LP-Mean approximation to Problem (1). By Jensen’s inequality, the

optimal objective value of Problem (23) serves as an upper bound on the objective of Problem (1)

and can be used as a benchmark for our hybrid heuristic.

5.2 Single-zone approximation

We can approximate the multi-zone problem by the single-zone problem studied in Section 4.

Specifically, we approximate the objective function u(·) of Problem (1) by aggregating the demands

for product i of all the zones to a virtual zone with a total demand d̃ti =
∑

k∈K d̃
t
ik, for i ∈ I, t ∈ T .

We then use a sample-based approach to construct a continuous distribution for each aggregated

demand to approximate its empirical distribution.

Algorithm 2 (Continuous Distribution Approximation)
Given N samples d(1), d(2), . . . , d(N) of a non-negative random demand d̃, relabel these samples such that
d(1) < d(2) < · · · < d(N).
1. Construct N + 1 points b(1) < b(2) < · · · < b(N+1), where b(1) = max

(
0, d(1) − 1

2

(
d(2) − d(1)

))
, b(n) =

1
2

(
d(n−1) + d(n)

)
, n = 2, ..., N, and b(N+1) = d(N) + 1

2

(
d(N) − d(N−1)

)
.

2. Approximate the c.d.f. of d̃ as

F (x) ≜ P
(
d̃ ≤ x

)
=


0, if x ≤ b(1);

n−1+(x−b(n))/(b(n+1)−b(n))
N , if b(n) < x ≤ b(n+1), n = 1, . . . , N ;
1, if x > b(N+1).

(24)

Return the c.d.f. F (x).

Note that we consider all the inequalities d(1) < d(2) < · · · < d(N) are strict for simplicity.

Algorithm 2 can easily be adapted to the case where there are ties. In Algorithm 2, we assume

that d̃ is uniformly distributed in each interval
(
b(n), b(n+1)

]
with a total probability mass 1/N .

There are three advantages of using this algorithm. First, under this approximation, a Lipschitz

continuous gradient is guaranteed for E
[
min

(
x, d̃
)]

for x ∈
[
b(1), b(N+1)

]
. Second, it requires only

the demand samples without knowing the true demand distributions. Third, computing the c.d.f.

of a point x is equivalent to finding which interval x belongs to. Thus, the time complexity is

O(logN) using a binary search. Given N demand samples d(1),d(2), . . . ,d(N) of d̃
t
, we can first

obtain N samples of the aggregated demand
∑t

τ=1 d̃
τ
i by simple arithmetic calculation and then

we can obtain a continuous approximation of the distributions of these random variables.

19

We define a virtual unit retrieval cost r̂ij as a weighted average of rjk as follows:

r̂ij =

∑T
t=1

∑K
k=1 rjkd̂

t
ik∑T

t=1

∑K
k=1 d̂

t
ik

, i ∈ I, j ∈ J . (25)

For each product i ∈ I, let σi(·) be a permutation function such that r̂i,σi(1) ≤ r̂i,σi(2) ≤ · · · ≤
r̂i,σi(J). Define ψij = r̂i,σi(j) − r̂i,σi(j−1), for j = 2, . . . , J . Following the closed-form formula in

Lemma 1, the single-zone approximation Φ1Z(x) of the second-stage expected profit W (·) in (1) is

Φ1Z(x) ≜
I∑

i=1

[
−hi

T∑
t=1

[
J∑

ℓ=1

xiℓ −Gt
i

(
J∑

ℓ=1

xiℓ

)]
+ (pi − r̂i,σi(J))G

T
i

(
J∑

ℓ=1

xiℓ

)
+

J∑
j=2

ψijG
T
i

(
j−1∑
ℓ=1

xiℓ

)]
. (26)

The gradient of Φ1Z(x) has a closed-form expression in terms of the approximate c.d.f. and can be

easily computed.

5.3 Single-warehouse approximation

We also approximate Problem (1) by a single-warehouse problem. Specifically, we aggregate each

product’s storage quantities to a virtual warehouse that can fulfill the demands of all the different

zones. Define a virtual unit retrieval cost r̃k to zone k as the average of rjk: r̃k =
∑J

j=1 rjk/J, k ∈ K.

We reindex the zones such that r̃1 ≤ r̃2 ≤ · · · ≤ r̃K . If two zones have the same virtual unit retrieval

cost, then we break the tie arbitrarily. Define ψ̃k = r̃k − r̃k−1, for k = 2, ...,K.

Appendix C studies some properties of the single-warehouse problem. In particular, we derive

a closed-form upper bound on the objective function. The gradient of the upper bound requires

the knowledge of the c.d.f. of
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ and we apply Algorithm 2 to obtain their continuous

approximation. We construct a single-warehouse approximation using the following upper bound

on the second-stage expected profit W (·) in (1):

Φ1W (x) =

I∑
i=1

[
−hiTxi +

T∑
t=1

hiĞ
t
i,K(xi) + (pi − r̃K)ĞT

i,K(xi) +

K∑
k=2

ψ̃kĞ
T
i,k−1(xi)

]
, (27)

where Ğti,k(x) = E
[
min

(
x,
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ

)]
. The gradient of Φ1W (x) has a closed-form expres-

sion in terms of the c.d.f. of
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ and can be easily computed.

5.4 Hybrid heuristic

We propose a hybrid heuristic based on the above approximations to solve Problem (1) with J

warehouses, K zones, and T periods. We first calculate the weighted sum of the single-zone and

the single-warehouse approximations to approximate the second-stage expected profit W (·) in (1):

Φsp(x) =
J − 1

J +K − 2
Φ1Z(x) +

K − 1

J +K − 2
Φ1W (x). (28)

Note that Φsp(x) = Φ1W (x) if J = 1, and Φsp(x) = Φ1Z(x) if K = 1. Then, we solve the following

deterministic convex program as an approximation to Problem (1):

max usp(x) = −
I∑

i=1

J∑
j=1

(ρi + sj)xij +Φsp(x) (29)

20

s.t.

I∑
i=1

xij ≤ cj , j ∈ J ;

xij ≥ 0, i ∈ I, j ∈ J .

To solve Problem (29), we adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

proposed by Chambolle and Dossal (2015) (see Appendix D for the details of this algorithm). We

call x̂ an ϵ-optimal solution if x̂ satisfies the constraints in Problem (29) and usp(x̂
∗)−usp(x̂) ≤ ϵ,

where x̂∗ represents the optimal solution to Problem (29). The following theorem shows the

computational complexity of FISTA for solving Problem (29).

Theorem 4 Under appropriate parameter settings, FISTA produces an ϵ-optimal solution to Prob-

lem (29) and its computational cost is at most O
(
I
[(
J2 + JT +K

)
C
(
F̄
)
+ J log

(
1
ϵ

)]
1√
ϵ

)
, where

C
(
F̄
)
is the maximum computational effort to determine the c.d.f. of the demands in the single-

zone approximation and the single-warehouse approximation.

Theorem 4 implies that we can efficiently obtain a near-optimal solution to Problem (29). Further-

more, if Φ1Z(x) and Φ1W (x) are strongly concave, then the largest computational cost reduces to

O
(
I
[(
J2 + JT +K

)
C
(
F̄
)
+ J log

(
1
ϵ

)]
log
(
1
ϵ

))
.

Finally, we compute the weighted average xH = α(T)xsp + (1 − α(T))xlp, where xsp and xlp

represent the optimal solutions to Problems (29) and (23) respectively. Specifically, the weight

α(T) follows a sigmoid function:

α(T) =
1

exp ((T − µT)/σT) + 1
, (30)

where µT and σT are problem-specific parameters. Our hybrid heuristic yields the solution xH .

The rationale behind using the above convex combination is that both the single-zone and the

single-warehouse approximations aggregate multiple periods into a single period. Consequently,

they fail to capture the nuanced relationships between demands in different periods. On the other

hand, while the LP-Mean approximation adeptly captures the demands over different periods, it

neglects demand stochasticity. Therefore, we employ the sigmoid function to establish the weights

between the solutions to Problem (29) and the LP-Mean approximation. Specifically, if T is large,

emphasizing the time dependence becomes more crucial than the demand stochasticity, making

the LP-Mean approximation more effective. This leads us to opt for a smaller α(T). Conversely,

if T is small, the opposite is true.

6 Numerical experiments

We conduct numerical experiments to demonstrate the efficacy of our hybrid heuristic, investigate

the impact of different parameters, and identify situations where the benefit of using the hybrid

21

heuristic is the largest. Section 6.1 introduces two benchmark heuristics and an evaluation method.

Section 6.2 compares the hybrid heuristic with these benchmarks by varying a single parameter

in each experiment. Furthermore, Appendix E focuses on the storage problem for the single-zone

case in Section 4.2. For this special case, we benchmark Algorithm 1 against two asymptotically

optimal algorithms. All the numerical experiments (including those in Section 7) were run on a

shared server with Intel(R) Xeon(R) Silver 4116 CPU on Linux 64bit.

6.1 Benchmarks and an evaluation method

We compare the hybrid heuristic in Section 5.4 with two benchmarks. The first benchmark

is the LP-Mean approximation defined in Section 5.1. The second benchmark is called LP-

Sample approximation, which approximates the multi-period problem with a single-period prob-

lem. Specifically, the LP-Sample approximation computes a storage matrix by ignoring the holding

costs and aggregating the demand samples in different periods. Given N demand sample paths

d
t,(n)
i,k , i ∈ I, k ∈ K, t ∈ T , n = 1, ..., N , the LP-Sample approximation is formulated as follows:

max
x,y

−
I∑

i=1

J∑
j=1

ρixij −
I∑

i=1

J∑
j=1

sjxij +
1

N

N∑
n=1

I∑
i=1

W̆
(n)
i (xi),

where

W̆
(n)
i (xi) = max

J∑
j=1

K∑
k=1

(pi − rjk)yijk

s.t.

J∑
j=1

yijk ≤
T∑

t=1

d
t,(n)
i,k , k ∈ K;

K∑
k=1

yijk ≤ xij , j ∈ J ;

yijk ≥ 0, j ∈ J , k ∈ K.

The LP-Sample approximation is inspired by Lemma 1, which shows that if there is only a single

zone, the multi-period problem can be reduced to a single-period problem. However, the LP-Sample

approximation is different from the single-period problem in Lemma 1 by ignoring the holding costs.

This is because, for the multi-zone setting, the simple structure of the optimal retrieval policy

in Lemma 1 breaks down. Thus, determining the holding costs requires solving a multi-period

dynamic program for each sample path, which is computationally intractable. Furthermore, as we

will see in a real-world case in Section 7, the holding costs are relatively insignificant under all the

heuristics considered (see Table 2). Therefore, we ignore the holding costs under the LP-Sample

approximation. We set the sample size N = 30.

To evaluate the ordering and the storage decisions by each heuristic, we generate 1,000 new

sample paths from a given demand distribution. For each period, we assume that demand ful-

fillment is done myopically. In particular, for each product i and period τ , given inventory levels

22

xτij , j ∈ J , and realized demands dτik, k ∈ K, we find a retrieval policy yτijk, j ∈ J , k ∈ K, by solving

the following linear program:

max

J∑
j=1

K∑
k=1

(pi − rjk) yτijk

s.t.

J∑
j=1

yτijk ≤ dτik, k ∈ K;

K∑
k=1

yτijk ≤ xτij , j ∈ J ;

yτijk ≥ 0, j ∈ J , k ∈ K.

Since this linear program is solved independently for each product i and period τ , we can obtain the

retrieval decisions efficiently even if I and T are moderately large. Unless specified otherwise, the

profits in Sections 6–7 refer to the out-of-sample profits obtained by the above evaluation method.

6.2 Comparing the hybrid heuristic with the benchmarks

We first study two network settings: J = 3,K = 5 and J = 4,K = 6 for Problem (1). To scrutinize

the impact of each parameter including the planning horizon’s length, fulfillment frequency, ware-

house capacity, demand variation, and demand correlation, we consider I = 50 products. Section 7

solves a real-world problem that has more than 10,000 products. Each period corresponds to a day.

We consider two demand distributions for each d̃tik, i ∈ I, k ∈ K, t ∈ T : (i) a uniform distribution

on (0, a) with a uniformly chosen from [0.5, 2] and (ii) an exponential distribution with mean µ uni-

formly chosen from [0.5, 1.5]. We set each warehouse’s capacity as c = IKT/(5J) for the uniform

demand distribution and c = 2IKT/(5J) for the exponential demand distribution. Note that the

warehouse capacity grows linearly with T . The products’ unit selling price is uniformly distributed

in [5, 15], their unit purchase cost is half of the price, and their annual holding cost per unit is 100%

of their unit purchase cost such that hi = ρi/365. The unit storage costs and unit retrieval costs

are randomly selected from a uniform distribution on [0, 1] and [0, 5], respectively. Let LP-Mean,

LP-Sample, and Hybrid denote the profit of the LP-Mean and LP-Sample approximations and

hybrid heuristic, respectively. We evaluate the LP-Mean and LP-Sample approximations in terms

of the relative performance LP-Mean/Hybrid×100% and LP-Sample/Hybrid×100%, respectively.

Impact of the planning horizon’s length

We examine the impact of the planning horizon’s length T . Figure 5 shows the performance of

the two benchmarks relative to the hybrid heuristic with µT=150 and σT=40. Each point in the

figure represents the average performance over five instances with different cost structures. For

most of the instances, the hybrid heuristic outperforms the two benchmarks. This is because the

hybrid heuristic captures demand fluctuation, which is missing from the LP-Mean approximation,

and also captures the holding costs, avoiding the drawback of the LP-Sample approximation. As

23

T increases, LP-Mean gradually improves and approaches Hybrid. This is because the average

demand for each product in each zone converges to the mean demand as the planning horizon

gets longer. In contrast, LP-Sample relative to Hybrid tends to become worse when T gets large

because the former ignores the holding costs, which are more significant when T is large. The gap

between Hybrid and LP-Mean can be up to 6.5% when T is small, whereas the largest gap between

Hybrid and LP-Sample can be 3.5% when T is large.

0 25 50 75 100 125 150 175 200
T

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

J=3, K=5, Uniform

LP-Mean to Hybrid
LP-Sample to Hybrid

0 25 50 75 100 125 150 175 200
T

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

J=3, K=5, Exponential

LP-Mean to Hybrid
LP-Sample to Hybrid

0 25 50 75 100 125 150 175 200
T

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

J=4, K=6, Uniform

LP-Mean to Hybrid
LP-Sample to Hybrid

0 25 50 75 100 125 150 175 200
T

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

J=4, K=6, Exponential

LP-Mean to Hybrid
LP-Sample to Hybrid

Figure 5: Relative performance under various planning-horizon lengths

Impact of fulfillment frequency

To investigate the impact of fulfillment (retrieval) frequency, we consider a problem of 64 days

and divide the planning horizon into T periods, where T∈{2, 4, 8, 16, 32, 64}. Each period here

corresponds to 64/T days and hi=
ρi
365×

64
T . We set µT=130 and σT=60 for the hybrid heuristic.

Figure 6 suggests that each policy attains the highest profit when the fulfillment frequency is the

lowest, and the profit drops as the frequency increases. This is because the retailer has more actual

demand information to make retrieval decisions when the fulfillment frequency is lower (when each

period is longer). Figure 7 shows the profit of the LP-Mean and LP-Sample approximations

0 10 20 30 40 50 60
Frequency

52000

54000

56000

58000

60000

Pr
of

it

Ave Profit J=3, K=5, Uniform
Hybrid
LP-Sample
LP-Mean

0 10 20 30 40 50 60
Frequency

60000

62000

64000

66000

68000

70000

Pr
of

it

Ave Profit J=3, K=5, Exponential
Hybrid
LP-Sample
LP-Mean

0 10 20 30 40 50 60
Frequency

72000

74000

76000

78000

80000

82000

Pr
of

it

Ave Profit J=4, K=6, Uniform
Hybrid
LP-Sample
LP-Mean

0 10 20 30 40 50 60
Frequency

82000

84000

86000

88000

90000

92000

94000

Pr
of

it

Ave Profit J=4, K=6, Exponential
Hybrid
LP-Sample
LP-Mean

Figure 6: Performance of different policies under various fulfillment frequencies

0 10 20 30 40 50 60
Frequency

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

e
to

 H
yb

rid

J=3, K=5, Uniform
LP-Mean to Hybrid
LP-Sample to Hybrid

0 10 20 30 40 50 60
Frequency

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

Re
la

tiv
e

Pe
rfo

rm
an

e
to

 H
yb

rid

J=3, K=5, Exponential
LP-Mean to Hybrid
LP-Sample to Hybrid

0 10 20 30 40 50 60
Frequency

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

e
to

 H
yb

rid

J=4, K=6, Uniform
LP-Mean to Hybrid
LP-Sample to Hybrid

0 10 20 30 40 50 60
Frequency

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

100.40%

Re
la

tiv
e

Pe
rfo

rm
an

e
to

 H
yb

rid

J=4, K=6, Exponential
LP-Mean to Hybrid
LP-Sample to Hybrid

Figure 7: Relative performance under various fulfillment frequencies

relative to Hybrid as fulfillment becomes more frequent. The largest gap between Hybrid and the

two benchmarks is 2.5% when the fulfillment frequency is high.

24

Impact of warehouse capacity

To focus on non-trivial situations, we set warehouse capacities and other parameters such that

the capacity constraints are tight in a base problem instance. Figure 8 shows LP-Mean and LP-

Sample relative to Hybrid for various warehouse capacity levels. Each warehouse’s capacity is set

as κ times of its original capacity in the base problem instance. We assume the demand d̃tik is

uniformly distributed in an interval [d̂tik − IL, d̂tik + IL], where the parameter IL is chosen such

that the lower bound d̂tik − IL ≥ 0. We set IL = 0.3, 0.5, and 0.7 from left to right in Figure

8, corresponding to low, medium, and high demand variation respectively. Figure 8 suggests that

when the warehouse capacities are small, the two benchmarks are close to Hybrid. In contrast,

as the warehouse capacities increase, the hybrid heuristic dominates the two benchmarks. The

relative profit exhibits a U-shape curve with its lowest value occurs at some intermediate capacity

level. This is because the relative advantage of using the hybrid heuristic is less significant when

the warehouse capacity constraints are too tight or too loose. The largest gaps from Hybrid to

LP-Mean and LP-Sample are 3.5% and 2%, respectively, when κ = 1.25.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Capacity level

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

Demand varation IL = 0.3
LP-Mean to Hybrid
LP-Sample to Hybrid

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Capacity level

98.00%

98.50%

99.00%

99.50%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

Demand varation IL = 0.5

LP-Mean to Hybrid
LP-Sample to Hybrid

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Capacity level

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

Demand varation IL = 0.7

LP-Mean to Hybrid
LP-Sample to Hybrid

Figure 8: Relative performance for various warehouse capacity levels with J=3 and K=5

Impact of demand variation

We also assess the effect of demand variation on the policies’ performance. Figure 9 suggests

that when demand variation IL is small, LP-Mean and LP-Sample are close to Hybrid. This is

because when demand variation is small, the actual demands are close to their mean value and the

total holding cost is less significant. The former favors LP-Mean and the latter favors LP-Sample.

However, as demand variation increases, the superiority of the hybrid heuristic becomes clear. The

largest gaps from Hybrid to LP-Mean and LP-Sample are 3.5% and 2%, respectively, when demand

variation is moderate. As demand variation further increases, these gaps tend to reduce as all the

policies become less efficient. Since the LP-Mean approximation assumes deterministic demands,

it is consistently worse than the other policies as demand variation increases.

Impact of demand correlation

To evaluate the impact of demand correlation, we assume demand is generated through an auto-

regression process based on an AR(p) model. For the first p periods, the demands are assumed to

equal a random variable following a uniform or exponential distribution, plus a standard normal

25

0.0 0.2 0.4 0.6 0.8 1.0
Demand variation IL

98.25%

98.50%

98.75%

99.00%

99.25%

99.50%

99.75%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid
Capacity level = 0.75

LP-Mean to Hybrid
=LP-Sample to Hybrid

0.0 0.2 0.4 0.6 0.8 1.0
Demand variation IL

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

Capacity level = 1

LP-Mean to Hybrid
LP-Sample to Hybrid

0.0 0.2 0.4 0.6 0.8 1.0
Demand variation IL

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 to

 H
yb

rid

Capacity level = 1.25

LP-Mean to Hybrid
LP-Sample to Hybrid

Figure 9: Relative performance for various demand variation levels with J=3 and K=5

noise. For t > p, the demand for each product i of zone k in period t is d̃tik =
∑p

τ=1 αp[τ] d̃
t−τ
ik + ϵ̃tik,

where ϵ̃tik is an independent and identically distributed standard normal random variable, and αp[τ]

is a weighting vector defined as αp[τ] = (p− τ + 1)/
∑p

τ ′=1 τ
′, if τ ≤ p; and 0, if τ > p. Clearly,∑p

τ=1 αp[τ] = 1. For instance, if p = 2, α2[1] = 2/3 and α2[2] = 1/3. Any negative demand

values are replaced by 0. Figure 10 shows the policies’ relative profit for various p values. The

hybrid heuristic consistently outperforms the two benchmarks partly because the positive demand

correlation causes slower convergence of sample averages, lowering LP-Mean and LP-Sample. The

largest gaps from Hybrid to LP-Mean and LP-Sample are 22.5% and 2.5% respectively. This

highlights the hybrid heuristic’s advantage in managing demand correlation across periods, which

is partly due to the optimality of demand aggregation for the single-zone case shown in Lemma 1.

Figure 10: Relative performance under the effect of demand correlation

The superior performance of the hybrid heuristic underscores its capability to effectively deploy

inventory for uncertain demand. These findings establish a foundation for the case study in Section

7, where we validate the hybrid heuristic’s robustness in a real-world online retailing context and

demonstrate its promising potential for practical, larger-scale networks.

7 A case study using real data from an online retailer

We examine our hybrid heuristic using data from a major fashion (apparel) online retailer in Asia.

7.1 Data description

The retailer orders products from a single supplier in Guangzhou, China, and sells the products

to six zones: Hong Kong (HK), Indonesia (ID), Malaysia (MY), the Philippines (PH), Singapore

26

(SG), and Taiwan (TW). Before the products are ordered by the customers, they are stored in

three warehouses: one in Jakarta, ID; one in Kuala Lumpur, MY; and one in Manila, PH. Thus,

we have J=3 and K=6. We have collected daily demand data for I=10,074 products, containing

the actual demand of each zone for each product in each day for six months (Jan 1–Jun 30, 2017).

Figure 11(a) shows the cumulative demand for the top i products, i ∈ I. Figure 11(b) shows the

total demand for all the products of each zone. The unit selling prices lie in [6, 51]. The unit

purchase cost is half of the unit selling price for each product.

0 2000 4000 6000 8000 10000
Product

0

20

40

60

80

100

Cu
m

ul
at

iv
e

de
m

an
d

(%
)

(a)

HK ID MY PH SG TW
Demand zone

0

5

10

15

20

25

30

%
 o

f t
ot

al
 d

em
an

d

(b)

Figure 11: Demand distributions across the products (a) and the zones (b)

The retailer replenishes the inventory at the start of the planning horizon and then fulfills the

demands daily. To account for demand fluctuation and seasonality within each week, we pre-process

the data to obtain a ground-truth demand distribution as follows. We first group all the days into

seven clusters so that all Mondays are in a cluster, all Tuesdays are in a cluster, and so on. For

each cluster, suppose the actual demand for product i of zone k in period (day) t is d. We assume

demand d̃tik follows a uniform distribution in [d, d + 1] if d > 0, and [0, 0.5] if d = 0. Specifically,

for product i and zone k, suppose there are S actual demands in a cluster: d
(s)
ik , s = 1, . . . , S. We

assume the demand in each period t in this cluster is d̃tik = d̃sik with probability 1/S, where d̃sik

follows U [d
(s)
ik , d

(s)
ik + 1] if d

(s)
ik > 0, and U [0, 0.5] if d

(s)
ik = 0. To determine the unit storage costs,

we choose the cheapest rate for shipping a 1-Kg parcel from Guangzhou to each warehouse from

the DHL, UPS, and Fedex websites1. After scaling the shipping rate with respect to the unit

purchase costs of the products, we set the unit storage cost from the supplier to each warehouse

at US$0.436. Likewise, we use the cheapest rate for shipping a 1-Kg parcel from each warehouse

to each zone from the above websites to set the corresponding unit retrieval cost. Table 1 shows

the unit retrieval costs after scaling the shipping rates with respect to the unit purchase costs.

Under the retailer’s current policy, the Jakarta warehouse only serves ID, the Kuala Lumpur

warehouse serves HK, MY, SG, and TW, and the Manila warehouse only serves PH. We deter-

1Sources: https://www.dhl.com/us-en/home/get-a-quote/one-time-shipment-quote.html, https://www.

ups.com/mobile/ratetnthome?loc=en_us, https://www.fedex.com/ratefinder/home?cc=US&language=en&locId=

express

27

https://www.dhl.com/us-en/home/get-a-quote/one-time-shipment-quote.html
https://www.ups.com/mobile/ratetnthome?loc=en_us
https://www.ups.com/mobile/ratetnthome?loc=en_us
https://www.fedex.com/ratefinder/home?cc=US&language=en&locId=express
https://www.fedex.com/ratefinder/home?cc=US&language=en&locId=express

Table 1: Unit retrieval cost from each warehouse to each demand zone (US$)
Zones

Warehouses HK ID MY PH SG TW
Jakarta 4.986 0.335 4.986 4.986 3.757 5.829

Kuala Lumpur 3.527 3.527 1.625 3.527 2.193 3.527
Manila 1.893 2.453 2.453 2.505 1.893 1.893

mine the order quantities for the Jakarta and Manila warehouses by solving the single-warehouse

single-zone problem with Algorithm 6 in Appendix B, whereas the order quantities for the Kuala

Lumpur warehouse can be found by solving the single-warehouse multi-zone problem (see Appendix

C). Similar to Section 6, we generate 1,000 new sample paths from the ground-truth demand dis-

tributions and compute the total revenue, holding cost, and retrieval cost. We use the objective

function value of the LP-Mean approximation as an upper bound on the profit.

7.2 Comparing the different policies

Table 2 shows the costs, revenue, profit, and computational time of the hybrid heuristic, LP-Mean

approximation, LP-Sample approximation with 30 samples (in consistent with Section 6), and

retailer’s current dedicated policy. We consider planning horizons of one week, two weeks, and four

weeks. The hybrid heuristic outperforms the LP-Sample approximation by up to 2%. This profit

improvement is mainly due to the revenue generated. In terms of computational time, the LP-

Sample approximation becomes unacceptable even for 30 samples, while the hybrid heuristic takes

only 11 to 35 minutes. The hybrid heuristic generates more profit than the LP-Mean approximation

by up to 5.7%, representing the value of handling random demand by anticipative ordering and

storage decisions. Compared to the dedicated policy, the hybrid heuristic improves the profit by up

to 16%, signifying the value of flexible fulfillment. Although there could be other vendor constraints

or operational costs in practice that might reduce this potential profit improvement, the hybrid

heuristic is still very promising given the notable profit gap.

Table 2: Performance of the different methods on the case study
One Week Hybrid LP-Mean LP-Sample Dedicated Upper bound

Total purchase cost 725,368.99 737,926.03 715,674.42 635,366.66
Total storage cost 30,745.85 30,745.85 30,745.85 30,745.85

Total retrieval cost* 163,501.38 158,366.18 162,541.87 121,956.84
Total holding cost* 4,822.81 5,298.36 4,523.00 4,312.88

Revenue* 1,433,397.43 1,412,541.53 1,416,049.88 1,219,128.04
Profit* 508,958.39 480,205.10 502,564.73 426,745.81 584,392.67

Profit relative to Hybrid 100% 94.35% 98.74% 83.85%
Computational time (s) 682.88 10.82 44,055.71 121.67
Time relative to Hybrid 100% 1.58% 6,451.45% 17.81%

Two Weeks
Total purchase cost 1,469,101.62 1,475,295.83 1,445,261.51 1,282,713.09
Total storage cost 61,491.69 61,491.69 61,491.69 61,491.69

Total retrieval cost* 336,397.73 328,095.02 335,699.73 248,315.27
Total holding cost* 21,982.76 22,854.07 20,692.95 18,893.91

Revenue* 2,914,986.86 2,862,513.43 2,869,433.82 2,501,766.52
Profit* 1,026,013.05 974,776.82 1,006,287.92 890,352.56 1,154,980.44

Profit relative to Hybrid 100% 95.01% 98.08% 86.78%
Computational time (s) 1,178.39 20.83 56,945.75 185.64
Time relative to Hybrid 100% 1.76% 4,832.50% 15.75%

Four Weeks
Total purchase cost 2,936,064.64 2,948,354.21 2,909,749.13 2,573,341.27
Total storage cost 122,983.39 122,983.39 122,983.39 122,983.39

Total retrieval cost* 682,929.88 671,475.69 682,959.15 501,861.92
Total holding cost* 90,189.72 94,590.28 88,952.68 77,445.65

Revenue* 5,843,880.99 5,776,595.71 5,791,702.95 5,067,973.99
Profit* 2,011,713.36 1,939,192.13 1,987,058.59 1,792,341.75 2,254,851.32

Profit relative to Hybrid 100% 96.40% 98.77% 89.10%
Computational time (s) 2,123.77 194.33 46,783.57 310.86
Time relative to Hybrid 100% 9.15% 2,202.85% 14.63%

*Based on 1,000 demand sample paths.

28

7.3 Larger networks with various structures

We further investigate the hybrid heuristic’s efficacy by considering larger networks of warehouses

and zones in the Asia-Pacific region. The unit storage and retrieval costs are determined by the

same method described in Section 7.1. We select a subset of 5,000 products from our data set

to conduct experiments. For additional demand zones beyond the data set, we assume that these

zones have demand means and variances similar to the existing zones in the data set. These

experiments allow us to evaluate the scalability and robustness of the hybrid heuristic.

We compare the hybrid heuristic against the LP-Mean and LP-Sample approximations as well

as a dedicated policy, under which warehouse 1, ..., J − 1 serves only zone 1, ..., J − 1 respectively,

and warehouse J serves only the remaining K − J + 1 zones. Likewise, we generate 1,000 new

sample paths from the ground-truth demand distributions to evaluate the policies. Table 3 shows

the experiment results based on a one-week planning horizon.

Table 3: Performance of the different methods on larger networks with 5,000 products
J = 4, K = 7 Hybrid LP-Mean LP-Sample Dedicated Upper bound

Profit* 244,199.52 228,124.09 240,959.37 187,020.57 296,055.09
Profit relative to Hybrid 100% 93.42% 98.67% 76.59%

Computational time (s) 2,137.08 76.92 12,193.09 49.92
Time relative to Hybrid 100% 3.60% 570.55% 2.34%

J = 5, K = 8
Profit* 284,598.26 263,513.76 279,280.62 114,491.47 351,327.71

Profit relative to Hybrid 100% 92.59% 98.13% 40.23%
Computational time (s) 2,393.66 104.44 16,670.39 46.69
Time relative to Hybrid 100% 4.36% 696.44% 1.95%

J = 6, K = 9
Profit* 342,425.97 320,155.02 335,397.47 111,451.73 418,911.93

Profit relative to Hybrid 100% 93.50% 97.95% 32.55%
Computational time (s) 2,297.99 135.62 22,233.26 40.42
Time relative to Hybrid 100% 5.90% 976.51% 1.76%

J = 7, K = 10
Profit* 398,579.11 377,773.14 392,727.68 98,932.82 483,413.33

Profit relative to Hybrid 100% 94.78% 98.53% 24.82%
Computational time (s) 2,657.01 179.99 32,182.69 40.24
Time relative to Hybrid 100% 6.77% 1,211.24% 1.51%

J = 10, K = 14
Profit* 378,215.85 356,992.58 368,077.51 87,713.82 440,760.75

Profit relative to Hybrid 100% 94.39% 97.32% 23.19%
Computational time (s) 4,690.80 347.09 27,991.36 50.60
Time relative to Hybrid 100% 7.40% 596.73% 1.08%

J = 10, K = 16
Profit* 470,377.39 453,887.26 464,095.06 92,244.02 567,151.64

Profit relative to Hybrid 100% 96.49% 98.66% 19.61%
Computational time (s) 5,190.00 396.07 30,516.96 49.15
Time relative to Hybrid 100% 7.63% 588.00% 0.95%

J = 12, K = 14
Profit* 400,502.77 393,409.59 399,099.76 145,367.11 475,359.83

Profit relative to Hybrid 100% 98.23% 99.65% 36.30%
Computational time (s) 5,380.73 425.62 17,865.67 51.54
Time relative to Hybrid 100% 7.91% 332.03% 0.96%

*Based on 1,000 demand sample paths.

The results are generally consistent with that of the above case study with J=3 and K=6.

The hybrid heuristic continues to deliver higher profitability than the LP-Mean and LP-Sample

approximations for larger networks with J ∈ [4, 12] and K ∈ [7, 16], without compromising the

computational efficiency. The hybrid heuristic outperforms the LP-Sample approximation by up

to 2.68%. The latter spends a much longer time to find a solution than the hybrid heuristic,

which takes 35 to 89 minutes. The LP-Sample approximation in turn outperforms the LP-Mean

approximation. The dedicated policy is the least efficient with its profit ranging from 19.61%

to 76.59% of Hybrid. By allowing flexible fulfillment in our model, which requires significantly

more computational time in a multi-period setting, the hybrid heuristic is on average 63.81% more

29

profitable than the dedicated policy. Furthermore, the hybrid heuristic outperforms the LP-Mean

approximation by up to 7.41%. This signifies the value of making anticipative ordering and storage

decisions to deal with random demand, which substantially increases the problem complexity.

8 Conclusion

We consider an online retailer selling multiple products over a finite horizon with multiple periods.

The retailer orders the products from a single supplier and stores them at multiple warehouses.

At the start of the horizon, the retailer decides the products’ order quantities and their storage

quantities at each warehouse subject to its capacity constraint. At the end of each period, random

product demands in the period are realized, the retailer decides the retrieval quantities from each

warehouse to fulfill the demands. Any unmet demands in each period are lost. The objective is to

maximize the retailer’s expected profit over the horizon.

We first focus on a case where the retailer sells the products to a single demand zone. We prove

that the multi-period problem is equivalent to a single-period problem for this case. We solve

the single-period problem backward from the retrieval stage to the ordering stage. The optimal

retrieval policy is greedy: Retrieve a product from a warehouse containing it with the smallest unit

retrieval cost until all its demand is fulfilled or the system has run out of stock. We obtain a storage

policy using non-greedy Algorithm 1, which allocates the products to the warehouses iteratively

according to each warehouse’s updated target stockout probability. Algorithm 1 produces an ϵ-

optimal storage policy in polynomial time. Finally, we characterize the optimal ordering policy.

We have identified interesting insights for the single-zone problem. (i) The optimal storage

policy can be characterized by a piecewise-linear non-increasing convex curve (Pareto frontier) on

a two-dimensional space in Figure 3. Warehouses below the curve are full, above the curve are

empty, and on the curve are partially filled. In each iteration, Algorithm 1 selects the warehouses

on the curve for storage. (ii) Under the optimal storage and retrieval policies, each warehouse j

has a target stockout probability χj that is identical for all the products. The target stockout

probabilities allow us to separately determine each product’s quantity allocated to each warehouse

in each iteration of Algorithm 1, making its computational complexity linear in the number of

products I (see Theorem 2). This is important as I is generally large for online retailing. (iii)

The product assortment in the warehouses preserves a nested property: Among all the non-empty

warehouses, a smaller-index warehouse contains all the products stored in a larger-index warehouse.

(iv) A product’s quantity allocated to a warehouse may decrease in the course of Algorithm 1 (see

Example 3). This non-monotonicity property differentiates Algorithm 1 from the greedy algorithms

by Lovász (1983) and Federgruen and Groenevelt (1986). (v) Algorithm 1 finds a significantly

better solution in a much shorter time compared to SAA-LP and FISTA on the single-zone storage

30

problem (see Figure 14 in Appendix E). Algorithm 1 becomes more dominant as I increases,

supporting our theoretical prediction in Theorem 2 that its complexity is linear in I.

We then consider a case with multiple demand zones, which is unfortunately intractable an-

alytically because the optimal retrieval policy can no longer have a closed form. We propose an

efficient hybrid heuristic and benchmark it against the LP-Mean and LP-Sample approximations.

The hybrid heuristic consistently outperforms the benchmarks in our numerical experiments with

various horizon lengths, fulfillment frequencies, warehouse capacities, demand variations, and de-

mand correlations. The hybrid heuristic generates more profit than the LP-Mean and LP-Sample

approximations by up to 22.5% and 3.5% respectively. A case study based on data from a major

fashion online retailer in Asia confirms the hybrid heuristic’s efficiency as it improves the aver-

age profit by up to 16% compared to the retailer’s dedicated policy. Our hybrid heuristic is very

promising given the notable profit gap. Furthermore, the hybrid heuristic continues to outperform

the LP-Mean and LP-Sample approximations by up to 7.41% and 2.68%, respectively, without

compromising the computational efficiency for larger networks with various structures.

Our single-supplier model can also be extended to a setting with multiple suppliers. For exam-

ple, if all the suppliers have the same unit purchase cost for each product, then for each warehouse

it is optimal to order all the products from the supplier with the smallest unit storage cost. Con-

struct a virtual supplier by setting its unit storage cost to each warehouse equal to the smallest

unit storage cost to the warehouse among all the suppliers. Under this setting, the multi-supplier

problem is equivalent to a problem with a single, virtual supplier.

Acknowledgment

The authors thank the associate editor and the two anonymous referees for their valuable comments

that have substantially improved the paper. This second author is supported by the Singapore

Ministry of Education [Tier 1 Grant 23-0619-P0001]. The third author is grateful for the support

from the Singapore Management University under the Maritime and Port Authority Research

Fellowship and the Singapore Ministry of Education (MOE) under the MOE Tier 1 Academic

Research Fund.

References

Acimovic J, Graves SC (2015) Making better fulfillment decisions on the fly in an online retail environment. Manuf.
Serv. Oper. Manag. 17(1): 34–51.

Acimovic J, Graves SC (2017) Mitigating spillover in online retailing via replenishment. Manuf. Serv. Oper. Manag.
19(3): 419–436.

Ando K, Fujishige S, Naitoh T (1995) A greedy algorithm for minimizing a separable convex function over a finite
jump system. J. Oper. Res. Soc. Japan 38(3): 362–375.

31

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences 2(1): 183–202.

Bertsekas DP (1999) Nonlinear Programming. Athena Scientific.

Bertsekas DP (2011) Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.
Optimization for Machine Learning 3: 1–38.

Boyd S, Vandenberghe L (2004) Convex Optimization, Cambridge University Press. Exercise 4.1, solution available
at http://see.stanford.edu/materials/lsocoee364b/hw4sol.pdf. Accessed Dec 06, 2020.

Chambolle A, Dossal C (2015) On the convergence of the iterates of the fast iterative shrinkage/thresholding algo-
rithm. J. Optimization Theory and Applications 166(3): 968–982.

Eppen G, Schrage L (1981) Centralized ordering policies in a multi-warehouse system with lead times and random
demand. Multi-Level Production/Inventory Control Systems: Theory and Practice 16: 51–67.

Federgruen A, Groenevelt H (1986) The greedy procedure for resource allocation problems: Necessary and sufficient
conditions for optimality. Oper. Res. 34(6): 909–918.

Federgruen A, Prastacos G, Zipkin PH (1986) An allocation and distribution model for perishable products. Oper.
Res. 34(1): 75–82.

Ferreira KJ, Lee BHA, Simchi-Levi D (2016) Analytics for an online retailer: Demand forecasting and price opti-
mization. Manuf. Serv. Oper. Manag. 18(1): 69–88.

Groenevelt H (1991) Two algorithms for maximizing a separable concave function over a polymatroid feasible region.
Eur. J. Oper. Res. 54(25): 227–236.

Harsha P, Subramanian S, Uichanco J (2019) Dynamic pricing of omnichannel inventories.Manuf. Serv. Oper. Manag.
21(1): 47–65.

Insider Intelligence (2023) Worldwide Ecommerce Forecast 2023. https://www.insiderintelligence.com/content/
worldwide-ecommerce-forecast-2023. Accessed Jan 22, 2024.

Jasin S, Sinha A (2015) An LP-based correlated rounding scheme for multi-item ecommerce order fulfillment. Oper.
Res. 63(6): 1336–1351.

Lei Y, Jasin S, Sinha A (2018) Joint dynamic pricing and order fulfillment for e-commerce retailers. Manuf. Serv.
Oper. Manag. 20(2): 269–284.

Lim YF, Jiu S, Ang M (2020) Integrating anticipative replenishment allocation with reactive fulfillment for online
retailing using robust optimization. Manufacturing and Service Operations Management, forthcoming, https:
//doi.org/10.1287/msom.2020.0926.

Lions PL, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical
Analysis 16(6): 964–979.

Liu F (2017) A greedy algorithm for solving ordinary transportation problem with capacity constraints. Operations
Research Letters 45(4): 388–391.

Local Offer Network (2011) The daily deal phenomenon: A year in review. Report, Local Offer Network, Chicago.

Lovász L (1983) Submodular functions and convexity. In Mathematical Programming: The State of the Art, ed.
Bachem et al., Springer Berlin Heidelberg, 235–257.

Miao S, Jasin S, and Chao X. (2022) Asymptotically optimal Lagrangian policies for multi-warehouse, multi-store
systems with lost sales. Operations Research 70(1), 141–159.

Malozemov VN, Tamasyan GS (2016) Two Fast Algorithms for Projecting a Point onto the Canonical Simplex.
Computational Mathematics and Mathematical Physics 56(5): 730–743.

Nesterov Y (2004) Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87. Springer.

Ostapenko N (2013) Online discount luxury: In search of guilty customers. Internat. J. Bus. Soc. Res. 3(2): 60–68.

Robbins H, Monro S (1951) A stochastic approximation method. Annals of Mathematical Statistics 22: 400–407.

Kharpal A (2021) Alibaba, JD smash Singles Day record with $139 billion of
sales and focus on ‘social responsibility’. https://www.cnbc.com/2021/11/12/
china-singles-day-2021-alibaba-jd-hit-record-139-billion-of-sales.html. Accessed Jan 22, 2024.

Shapiro A, Philpott A (2007) A tutorial on stochastic programming. https://www2.isye.gatech.edu/people/
faculty/Alex_Shapiro/TutorialSP.pdf. Accessed March 08, 2019.

32

http://see.stanford.edu/materials/lsocoee364b/hw4sol.pdf
https://www.insiderintelligence.com/content/worldwide-ecommerce-forecast-2023
https://www.insiderintelligence.com/content/worldwide-ecommerce-forecast-2023
https://doi.org/10.1287/msom.2020.0926
https://doi.org/10.1287/msom.2020.0926
https://www.cnbc.com/2021/11/12/china-singles-day-2021-alibaba-jd-hit-record-139-billion-of-sales.html
https://www.cnbc.com/2021/11/12/china-singles-day-2021-alibaba-jd-hit-record-139-billion-of-sales.html
https://www2.isye.gatech.edu/people/faculty/Alex_Shapiro/TutorialSP.pdf
https://www2.isye.gatech.edu/people/faculty/Alex_Shapiro/TutorialSP.pdf

Vidal T, Gribel D, Jaillet P (2019) Separable convex optimization with nested lower and upper constraints. INFORMS
Journal on Optimization 1(1): 71–90.

Vidal T, Jaillet P, Maculan N (2014) A decomposition algorithm for nested resource allocation problems. Working
Paper, Massachusetts Institute of Technology.

Wolverson R (2012) High and low: Online flash sales go beyond fashion to survive. Time Magazine 180(19): 9–12.

Wu Z, Nip K, He Q (2021) A new combinatorial algorithm for separable convex resource allocation with nested
bound constraints. INFORMS Journal on Computing, forthcoming.

Xu PJ, Allgor R, Graves SC (2009) Benefits of reevaluating real-time order fulfillment decisions. Manuf. Serv. Oper.
Manag. 11(2): 340–355.

Zhong Y, Zheng Z, Chou MC, Teo C-P (2018) Resource pooling and allocation policies to deliver differentiated
service. Management Sci. 64(4): 1555–1573.

Zipkin PH (1980) Simple ranking methods for allocation of one resource. Management Sci. 26(1): 34–43.

33

A Proofs

A.1 Proof of Lemma 1

Part 1. We first reformulate Problem (9) as a dynamic program. Denote V t
(
xt
)
as the profit-

to-go function at the beginning of period t. Let V T+1 = 0. The profit-to-go functions satisfy the
following Bellman equation:

V t
(
xt
)
= E

d̃
t max

0 ≤ yt ≤ xt

yte ≤ d̃
t

−
I∑

i=1

hi

J∑
j=1

(xtij − ytij) +
I∑

i=1

J∑
j=1

(pi − rj) ytij + V t+1
(
xt − yt

) (31)

Next, we show that

V t(xt) = −(T − t+ 1)

I∑
i=1

hi

J∑
j=1

xtij +

I∑
i=1

E
d̃

t
,...,d̃

T

hi T∑
τ=t

min

 J∑
j=1

xtij ,

τ∑
k=t

d̃ki

+ (pi − rJ)min

 J∑
j=1

xtij ,

T∑
τ=t

d̃iτ

+

J∑
j=2

ψj min

j−1∑
l=1

xtil,

T∑
τ=t

d̃iτ


and

yt∗ij = min

 j∑
l=1

xtil, d
t
i

−min

j−1∑
l=1

xtil, d
t
i

 , i = 1, ..., I, j = 1, ..., J,

for all t = 1, ..., T by induction.
In period T ,

V T
(
xT
)
= E

d̃
T max

0 ≤ yT ≤ xT

yT e ≤ d̃
T

−
I∑

i=1

hi

J∑
j=1

(xTij − yTij) +
I∑

i=1

J∑
j=1

(pi − rj) yTij

 .

The optimal retrieval policy yT∗ is to retrieve each product i from a warehouse with the smallest
index that contains the inventory of a product until all units are retrieved or all demands are
fulfilled. Therefore, for a given product i, we will retrieve the product from warehouse j if and

only if dTi >
∑j−1

l=1 x
T
il . The total quantity of product i retrieved from warehouses 1 to j is

min
(∑j

l=1 x
T
il , d

T
i

)
. Thus, the optimal quantity of product i retrieved from warehouse j is

yT∗
ij = min

 j∑
l=1

xTil , d
T
i

−min

j−1∑
l=1

xTil , d
T
i

 ,

for i = 1, . . . , I and j = 1, . . . , J . Based on this result, we can write

V T
(
xT
)

= −
I∑

i=1

hi

J∑
j=1

xTij +
I∑

i=1

E
d̃

T

(pi + hi − rJ)min

(
J∑

l=1

xTil , d̃
T
i

)
+

J∑
j=2

ψj min

j−1∑
l=1

xTil , d̃
T
i

 .
Thus, the results hold for T .

Suppose the results hold for period t+ 1. In period t, by induction, the Bellman equation can
be simplified to

V t(xt) = E
d̃

t max
0 ≤ yt ≤ xt

yte ≤ d̃
t

−
I∑

i=1

hi

J∑
j=1

(xtij − ytij) +
I∑

i=1

J∑
j=1

(pi − rj) ytij + V t+1
(
xt − yt

)

= −(T − t+ 1)
I∑

i=1

hi

J∑
j=1

xtij + E
d̃

t max
0 ≤ yt ≤ xt

yte ≤ d̃
t

(T − t+ 1)
I∑

i=1

hi

J∑
j=1

ytij +
I∑

i=1

J∑
j=1

(pi − rj) ytij

+

I∑
i=1

E
d̃

t+1
,...,d̃

T

hi T∑
τ=t+1

min

 J∑
j=1

(
xtij − ytij

)
,

τ∑
k=t+1

d̃ki


+(pi − rJ)min

 J∑
j=1

(
xtij − ytij

)
,

T∑
τ=t+1

d̃iτ

+

J∑
j=2

ψj min

j−1∑
l=1

(
xtil − y

t
il

)
,

T∑
τ=t+1

d̃iτ

 .

1

Consider the maximization problem of V t(xt), we obtain the derivative of ytij over the objec-

tive function as (T − t+ 1)hi + (pi − rj)− hi
∑T

τ=t+1 Pr
(∑J

j=1

(
xtij − ytij

)
≤
∑τ

k=t+1 d̃
k
i

)
− (pi −

rJ)Pr
(∑J

j=1

(
xtij − ytij

)
≤
∑T

τ=t+1 d̃
k
i

)
−
∑J

j=2 ψjPr
(∑j−1

l=1

(
xtil − ytil

)
≤
∑T

τ=t+1 d̃
k
i

)
.We also ob-

tain the difference between the derivatives of ytij−1 and ytij as

(rj − rj−1)
(
1− Pr

(∑j−1
l=1

(
xtil − ytil

)
≤
∑T

τ=t+1 d̃
k
i

))
≥ 0.Thus, for any storage matrix, retrieving

a unit of product i from warehouse j− 1 is more profitable than retrieving from warehouse j. This
hence implies that the optimal retrieval policy for each product i is to retrieve from the warehouse
with a smaller index that contains the product.

Therefore, for a given product i, we will retrieve the product from warehouse j if and only if dti >∑j−1
l=1 x

t
il. The total quantity of product i retrieved from warehouses 1 to j is min

(∑j
l=1 x

t
il, d

t
i

)
.

Thus, the optimal quantity of product i retrieved from warehouse j is

yt∗ij = min

 j∑
l=1

xtil, d
t
i

−min

j−1∑
l=1

xtil, d
t
i

 ,

for i = 1, . . . , I and j = 1, . . . , J . We substitute yt∗ij into V t(xt). Note that

min

 J∑
j=1

(
xtij − yt∗ij

)
,

τ∑
k=t+1

dki

 = min

 J∑
j=1

xtij −min

(
J∑

l=1

xtil, d
t
i

)
,

τ∑
k=t+1

dki


= min

 J∑
j=1

xtij ,

τ∑
k=t+1

dki +min

(
J∑

l=1

xtil, d
t
i

)−min

(
J∑

l=1

xtil, d
t
i

)
= min

 J∑
j=1

xtij ,

τ∑
k=t

dki

−min

(
J∑

l=1

xtil, d
t
i

)
.

V t(xt) = −(T − t+ 1)

I∑
i=1

hi

J∑
j=1

xtij +

I∑
i=1

E
d̃

t
,...,d̃

T

hi T∑
τ=t

min

 J∑
j=1

xtij ,

τ∑
k=t

d̃ki

+ (pi − rJ)min

 J∑
j=1

xtij ,

T∑
τ=t

d̃iτ

+

J∑
j=2

ψj min

j−1∑
l=1

xtil,

T∑
τ=t

d̃iτ

 .
This hence shows that the results hold for all t.

Part 2. From Part 1, the retailer’s expected profit in period 1 under the optimal retrieval policy
is given by

V 1(x) = −T
I∑

i=1

hi

J∑
j=1

xij +
I∑

i=1

E
d̃hi T∑

t=1

min

 J∑
j=1

xij ,

t∑
τ=1

d̃iτ

+ (pi − rJ)min

 J∑
j=1

xij ,

T∑
t=1

d̃ti

+

J∑
j=2

ψj min

j−1∑
l=1

xil,

T∑
t=1

d̃ti


= −

T∑
t=1

I∑
i=1

hi

[
J∑

ℓ=1

xiℓ −Gt
i

(
J∑

ℓ=1

xiℓ

)]
+

I∑
i=1

(pi − rJ)GT
i

(
J∑

ℓ=1

xiℓ

)
+

I∑
i=1

J∑
j=2

ψjG
T
i

j−1∑
ℓ=1

xiℓ

 .

Adding back the purchase and storage costs, we obtain the expression for u(x).

A.2 Proof of Lemma 2

Since pi − rJ > 0 and Gti(x) is a concave function of x for all i ∈ I, t ∈ T , it is clear that u(x) is
also a concave function. The objective function u(x) is separable in i: u(x) =

∑I
i=1 ui(xi), where

ui(xi) = −
∑J

j=1(ρi + sj)xij − hi
∑T

t=1

[
qi −Gti (qi)

]
+ (pi − rJ)GTi (qi) +

∑J
j=2 ψjG

T
i

(∑j−1
ℓ=1 xiℓ

)
.

Given that dF̄ ti (x)/dx = −f ti (x), i ∈ I, t ∈ T , the first- and second-order partial derivatives of
u(x) are

∂ui

∂xij
= − (ρi + hiT + sj) + (pi − rJ) F̄T

i (qi) + hi

T∑
t=1

F̄ t
i (qi) +

J∑
υ=j+1

ψυF̄
T
i

(
υ−1∑
ℓ=1

xiℓ

)
,

∂2ui

∂xij∂xiℓ
= − (pi − rJ) fTi (qi)− hi

T∑
t=1

f ti (qi)−
J∑

υ=max(j+1,ℓ+1)

ψυf
T
i

(
υ−1∑
ℓ=1

xiℓ

)
. (32)

2

It is well known that λmax(A) ≤ nmaxi,j |Ai,j | for A being n×n symmetric matrix. Therefore,

λmax
(
∇2ui(xi)

)
≤ J max

j,l

(pi − rJ)fmax + hiTfmax +

J∑
υ=max(j+1,ℓ+1)

ψυfmax

 = J(pi + hiT − r1)fmax.

Now we observe that u(x) =
∑I

i=1 ui(xi) is separable. Therefore,

λmax
(
∇2u(x)

)
≤ max

i
λmax

(
∇2ui(xi)

)
≤ J(pmax + hmaxT − r1)fmax,

where pmax = maxi pi and hmax = maxi hi.
From the expression of the second order partial derivative, we can easily verify that

−∇2ui(xi) = (pi − rJ) f̄Ti (qi) ee
′ + hi

T∑
t=1

f ti (qi) ee
′ +

J∑
υ=2

ψυf
T
i

(
q
(υ−1)
i

)
eυ−1e

′
υ−1,

where ek = (1, ..., 1, 0, ..., 0) is an J-dimensional vector with the first k components equal one and
other components equal zero. For any vector z, we have

−zT∇2ui(xi)z ≥ min

(
(pi − rJ) fTi (qi) + hi

T∑
t=1

f ti (qi) , min
υ=1,...,J−1

ψυ+1f
T
i

(
q
(υ)
i

)) J∑
υ=1

(eTυ z)2.

Note that

∥z∥2 =

J∑
j=1

z2j =

J∑
j=1

(eTj z − eTj−1z)
2 ≤

J∑
j=1

(eTj z − eTj−1z)
2 ≤

J∑
j=1

(eTj z)2 + (eTj−1z)
2 ≤ 2

J∑
j=1

(eTj z)2.

Combining the above two inequalities, together with the fact that 0 ≤ q
(υ)
i ≤

∑J
j=1 cj for all

υ = 1, ..., J , we have
−zT∇2ui(xi)z ≥ αi∥z∥2,

where
αi =

1

2
wmin

(
pi + hiT − rJ , min

υ=1,...,J−1
ψυ+1

)
.

From the problem assumption, it is clear that αi > 0. This suggests that u(xi) is an α-strongly
concave function where α =

∑
i∈I αi.

A.3 Proof of Theorem 1

The storage problem (19) is a concave optimization problem with linear constraints. The La-
grangian of the storage problem is

Λ (x,λ,µ,ν) = −
I∑

i=1

J∑
j=1

sjxij +

I∑
i=1

J∑
j=2

ψjGi

j−1∑
l=1

xil

+ λ⊙ x− µ · (xe− q)− ν · (x′e− c), (33)

where λ, µ, and ν are Lagrangian multipliers. Specifically, λ ≥ 0 is an I × J matrix, µ is
an I-dimensional column vector, ν ≥ 0 is a J-dimensional column vector, and ⊙ is the sum of
component-wise products of the matrices. The following lemma identifies conditions for x∗.

Lemma 4 The optimal storage policy x∗ satisfies the following KKT conditions:

ψj+1F̄i

 j∑
k=1

x∗ik

 = sj − sj+1 − λ∗ij + λ∗i,j+1 + ν∗j − ν∗j+1, j ∈ J−, i ∈ I; (34)

µ∗i − λ∗iJ = −ν∗J − sJ , i ∈ I; (35)

ν,λ ≥ 0. (36)

3

Proof : The first-order derivative of the Lagrangian in Equation (33) is
∂Λ(x,λ,µ,ν)

∂xij
= −sj +∑J−1

k=j F̄i

(∑k
u=1 xiu

)
ψk+1 + λij − µi − νj , for all j ∈ J −, i ∈ I. The optimal solution satisfies the

first-order condition ∂Λ (x∗,λ∗,µ∗,ν∗) /∂xij = 0. Take the difference between ∂Λ (x∗,λ∗,µ∗,ν∗) /∂xij =

0 and ∂Λ (x∗,λ∗,µ∗,ν∗) /∂xi,j+1 = 0 for all j ∈ J −, i ∈ I, we have ψj+1F̄i

(∑j
u=1 x

∗
iu

)
=

sj − sj+1− λ∗ij + λ∗i,j+1 + ν∗j − ν∗j+1. If j = J , the first-order condition ∂Λ (x∗,λ∗,µ∗,ν∗) /∂xiJ = 0
implies sJ − λ∗iJ + µ∗i + ν∗J = 0.

We are now ready to prove Theorem 1.
The left-hand side of Equation (34) is always non-negative. This implies that under the optimal

storage policy, we have sj−sj+1−λ∗ij+λ∗i,j+1+ν
∗
j −ν∗j+1 ≥ 0, for all i ∈ I and j ∈ J . If sj < sj+1,

we have −λ∗ij +λ∗i,j+1 > 0 for all i ∈ I, or ν∗j − ν∗j+1 > 0. In the first case, −λ∗ij +λ∗i,j+1 > 0 implies

x∗i,j+1 = 0 for all i ∈ I. In the second case, ν∗j − ν∗j+1 > 0 implies
∑I

i=1 x
∗
i,j = cj . Combining the

two cases, sj < sj+1 implies that the optimal storage policy is not to store any unit in warehouse

j + 1 (x∗i,j+1 = 0 for all i ∈ I) or to have warehouse j full (
∑I

i=1 x
∗
i,j = cj). In other words, if

sj < sj+1, it is always optimal to fill up warehouse j before filling warehouse j + 1.

Summing Equation (34) from warehouse j to warehouse j′−1, we have
∑j′−1

h=j ψh+1F̄i

(∑h
u=1 x

∗
iu

)
=

sj − sj′ − λ∗ij + λ∗ij′ + ν∗j − ν∗j′ . For any non-full warehouses j < j′, we have ν∗j = ν∗j′ = 0, and

hence
∑j′−1

h=j ψh+1F̄i

(∑h
u=1 x

∗
iu

)
= sj−sj′−λ∗ij+λ∗ij′ . Note that the left-hand side is non-negative.

Thus, if sj < sj′ , we have λ∗ij′ > 0, which implies x∗ij′ = 0. In other words, if sj < sj′ , it is always
optimal to fill up warehouse j before filling warehouse j′.

A.4 Nested property

Lemma 5 If the initial storage matrix v is structured, then it has the nested property.

Proof : We prove this by contradiction. Suppose for warehouse j, we have vij = 0 and vi′j > 0 for
products and i and i′, and suppose vij′ > 0, where j′ is the smallest index larger than j such that
warehouse j′ is non-empty. Clearly, the nested property does not hold. From part 4 of Definition

4, we know that j < j′ ≤ jc(i). Thus, we have F̄i

(∑j
ℓ=1 viℓ

)
= χj(v). Also, since vi′j > 0, from

part 4 of Definition 4, we know that j ≤ jc(i′). Thus, we have F̄i′
(∑j

ℓ=1 vi′ℓ

)
≥ χj(v).

Since j − 1 is smaller than both jc(i) and jc(i
′), according to part 4 of Definition 4, we have

F̄i

(∑j−1
ℓ=1 viℓ

)
= F̄i′

(∑j−1
ℓ=1 vi′ℓ

)
. Since vij = 0, we have F̄i

(∑j−1
ℓ=1 viℓ

)
= F̄i

(∑j
ℓ=1 viℓ

)
= χj(v).

Furthermore, since vi′j > 0, we have F̄i′
(∑j−1

ℓ=1 vi′ℓ

)
> F̄i′

(∑j
ℓ=1 vi′ℓ

)
≥ χj(v). Combining

the three results above, we have χj(v) = F̄i

(∑j
ℓ=1 viℓ

)
= F̄i

(∑j−1
ℓ=1 viℓ

)
= F̄i′

(∑j−1
ℓ=1 vi′ℓ

)
>

F̄i′
(∑j

ℓ=1 vi′ℓ

)
≥ χj(v), which leads to a contradiction. This proves the lemma.

A.5 The marginal costs

Lemma 6 For j < J ,

Dij(v) =

sj + rj F̄i

 j∑
k=1

vik

− J−1∑
u=j+1

ru

[
F̄i

(
u−1∑
k=1

vik

)
− F̄i

(
u∑

k=1

vik

)]
− rJ F̄i

(
J−1∑
k=1

vik

)
; (37)

and DiJ(v) = sJ .

Proof : Recall that G(x) = −
∑I

i=1

∑J
j=1 sjxij+

∑I
i=1

∑J
j=2 ψjGi

(∑j−1
l=1 xil

)
. If j = J the result

is obvious. For j < J , we have

Dij(v) = −
∂G (x)

∂xij

∣∣∣∣
x=v

= sj −
J∑

u=j+1

F̄i

(
u−1∑
k=1

vik

)
ψu.

4

Since v represents the inventory levels in an iteration of Algorithm 1, we have qi ≥
∑u−1

k=1 vik for
all u = j + 1, · · · , J . The above equation can be simplified as

Dij(v) =

sj + rj F̄i

 j∑
k=1

vik

− J−1∑
u=j+1

ru

[
F̄i

(
u−1∑
k=1

vik

)
− F̄i

(
u∑

k=1

vik

)]
− rJ F̄i

(
J−1∑
k=1

vik

)
.

This completes the proof.

A.6 Proof of Lemma 3

If v is structured, we only need to show that z∗ is also structured. Parts 2 to 4 of the structured
property in Definition 4 can be verified directly from the construction of z∗ through Algorithm 3.
Thus, here we shall only verify part 1 and 5.

We verify part 5 first. Initially, in the first iteration, v = 0 and part 5 of the structured
property holds. Suppose in this iteration, it is the first iteration where in Algorithm 1 a non-empty
warehouse j̃ > j∗v exists and

∑I
i=1 vij̃ < cj̃ .

For any i, compare Dij̃(v) with Dij∗v (v), we have

Dij∗v (v)−Dij̃(v) =
(
sj∗v − sj̃

)
+ rj∗v F̄i

 j∗v∑
k=1

vik

− j̃−1∑
u=j∗v+1

ru

[
F̄i

(
u−1∑
k=1

vik

)
− F̄i

(
u∑

k=1

vik

)]
− rj̃ F̄i

j̃−1∑
k=1

vik

 ,

which is independent of vij′ for j
′ ≥ j̃. According to the definition of j∗v , we know that Dij∗v (v)−

Dij̃(v) < 0. However, given that this is the first time warehouse j∗v is selected for storage with

its index smaller than j̃ after warehouse j̃ has been selected, all the storage quantities in the
warehouses with an index smaller than j̃ have not been changed by the algorithm. Therefore, ṽ in
the iteration where warehouse j̃ was selected the last time has the same entry values as v for all
the products in the warehouses that have an index smaller than j̃ (that is, ṽij = vij , i ∈ I, j < j̃).
Thus,

Dij∗v (v)−Dij̃(v) = Dij∗v (ṽ)−Dij̃(ṽ) ≥ 0.

The last inequality holds because warehouse j̃ was selected under ṽ. This contradicts Dij∗v (v) −
Dij̃(v) < 0. Thus, part 5 of the structured property holds.

Now we verify part 1. To verify part 1, we will show that the KKT conditions for z = z(ξ),
ξ < ξ∗ hold. That is, from the modified KKT conditions given in Lemma 4, we have

Dij(z) = λij − µi − νj , i ∈ I, j ∈ J , (38)

and λij ≥ 0 and νj ≥ 0. We verify the KKT conditions by first solving for the Lagrangian
multipliers in (38), and then verify that the solution is (i) well defined, that is, different expressions
for a Lagrangian multiplier must refer to the same value, and (ii) λij ≥ 0 and νj ≥ 0.

We first solve Equations (38) and obtain the following expressions for the Lagrangian multipliers

µi =

{
−Dij(z), if zij > 0 and

∑I
m=1 zmj < cj , for some j;

Di′j(z)−Dij(z) + µi′ , if zik = 0 or
∑I

m=1 zmk = ck, ∀k;

where zij , zi′j > 0, and zi′j′ > 0 and
∑I

m=1 zmj′ < cj′ , for some i′, j, j′, and therefore, µi′ =
−Di′j′(z).

νj =

{
−Dij(z)− µi, if

∑I
m=1 zmj = cj ;

0, if
∑I

m=1 zmj < cj ;

where zij > 0, for some i.

λij =

{
Dij(z) + µi + νj , if zij = 0;

0, if zij > 0.

We now verify the above expressions. First, to prove that µi is well defined, we need to show
that the expression of µi is independent of j. To verify the first case of µi, note that if zij > 0 and∑I

m=1 zmj < cj , for some j, then from Part 5, either j < j∗v or j = j∗v . We have the following three
cases.

5

Case (i): If j < j∗v , then from the construction of z we have zik = vik, for all i ∈ I and k ≤ j,
and hence Dij(z) = Dij(v). Since v ∈ Ẑ, we must have v also satisfies (38). Thus, µi =
−Dij(z) = −Dij(v) is independent of j.

Case (ii): If j = j∗v and product i is all stored in the previous iteration, then again zij′′ = vij′′ ,
for all j′′ ∈ J , and µi = −Dij(z) = −Dij(v) is independent of j.

Case (iii): If j = j∗v and product i is not all stored in the previous iteration, then from part 5 of
the structured property, we know that the difference Dij′(z)−Dij∗v (z), j

′ < j∗v , is independent
of zij , for j ≥ j∗v . Since zik = vik, for all i ∈ I and k < j∗v , we have Dij′(z) − Dij∗v (z) =
Dij′(v) −Dij∗v (v). Since v satisfies the KKT conditions, we must have Dij′(z) −Dij∗v (z) =

Dij′(v)−Dij∗v (v) = 0, for some j′ such that
∑I

m=1 zmj′ < cj′ .

This verifies the first case of µi. To verify the second case of µi, if for all j such that when zij > 0

we have
∑I

m=1 zmj = cj , then we must have product i stored in warehouses with an index smaller
than j∗v . This is because z is constructed so that it satisfies part 4 of the structured property.
Let j̄ be the largest warehouse index in which product i is stored. We must have j ≤ j̄. For
j ≤ j̄, Di′j(z)−Dij(z) =

∑J−1
u=j̄ (ru+1− ru)

(
F̄i (
∑u

m=1 zim)− F̄i′ (
∑u

m=1 zi′m)
)
is independent of j.

Therefore, the above difference in the marginal cost is only a function of zij and zi′j , for all j < j∗v .
By setting zij = vij , for all i ∈ I and j < j∗v , we have µi as a function of vij and vi′j , for j < j∗v .

Furthermore, since v ∈ Ẑ, v satisfies the KKT conditions. Thus, the second case of µi is verified.
Second, we need to show that νj is well defined and non-negative. The second case of νj is

trivial. Thus, we only need to verify the first case of νj . If zij > 0 and
∑I

m=1 zmj = cj , there are
only two possible cases.

Case (i): If {i|zij > 0, i ∈ I} ⊆ {i|zij∗v > 0, i ∈ I}, then µi = −Dij∗v (z). We have νj =

−Dij(z)+Dij∗v (z), which is a function of F̄i

(∑l
k=j∧j∗v zik

)
, for all l = j ∧ j∗v , · · · , (j ∨ j∗v)− 1.

If j < j∗v , then νj = −Dij(z) +Dij∗v (z) is a function of zij′ , j
′ < j∗v . Since zij′ = vij′ , for all

j′ < j∗v , and v ∈ Ẑ, we know that parts 3 to 4 of the structured property hold for v. Thus,
the stockout probabilities are identical for all the possible i. Hence, νj is independent of i. If
j ≥ j∗v , from part 4 of the structured property, we know that j = j∗v . Thus, νj is independent
of i.

Now we need to show that νj ≥ 0. If j < j∗v , since zij′ = vij′ , for j
′ < j∗v , we know that z

and v lead to the same νj . Hence, from the optimality of v, we know that νj ≥ 0. If j ≥ j∗v ,
from part 4 of the structured property, we know that j = j∗v . Thus, νj = 0.

Case (ii): If {i|zij > 0, i ∈ I} ̸⊆ {i|zij∗v > 0, i ∈ I}, then we need to consider two values of µi. If
µi = −Dij′(z), then similar to case (i), we know that the stockout probabilities are identical.
Thus, νj is independent of i. If µi = Di′j′(z) −Dij′(z) + µi′ for some i′. We can set j′ = j
and i′ satisfies zi′j∗v > 0, therefore νj = −Di′j(z)− µi′ is independent of i.
We can verify that νj ≥ 0 in a way similar to case (i).

Finally, we show that λij is well defined and non-negative. It is trivial that if zij > 0 then
λij = 0. Thus, we only need to verify the first case of λij . If zij = 0, there are two cases.

Case (i): If warehouse j is not full, that is,
∑I

m=1 zmj < cj , then from part 5 of the structured
property and the construction of z, we know that j < j∗v and λij = Dij(z) + µi. Now, if
µi = −Dij′(z) for some j′, then given that z satisfies part 4 of the structured property and
zij = 0, we must have j′ < j. As a result, we have λij ≥ 0 because zkj = vkj for all j < j∗v and

v ∈ Ẑ. If µi = Di′j′(z)−Dij′(z) + µi′ , then zij′ > 0. Since we have part 4 of the structured
property and zij = 0, we must have j′ < j. Pick an i′ such that zi′j > 0, then µi′ = −Di′j(z).

We have λij ≥ 0 because zkj′′ = vkj′′ for all j
′′ < j∗v and v ∈ Ẑ.

6

Case (ii): If warehouse j is full, that is,
∑I

m=1 zmj = cj , then λij = Dij(z) + µi −Di′j(z) − µi′ ,
where zi′j > 0. Now, if µi = −Dij′(z) for some j′, then from part 3 of the structured property,
we must have zi′j′ > 0 and µi′ = −Di′j′(z). Let j′ be the largest index such that zij′ > 0,

then j′ < j and Dij(z)−Dij′(z) = sj−sj′ . Thus, λij =
∑j−1

u=j′ (ru+1 − ru) F̄i (
∑u

k=1 zik) ≥ 0.
If µi = Di′′j′(z)−Dij′(z) + µi′′ , for some i′′ and j′, then because of the nested property we
must have j′ < j. We can pick i′′ = i′ and hence λij = Dij(z) +Di′j′(z)−Dij′(z)−Di′j(z).
Now, λij has the same expression as that under the case of µi = −Dij′(z). Thus, we have
λij ≥ 0.

Thus, we have verified part 1: z ∈ Ẑ.
Part 2 follows directly from the construction of z and the definition of ξ∗.

A.7 Proof of Theorem 2

We first prove that, subject to the error due to bisection, Algorithm 1 obtains an optimal storage
matrix by calling Algorithm 3 at most 2J − 1 times. Since the structured property in Definition
4 holds for the initial storage matrix v = 0, the structured property also holds for z∗ after each
iteration of Algorithm 1 according to Lemma 3. Thus, Algorithm 1 generates an ϵ-optimal storage
matrix if it terminates. Now, we show that Algorithm 1 terminates in a finite number of iterations.
Note that Algorithm 3 is called once in each iteration of Algorithm 1. Suppose there are n
warehouses. Let mn be the maximum possible number of times Algorithm 3 is called. We will
prove that mJ = 2J − 1 by induction. Note that m1 = 1 and m2 = 3. Suppose mn = 2n − 1 for
n < J . When n = J , we have the following result. Suppose in the first iteration of Algorithm 1,
warehouse j is selected as the target warehouse. After some iterations, warehouse j is filled. Each
warehouse j′ < j is empty, whereas each warehouse j′′ > j is full or empty. Let b be the number
of warehouses that are full. The number of empty warehouses is J − b. Thus, if b < J , then the
maximum possible number of times Algorithm 3 is called, given that the first target warehouse is j,
is mb+mJ−b = 2b−1+2(J−b)−1 = 2J−2. If b = J , then we must have j = 1 and warehouse j is
the last warehouse that is completely filled. In this case, we first partially fill warehouse 1, then fill
warehouses 2 to J , and finally fill up warehouse 1. The number of iterations is 1+mJ−1+1 = 2J−1.
Combining all the possibilities, we have mJ = max{2J − 2, 2J − 1} = 2J − 1.

Let L̄ represent the maximum Lipschitz constant for F̄−1i (·). Next, we show that if we set the
search accuracy of Algorithm 3 as ϵ/(2L̄), then the output of Algorithm 3, denoted as ẑ, satisfies
the condition maxi∈I,j∈J |ẑij − z∗ij | ≤ ϵ, where z∗ ∈ Z(v) is the intermediate storage matrix. This
is because the only source of error originates from the bisection method. If the search accuracy of
Algorithm 3 is ϵ/(2L̄), then upon termination of the algorithm, we have maxj∈J |χj(z)−χj(z∗)| ≤
ϵ/(2L̄). Since ẑij = min

{
F̄−1i (χj(z)), qi

}
−min

{
F̄−1i (χj+1(z)), qi

}
, we have

|ẑij − z∗ij | ≤ 2L̄max
j∈J
|χj(z)− χj(z

∗)| ≤ 2L̄ ·
ϵ

2L̄
= ϵ, ∀i ∈ I, j ∈ J .

Therefore, we conclude that as Algorithm 1 terminates, an ϵ-optimal storage matrix is produced.
Given that the search accuracy is ϵ/(2L̄), filling each warehouse j using the binary search

requires at most log
(
2L̄/ϵ

)
calculations of z based on the stockout probability, which requires

O(IT) calls of F̄−1i (·) functions. For each call of Algorithm 3, if there is no crossing, we just need
to call Algorithms 4 and 5 once. If there is a crossing, for each value of ξ in Algorithm 3, we need
to call Algorithm 4 once. In total, we need to call Algorithm 4 at most log

(
2L̄/ϵ

)
times. Both

Algorithms 4 and 5 require filling at most J warehouses and require at most O
(
IJ log

(
2L̄/ϵ

))
.

Overall, each call of Algorithm 3 requires at most O
(
IJT log2

(
2L̄/ϵ

))
calls of F̄−1i (·). According to

the first paragraph above, the total number of calls on Algorithm 3 is at most 2J−1, which is O(J).
Therefore, the total computational effort is upper bounded by O

(
IJ2T log2

(
2L̄/ϵ

)
C
(
F̄−1

))
.

7

A.8 Proof of Theorem 3

In order to prove Theorem 3, we need to first prove the following lemmas.
The following lemma characterizes the KKT conditions of the optimal order policy q∗.

Lemma 7 An optimal ordering policy q∗ satisfies the following KKT conditions: For i ∈ I,

µ∗i (q
∗) = ρi + hiT − (pi − rJ)F̄i(q

∗
i)− hi

T∑
t=1

Pr

(
q∗i >

t∑
τ=1

diτ

)
+K (39)

or

µ∗i (q
∗) < ρi + hiT − (pi − rJ)F̄i(q

∗
i)− hi

T∑
t=1

Pr

(
q∗i >

t∑
τ=1

diτ

)
+K and q∗i = 0, (40)

where K is non-negative and K > 0 only if all the warehouses are full.

Proof : Since V (q) is differentiable and jointly concave in q and ρ′q is linear in q, the objective
function of the ordering problem is differentiable and jointly concave in q. Since the constraints
are linear, the optimal ordering policy satisfies the first-order conditions. This proves the lemma.

We derive ∂G(q,x∗(q))/∂qi in closed form in the following lemma.

Lemma 8 If
∂G(x∗(q))

∂qi
exists, then

∂G(x∗(q))

∂qi
= µ∗i (q) (41)

where

µ∗i (q) =

{ −Dij̄(i)(x
∗(q)), if j̄(i) > 0,

Di∗j(i)(x
∗(q))−Dij(i)(x

∗(q))−Di∗ j̄(i∗)(x
∗(q)), if j̄(i) = 0,

(42)

and µ∗i (q) is non-increasing in qk, for all k ∈ I.
Proof : Recall that given any order quantities q, the optimal storage quantities x∗(q) can be
determined by solving the following problem:

max
x

G (x) (43)

s.t. xe− q = 0; x′e− c ≤ 0; x ≥ 0.

The Lagrangian of the above problem is

L (q,x,µ,λ, ξ) = G (x)− µ · (xe− q) + ν ·
(
x′e− c

)
− λ⊙ x, (44)

where ν,λ ≥ 0, and a⊙b represents the sum of all entries of the entry-wise product of the matrices

a and b
(
that is, a⊙ b =

∑
i,j aijbij

)
.

Since d̃i has positive support on [0, Ui] with continuous and differentiable p.d.f. for all i, and
V (q) is differentiable in q, U is continuous in warehouse capacity c. Thus, we can ignore the
discussions on the degenerated cases when

∑
i∈I x

∗
ij∗

x∗
= cj or q∗i = 0 because we can always

perturb cj or q
∗
i so that these cases will not occur.

We first prove Lemma 8 when q · e < c · e. Note that when q · e < c · e, j̄(i∗) > 0. Based on
the Lagrangian of the storage problem in Equation (44) and according to the Envelope Theorem
(Milgrom and Segal 2002), we have

∂G(x∗(q))

∂qi
=
∂L (q,x∗,µ∗,λ∗, ξ∗)

∂qi
= µ∗i .

Note that from the proof of Lemma 3 we have

µ∗i =

{
−Dij(x

∗), if x∗ij > 0 and
∑I

m=1 x
∗
mj < cj , for some j;

Di∗j(x
∗)−Dij(x

∗) + µ∗i∗ , if x∗ik = 0 or
∑I

m=1 x
∗
mk = ck, ∀k;

where x∗ij , x
∗
i∗j > 0, and x∗

i∗j̄(i∗)
> 0 for some j, and therefore, µ∗i∗ = −Di∗j̄(i∗)(x

∗). Hence we have

the expression of µ∗i (q) in Equation (42).
Now we prove that µ∗i is non-increasing in qi′′ for all i′′ ∈ I. For a certain q, there are two

possible cases: (i) j̄(i′′) = 0, and (ii) j̄(i′′) > 0. We increase qi′′ by a small amount ϵ > 0 and
discuss each case.

8

Case (i) j̄(i′′) = 0: Under optimality, ϵ is added to warehouse j(i′′). Let ĵ = min{j|j > j(i′′), 0 <∑
i∈I x

∗
ij < cj , j ∈ J } be the smallest warehouse index larger than j(i′′) such that ĵ is not

empty but also not completely filled. Similar to part 4 of the structured property in Definition
4 , if we adjust the stockout probabilities from warehouse j(i′′) to ĵ such that the stockout

probability for each product is identical or that product is all stored, and
∑ĵ

k=1 x
∗
i′k remains

constant for all i′ ̸= i′′ before and after ϵ is added to warehouse j(i′′), then because of the
KKT conditions the storage matrix after adjustment is optimal.

Compare µ∗i before and after ϵ is added to warehouse j(i′′), we have the following three
sub-cases.

(a) For product i such that j(i) < j(i′′), because j̄(i′′) = 0 we have all warehouses with
x∗i′′j > 0 are full. From part 4 of the structured property, j(i) < j(i′′) implies that
warehouses with x∗ij > 0 is a subset of warehouses with x∗i′′j > 0, and hence they are all

full. Therefore, µ∗i = Di∗j(i)(x
∗)−Dij(i)(x

∗)−Di∗j̄(i∗)(x
∗). Because j̄(i′′) = 0, we have

j̄(i∗) ≥ ĵ. After ϵ amount of i′′ is added optimally to the warehouses, Dij(i)(x
∗) remains

unchanged because x∗ik for all k ∈ J is unchanged. Di∗j̄(i∗)(x
∗) remains unchanged

because
∑j

k=1 x
∗
i∗k remains unchanged for all j ≥ ĵ. Di∗j(i)(x

∗) decreases because∑j
k=1 x

∗
i∗j decreases for all j(i

′′) ≤ j < ĵ. Thus, µi decreases.

(b) For product i such that ĵ > j(i) ≥ j(i′′), because j(i) < ĵ warehouses with x∗ij > 0 are
all full. Therefore, µ∗i = Di∗j(i)(x

∗) − Dij(i)(x
∗) − Di∗j̄(i∗)(x

∗). Because j̄(i′′) = 0, we

have j̄(i∗) ≥ ĵ. Dij(i)(x
∗) remains unchanged because

∑j
k x
∗
ik is unchanged for k > j(i).

Similar to sub-case (i), Di∗j̄(i∗)(x
∗) remains unchanged whereas Di∗j(i)(x

∗) decreases.
Thus, µi decreases.

(c) For product i such that ĵ ≤ j(i), µ∗i = −Diĵ(x
∗). Diĵ(x

∗) remains unchanged because∑j
k=1 x

∗
ik remains unchanged for all j ≥ ĵ. Thus, µi is unchanged.

Case (ii) j̄(i′′) > 0: We have the following two sub-cases.

(a) If (ii) occurs and j(i′′) = j̄(i′′), then add ϵ to warehouse j(i′′) is optimal and the rest
of the storage quantities remain unchanged. Thus, µ∗i remains unchanged for all i ̸= i′′

and µ∗i′′ decreases.

(b) If (ii) occurs and j(i′′) > j̄(i′′), let ĵ = min{j|j > j(i′′), 0 <
∑

i∈I x
∗
ij < cj , j ∈ J } be

the smallest warehouse index larger than j(i′′) such that ĵ is not empty but also not

completely filled. If such warehouse does not exist, then let ĵ = J . From the KKT
conditions, under optimality a total ϵ unit of product i′′ is stored to warehouses j̄(i′′)
to j(i′′) such that: (1) the stockout probability for each product is identical or that

product is all stored, (2)
∑j

k=1 x
∗
ik remains unchanged for all j ≥ ĵ and i ̸= i′′. Similar

to the discussion on the three sub-cases under case (i), we have µi is non-increasing in
qi′′ .

When
∑I

i=1 qi =
∑J

j=1 cj , if we increase the warehouse capacity at the last warehouse that is
completely filled by Algorithm 1 by some amount, then the optimal storage quantities x∗ remain
the same. Therefore, the Lagrangian multiplier µ∗i (q) for all i ∈ I also remains the same. Under
this new setting, i′ is the product that is last stored and j̄(i′) is the warehouse that is last filled in
Algorithm 1. Then, the problem returns to that of

∑I
i=1 qi <

∑J
j=1 cj .

Now, we are ready to prove Theorem 3. Substituting Equation (41) into Equation (39), we
obtain Theorem 3.

9

A.9 Proof of Theorem 4

Since the c.d.f. is constructed based on (24), it is clear that all the distributions are continuous.
Based on Lemma 2 and Equations (58)-(59), both Φ1Z(x) and Φ1W (x) have Lipschitz contin-
uous gradient. Chambolle and Dossal (2015) show that the number of iterations required to

achieve an ϵ-optimal solution is O
(

1√
ϵ

)
. In each iteration of Algorithm 7, we need to compute

the gradient of usp(x) and project a point to the feasible region once. Computing the gradient
of Φ1Z(x) requires I(J2 + JT)C

(
F̄
)
based on (32). Computing the gradient of Φ1W (x) requires

I(K + T)C
(
F̄
)
based on (58). Projecting a point to the feasible region incurs a computational

cost of O(IJ log(1ϵ)) by setting the projection accuracy to a constant fraction of ϵ (see Algo-
rithm 8 and the subsequent discussion). In total, the computational cost is upper bounded by

O
(
I
[(
J2 + JT +K

)
C
(
F̄
)
+ J log

(
1
ϵ

)]
1√
ϵ

)
.

B Algorithms

B.1 Finding the intermediate storage matrix z∗

Figure 12 illustrates the binary search in Algorithm 3. In Algorithm 3, we first try to fill the
target warehouse j∗v as much as possible. We can achieve this by reducing ξ as much as possible
to obtain a new iteration-wise feasible ẑ. After that, we check whether Di∗j∗v (ẑ) is still the
smallest marginal cost among all the warehouses in Γ (v). If so, ẑ is iteration-wise optimal and is
returned to Algorithm 1. Otherwise, a phenomenon called crossing of the marginal costs occurs.
This is because when ξ decreases, the marginal cost Di∗j (z(ξ)) of each warehouse j ∈ Γ (v) will
continuously increase. See Figure 13 for an illustration. Therefore, it is possible that there exists
another warehouse j′ that has a smaller marginal cost than warehouse j∗v under ẑ. We call this
phenomenon crossing because warehouse j′ has a larger marginal cost under v but has a smaller
marginal cost under ẑ than warehouse j∗v . We want to find ξ∗ in Figure 13 so that warehouses j∗v
and j′ both have the smallest marginal cost under z(ξ∗). That is, the target warehouse switches
from j∗v to j′ at z(ξ∗).

Initialise z

Determine Jv , q̄, c̄

c̄ ≤ q̄ Get ẑ from
Algorithm 4

Get ẑ from Algorithm 5

Compute χ(ẑ), Di∗j(ẑ), j ∈ J

Di∗j∗v (ẑ) < Di∗j(ẑ),
∀j ∈ Γ(v), j ̸= j∗v

Return z∗ = ẑ

Set ξ̄ = χj∗v (v) and ξ = χj∗v (ẑ)

|ξ̄ − ξ| > ϵReturn z∗ = ẑ

Set ξ = (ξ̄ + ξ)/2,

zij∗v = min{F̄−1
i (ξ), qi} −

∑j∗v−1

ℓ=1 ziℓ,
∀i ∈ I

Get ẑ from Algorithm 4

Compute Di∗j(ẑ), j ∈ J

Di∗j∗v (ẑ) < Di∗j(ẑ),
∀j ∈ Γ(v), j ̸= j∗v

ξ̄ ← ξ

ξ ← ξ

Yes

No

Yes

No

No Yes

Yes

No

Figure 12: Illustration of Algorithm 3

The detailed procedure of computing a storage matrix z∗ is described in Algorithm 3.

10

O ξ
ξ∗

Di∗j′ (z (ξ))

Di∗j∗v (z (ξ))

Marginal cost

Figure 13: Illustration of crossing

Algorithm 3 (Finding z∗ ∈ Z(v))
Given initial inventory levels v, determine the target warehouse j∗v ∈ Γ (v) and the target stockout probability
vector χ(v). Initialize zij = vij for j < j∗v , and zij = 0 for j ≥ j∗v , i ∈ I.

1. Set Jv =
{
j|j > j∗v ,

∑
i∈I vij > 0, j ∈ J

}
. Set q̄ =

∑
i∈I

(
qi −

∑
j∈J zij

)
and c̄ =

∑
j∈j∗v∪Jv

cj.

2. If c̄ ≤ q̄, let ẑ be the output of Algorithm 4 with the input being j∗v ∪ Jv and z.

Else, let ẑ be the output of Algorithm 5 with the input being Jv and z.

Set ẑij∗v = qi −
∑

j ̸=j∗v
ẑij for all i ∈ I.

3. Compute the target stockout probability vector χ(ẑ) and the marginal costs Di∗j (ẑ) , j ∈ J .
3a. If Di∗j∗v

(ẑ) < Di∗j (ẑ) for all j ∈ Γ (v), j ̸= j∗v , then return z∗ = ẑ.

3b. Else, set ξ̄ = χj∗v
(v) and ξ = χj∗v

(ẑ).

While |ξ̄ − ξ| > ϵ:

Set ξ =
(
ξ̄ + ξ

)
/2 and zij∗v = min

{
F̄−1
i (ξ) , qi

}
−
∑j∗v−1

ℓ=1 ziℓ, for all i ∈ I.
Let ẑ be the output of Algorithm 4 with the input being Jv and z.

Compute the marginal costs Di∗j (ẑ) , j ∈ J .
If Di∗j∗v

(ẑ) < Di∗j (ẑ) for all j ∈ Γ (v), j ̸= j∗v , then set ξ̄ = ξ. Else, set ξ = ξ.

Return z∗ = ẑ.

Algorithm 3 involves two subroutines: Algorithms 4 and 5, which are presented as follows.

Algorithm 4 (Filling warehouses from
the smallest index to the largest index)
Given a set of warehouses J̆ and initial inventory
levels ẑ, compute the target stockout probability vec-
tor χ(ẑ). Initialize ξ = χj∗v

(ẑ) and j = j∗v .

While j ≤ J :
If j ∈ J̆ :
1. Solve for ηj such that

I∑
i=1

min
{
F̄−1
i (ηj), qi

}
−

I∑
i=1

min
{
F̄−1
i (ξ), qi

}
= cj.

2. Compute ẑij = min
{
F̄−1
i (ηj), qi

}
−

min
{
F̄−1
i (ξ), qi

}
, for all i ∈ I.

3. Set ξ ← ηj.

j ← j + 1.

Return ẑ.

Algorithm 5 (Filling warehouses from
the largest index to the smallest index)
Given a set of warehouses J̆ and initial inventory
levels ẑ. Initialize η = 0 and j = J .

While j > 0:

If j ∈ J̆ :
1. Solve for ξj such that

I∑
i=1

min
{
F̄−1
i (η), qi

}
−

I∑
i=1

min
{
F̄−1
i (ξj), qi

}
= cj.

2. Compute ẑij = min
{
F̄−1
i (η), qi

}
−

min
{
F̄−1
i (ξj), qi

}
, for all i ∈ I.

3. Set η ← ξj.

j ← j − 1.

Return ẑ.

11

Given v, Algorithm 3 first determines j∗v and χ(v). We then initialize zij = vij , j < j∗v , i ∈ I
based on conditions 1 and 4 for the iteration-wise feasibility. Note that Jv is a set of warehouses
j > j∗v that are non-empty. Step 2 of Algorithm 3 fills the warehouses in j∗v ∪ Jv as much as
possible. Note that c̄ is the total capacity of warehouses in j∗v ∪ Jv, and q̄ is the total quantity of
all the remaining products that are not stored in warehouses j < j∗v . If c̄ ≤ q̄, there are sufficient
products to fill the warehouses in j∗v ∪ Jv. We call Algorithm 4 to fill these warehouses from the
smallest index to the largest index. If c̄ > q̄, we keep all the warehouses in Jv full (see part 5 of
the structured property). We call Algorithm 5 to fill the warehouses in Jv from the largest index
to the smallest index, and then store the remaining products to warehouse j∗v . Algorithms 4 and
5 ensure that ẑ produced by step 2 of Algorithm 3 is an iteration-wise feasible storage matrix.
Algorithm 3 returns ẑ if step 3a finds that Di∗j∗v (ẑ) is the smallest marginal cost among all the
warehouses in Γ (v). Otherwise, crossing occurs and we apply a binary search to find the crossing
point ξ∗ in step 3b.

B.2 Ordering algorithm for the single-warehouse single-zone problem

Recall that Gti is continuous and ω′i(q) = −ρi − s − hiT + hi
∑T

t=1

(
F̄ ti (q)

)
+ (pi − r)F̄ Ti (q) is a

decreasing function, and thus its inverse function (ω′i)
−1(·) exists.

Algorithm 6 (Ordering Algorithm for The Single-warehouse Single-zone Problem)
Given ω

′

i(0), i = 1, ..., I, initialize q = 0, i0 = 0, and z = 0.

1. If i0 = I, then return q; otherwise, set i0 = i0 + 1 and compute z such that
∑i0

i=1(ω
′

i)
−1(z) = c.

2. If z ≥ (ω
′

i0+1)(0), update qi = (ω
′

i)
−1(z) for i = 1, ..., i0 and return q; otherwise update qi = (ω

′

i)
−1
(
(ω

′

i0+1)(0)
)

for i = 1, ..., i0 and go to step 1.

Theorem 5 We call q an ϵ-optimal ordering policy if max
i∈I
|qi − q∗i | ≤ ϵ, where q∗ is an optimal

ordering policy. Given any accuracy ϵ > 0, Algorithm 6 obtains an ϵ-optimal ordering policy and
its computational cost is at most O

(
I2TL log2 (L/ϵ)C

(
F̄−1

))
, where C

(
F̄−1

)
is the maximum

computational effort to call the function (F̄ ti)
−1(·) and L = maxi,z |(ω

′′
i)
−1(z)|.

Proof. For the output q of Algorithm 6, there exists an integer 1 ≤ i0 ≤ I such that qi > 0
for i ≤ i0 and qi = 0 for i > i0. From Algorithm 6, there exists a non-negative constant a such
that qi satisfies ω

′
i(qi) = a for all i ≤ i0 and ω

′
i(0) ≤ a for all i > i0. If i0 = I, then a = 0, we

have ω
′
i(qi) = 0 for all i ≤ I. This solution coincides with the optimal solution when the capacity

constraint is not binding. If i0 < I, then a > 0, qi = 0 for all i > I0, and the capacity constraint
is binding. The Lagrangian multiplier for the capacity constraint is a > 0 and that for each qi = 0
i > I0 is 0 < ω

′
i(0) < a. This implies the optimality of the output of Algorithm 6.

Given a search accuracy, ϵ/L > 0 for the binary search, solving the equation in step 1 using
the binary search requires at most log(L/ϵ) candidate solutions of z, and the final z satisfies
|z− z∗| < ϵ/L, which means that |qi− q∗i | = |(ω

′
i)
−1(z)− (ω

′
i)
−1(z∗)| < Lϵ/L = ϵ.The evaluation of

left-hand-side for each candidate z requires O(I) calls of (ω
′
i)
−1(·) functions, which calls at most

T times of (F̄ ti)
−1(·) function. The computational time for step 2 is upper bounded by step 1.

Since the total calls of step 1 is at most I, the total computational effort is upper bounded by
O
(
I2TL log2 (L/ϵ)C

(
F̄−1

))
.

C The single-warehouse multi-zone problem

In this section, we study a special case with only a single warehouse but multiple demand zones.
We drop the subscript j and Problem (1) becomes as follows:

max
π∈Π

−
I∑

i=1

ρix
π1
i − s

I∑
i=1

xπ1
i +

I∑
i=1

T∑
t=1

Ed̃1,...,d̃T

[
−hixπt+1

i +

K∑
k=1

(pi − rk) yπt
ik

]
(45)

12

s.t.
I∑

i=1

xπ1
i ≤ c; (46)

xπt
i = xπt−1

i −
K∑

k=1

yπt−1
ik , t = 2, ..., T ; (47)

yπt
ik ≤ d

πt
ik , i ∈ I, k ∈ K, t = 1, ..., T ; (48)

K∑
k=1

yπt
ik ≤ x

πt
i , j ∈ J , t = 1, ..., T ; (49)

xπt
i ≥ 0, i ∈ I, t = 1, ..., T ; (50)

xπT+1
i = 0, i ∈ I; (51)

yπt
ik ≥ 0, i ∈ I, k ∈ K, t = 1, ..., T. (52)

An Upper Bound

Denote dik =
∑T

t=1 d
t
ik, d̃ik =

∑T
t=1 d̃

t
ik, i ∈ I, k ∈ K, di = (dik)1×K , and d̃i = (d̃ik)1×K , k ∈ K.

For each product i, we sum over the demands from all periods into one aggregate demand and
allow the retailer to choose his retrieval policy based on the aggregated demand. This provides an
upper bound to Problem (45) and it can be solved via a two-stage stochastic optimization problem.

max u(x) = −
I∑

i=1

ρixi − s
I∑

i=1

xi −
T∑

t=1

I∑
i=1

hiE

[
xi −

t∑
τ=1

K∑
k=1

dτik

]+
+ E

[
I∑

i=1

W̆i

(
xi, d̃i

)]
(53)

s.t.

I∑
i=1

xi ≤ c;

xi ≥ 0, i ∈ I;

where

W̆i (xi,di) = max

K∑
k=1

(pi − rk)yik (54)

s.t. yik ≤ dik, k ∈ K;
K∑

k=1

yik ≤ xi;

yik ≥ 0, k ∈ K.

We relabel the demand zones so that r1 ≤ r2 ≤ . . . ≤ rK . If there exist two warehouses k
and k′ such that rk = rk′ , then we set k < k′ if and only if sk < sk′ . Define ψk = rk − rk−1, for
k = 1, ...,K, with r0 = 0. Since there is only one warehouse, after the demands are realized, the
optimal retrieval policy is to first fulfill the zone with the smallest index. The following lemma
determines the retailer’s optimal retrieval policy y∗.

Theorem 6 (Optimal Retrieval Policy for The Upper Bound)
1. Given storage quantities x and realized demands d, an optimal retrieval policy is

y∗ik = min

(
xi,

k∑
ℓ=1

diℓ

)
−min

(
xi,

k−1∑
ℓ=1

diℓ

)
, i ∈ I, k ∈ K. (55)

The objective function (54) under the optimal retrieval policy y∗ is

W̆i (xi,di) = (pi − rK)

[
min

(
xi,

K∑
ℓ=1

diℓ

)]
+

K∑
k=2

ψk min

(
xi,

k−1∑
ℓ=1

diℓ

)
. (56)

2. The objective function of the single-warehouse problem (53) can be written as

u(x) = −
I∑

i=1

(ρi + hiT + s)xi +

I∑
i=1

T∑
t=1

hiĞ
t
i,K(xi) +

I∑
i=1

(pi − rK)ĞT
i,K(xi) +

I∑
i=1

K∑
k=2

ψkĞ
T
i,k−1(xi), (57)

where Ğti,k(x) = E
[
min

(
x,
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ

)]
.

13

Proof : Part 1: Since there is only one warehouse, after the demands are realized, the optimal
retrieval policy is to always fulfill the zone with the smallest index. Therefore, for a given product

i, the demand of zone k will be fulfilled if and only if xi >
∑k−1

l=1 dil. The total quantity of product

i that is retrieved for zones 1 to k is min
(
xi,
∑k

l=1 dil

)
. Thus, the optimal quantity of product i

retrieved for zone k is

y∗ik = min

(
xi,

k∑
l=1

dil

)
−min

(
xi,

k−1∑
l=1

dil

)
,

for i = 1, . . . , I and k = 1, . . . ,K. Based on this result, we can write

W̆i (xi,di) =

K∑
k=1

(pi − rk)
[
min

(
xi,

k∑
l=1

dil

)
−min

(
xi,

k−1∑
l=1

dil

)]
= (pi − rK)

[
min

(
xi,

K∑
l=1

dil

)]
+

K∑
k=2

ψk min

(
xi,

k−1∑
l=1

dil

)
.

Part 2: Using Equation (56) and taking the expectation of W̆i

(
xi, d̃i

)
, we can rewrite the

objective function u(x) of Problem (53) as Equation (57).
Similar to Section 4, Problem (53) becomes a one-stage optimization problem after the refor-

mulation. All the randomness is captured by the functions Ğti,k(x). Based on our assumption that

d̃tik follows a continuous distribution, the distribution of
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ is also continuous. Again,

the gradient ∇u(x) can be determined if the derivative Ğt
′
i,k(x) can be determined. For random

variables that follow some distributions, such as the normal distribution, the distribution of the
summation of these random variables can be obtained analytically. For other distributions, the
c.d.f. of

∑t
τ=1

∑k
ℓ=1 d̃

τ
iℓ may not be explicitly available. In that case, the c.d.f. of

∑t
τ=1

∑k
ℓ=1 d̃

τ
iℓ

can be efficiently approximated with the help of demand samples and interpolation.
Since pi − rK > 0 and Ğti,k(x) is a concave function of x for all i, k, and t, it is clear that u(x)

is also a concave function. The objective function u(x) is separable in i: u(x) =
∑I

i=1 ui(xi) and

ui(x) = − (ρi + hiT + s)xi + (pi − rK)ĞTi,K(x) + hi
∑T

t=1 Ğ
t
i,K(xi) +

∑K
k=2 ψkĞ

T
i,k−1(x). Let f̂

t
i,k(·)

and F̂ ti,k(·) denote the p.d.f. and the c.d.f., respectively, of the random variable
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ.

Thus, we have Ğt
′
i,k(x) = P (

∑t
τ=1

∑k
ℓ=1 d̃

t
iℓ > x) = 1 − F̂ ti,k(x). Again, if the distribution of d̃tiℓ is

continuous, then the distribution of
∑t

τ=1

∑k
ℓ=1 d̃

τ
iℓ is also continuous. That is, F̂ t

′
i,k(x) = f̂ ti,k(x) is

bounded. Then the first- and the second-order derivatives of ui(x) can be determined as follows:

u′i(x) = −ρi − hiT − s+ (pi − rK)
(
1− F̂T

i,K(x)
)
+ hi

T∑
t=1

(
1− F̂ t

i,K(x)
)
+

K∑
k=2

ψk

(
1− F̂T

i,k−1(x)
)
; (58)

u′′i (x) = −(pi − rK)f̂Ti,K(x)− hi
T∑

t=1

f̂ ti,K(x)−
K∑

k=2

ψk f̂
T
i,k−1(x). (59)

Clearly, ui(x) has a Lipschitz continuous gradient. It is also clear that ui(x) is strongly concave
if for x < c, there exists a k such that f̂i,k(x) > w, for some positive constant w. We can use
the first-order methods mentioned in Section 4 to solve Problem (53) efficiently. Similar to the
single-zone problem, Equation (59) also implies that if d̃i,k follows a discrete distribution for certain
i and k, it is likely that the objective function would not have a Lipschitz continuous gradient.
This implies that the objective function of the SAA formulation is likely to be non-smooth in x
even for the single-warehouse problem.

D Solving Problem (29) using FISTA

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is first proposed by (Beck and
Teboulle, 2009). Several variants of FISTA exist and they are usually called accelerating prox-
imal gradient methods in the optimization literature (see, for example, Nesterov (2004)). Define a
projection function ProjX (x) = argminw∈X {∥x−w∥}. We adopt the FISTA algorithm proposed
by Chambolle and Dossal (2015) described as follows.

Algorithm 7 (FISTA)
Given γ > 0 and d > 2, initialize τ = 0,x(0) ∈ X ,x(−1) = x(0).

14

While the stopping criterion is not satisfied:
1. Set a(τ) = τ

τ+d .

2. x̂(τ) ← x(τ) + a(τ)
(
x(τ) − x(τ−1)

)
, x(τ+1) ← ProjX

(
x̂(τ) + γ∇u

(
x̂(τ)

))
.

3. τ ← τ + 1.

Return x(τ).

Theoretically, we should set γ = 1/L, where L is a Lipschitz constant that can be computed
explicitly using the Hessian formulas (32) and (59). In practice, we typically choose a small value
for γ and tune it according to the numerical performance. According to Chambolle and Dossal
(2015), if the objective function has a Lipschitz continuous gradient, then x(τ), τ = 1, 2, . . ., will
converge to the optimal solution and the convergence rate is O

(
1/M2

)
, where M is the number of

iterations. In addition, if the objective function is α-strongly concave, the convergence rate can be

improved to O
((

1−√αγ
)M)

. According to Chambolle and Dossal (2015), FISTA performs very

well with d = 50. Thus, we set d = 50 for FISTA in this paper.
Each iteration of Algorithm 7 involves projecting a point x onto X . We can simply project xj

for each warehouse j separately onto a simplex. Many algorithms can efficiently project a point
onto a simplex (see, for example, Malozemov and Tamasyan (2016)). We adopt an approach by
Boyd and Vandenberghe (2004) to the inequality constraints of our problem.

Algorithm 8 (Projecting A Point onto A Simplex)
Given xj, cj, and an accuracy ϵ, set xj ← xj ∨ 0.

1. If
∑I

i=1 xij ≤ cj, then return xj. Otherwise, ζ ←
(∑I

i=1 xij − cj
)
/I and ζ̄ ← maxi∈I xij − cj/I.

2. Do a binary search to find ζ ∈ [ζ, ζ̄] such that
∣∣∣∑I

i=1(xij − ζ)+ − cj
∣∣∣ < ϵ.

3. xij ← (xij − ζ)+, ∀i ∈ I, return xj.

The projection to the feasible region is very efficient as the run time of Algorithm 8 is O(I log(1/ϵ)).

E Solving the storage problem with a single zone

Here, we examine the efficiency of Algorithm 1 for solving the storage problem (19) with multiple
warehouses and a single zone. We consider I = 500 and 2,000 products and J = 20 warehouses.
Each warehouse’s capacity is uniformly distributed in [0.4I, 0.5I]. We randomly generate the order
quantities q such that

∑
i∈I qi = 0.8 ×

∑
j∈J cj . Recall that Lemma 1 shows that if there is only

one zone, the multi-period problem can be simplified to a single-period problem. Thus, without
loss of generality, we consider the case with T = 1. For each problem instance, we consider three
distributions for each d̃i, i ∈ I: (i) a triangular distribution with parameters (0, Ui,max(3Ui, 1.2qi)),
where Ui is uniformly distributed in [4, 20]; (ii) an exponential distribution with mean uniformly
distributed in [1, 20]; (iii) a log-normal distribution with mean uniformly distributed in [1, 4] and
standard deviation uniformly distributed in [1, 5]. We randomly generate the unit storage and unit
retrieval costs of each warehouse such that crossing occurs.

We benchmark Algorithm 1 against two asymptotically optimal algorithms on the storage
problem (19). The first algorithm SAA-LP is to solve for the storage matrix given the demand

samples. Specifically, given N demand samples d
(n)
i , i ∈ I, and n = 1, ..., N , the optimization

formulation of SAA-LP is

max
x≥0

−
I∑

i=1

J∑
j=1

ρixi,j −
I∑

i=1

J∑
j=1

sjxi,j +
1

N

N∑
n=1

I∑
i=1

ŭ
(n)
i (x)

s.t.
I∑

i=1

xi,j ≤ cj , j ∈ J ;

where

15

ŭ
(n)
i (x) = max

y≥0

I∑
i=1

J∑
j=1

(pi − rj)yi,j −
I∑

i=1

hi

J∑
j=1

(xi,j − yi,j)

s.t.

J∑
j=1

yi,j ≤ d
(n)
i , i ∈ I;

yi,j ≤ xi,j , i ∈ I, j ∈ J .

The second algorithm FISTA solves for the ϵ-optimal storage policy for Problem (19).
For each algorithm, we record the objective function value. For Algorithm 1, we vary the

search accuracy of Algorithms 3–5 and record the run time. A higher accuracy leads to a better
objective function value with a longer run time. We report the run time and the cumulative run
time for each iteration for SAA-LP and FISTA respectively. Note that FISTA requires projecting
a storage matrix to the feasible region of Problem (19), which is not separable in i. To our best
knowledge, there is no specialized algorithm to address this problem and we solve it as a convex
quadratic program in GUROBI. Based on a near-optimal solution, we construct an upper bound

on the objective function G(x) = −
∑I

i=1

∑J
j=1 sjxij +

∑I
i=1

∑J
j=2 ψjGi

(∑j−1
ℓ=1 xiℓ

)
. Since G(x)

is concave, we have G(x) ≤ G(x̂) +∇G(x̂) · (x− x̂) , for x̂,x ∈ X . Given a candidate solution x̂,
we have G∗ ≜ maxx∈X G(x) ≤ maxx∈X {G(x̂) +∇G(x̂) · (x− x̂)} ≜ Ḡ(x̂). For any given x̂, Ḡ(x̂)
can be determined by solving a linear program. The optimal dual objective function value of this
linear program serves as a valid upper bound on G∗, which we denote as Ḡ∗.

0 250 500 750 1000 1250 1500 1750
Time (s)

20

15

10

5

0

5

lo
g(

Ga
p)

Triangular Distrubution, I=500

FISTA-1.2
FISTA-2
FISTA-4
SAA-LP-300
SAA-LP-100
Algorithm 1

0 500 1000 1500 2000 2500
Time (s)

25

20

15

10

5

0

5

lo
g(

Ga
p)

Exponential Distrubution, I=500

FISTA-0.1
FISTA-0.3
FISTA-0.6
SAA-LP-100
SAA-LP-300
Algorithm 1

0 250 500 750 1000 1250 1500 1750
Time (s)

20

15

10

5

0

5
lo

g(
Ga

p)

Log-normal Distrubution, I=500

FISTA-0.5
FISTA-1
FISTA-2
SAA-LP-100
SAA-LP-300
Algorithm 1

0 5000 10000 15000 20000 25000 30000 35000
Time (s)

20

15

10

5

0

5

10

lo
g(

Ga
p)

Triangular Distrubution, I=2000

FISTA-0.2
FISTA-0.5
FISTA-1.0
SAA-LP-100
SAA-LP-300
Algorithm 1

0 5000 10000 15000 20000 25000 30000 35000
Time (s)

20

15

10

5

0

5

10

lo
g(

Ga
p)

Exponential Distrubution, I=2000

FISTA-0.3
FISTA-0.6
FISTA-1.2
SAA-LP-150
SAA-LP-50
Algorithm 1

0 5000 10000 15000 20000 25000 30000 35000
Time (s)

20

15

10

5

0

5

10

lo
g(

Ga
p)

Log-normal Distrubution, I=2000

FISTA-0.5
FISTA-1
FISTA-2
SAA-LP-100
SAA-LP-300
Algorithm 1

Figure 14: Performance of each heuristic on the single-zone problem

Figure 14 shows the results under the three demand distributions for I = 500 and 2,000. Each
graph shows the results of FISTA (denoted as FISTA-γ, where γ is the step size of Algorithm
7), SAA-LP-N , where N is the sample size, and Algorithm 1. We record the run time and the
gap between the upper bound Ḡ∗ and the objective function value of each method. Figure 14
suggests that Algorithm 1 finds a significantly better solution in a much shorter time compared to
the other methods. Furthermore, Algorithm 1 becomes more dominant as the number of products
I increases from 500 to 2,000. The strong numerical performance of Algorithm 1 supports our
theoretical prediction in Theorem 2 that the complexity of Algorithm 1 is linear in I.

16

Citation on deposit: Denga, Q., Lic, X., Fong Limd,

Y., & Liu, F. (in press). Optimal Policies and

Heuristics To Match Supply With Demand For

Online Retailing. Manufacturing & Service

Operations Management.

For final citation and metadata, visit Durham Research Online URL:

https://durham-research.worktribe.com/record.jx?recordid=2513291

Copyright statement: This accepted manuscript is licensed under the Creative

Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

https://durham-research.worktribe.com/record.jx?recordid=2513291
https://creativecommons.org/licenses/by/4.0/

	Online_Retailing_Optimal (4)
	Introduction
	Related literature
	Problem formulation
	The single-zone problem
	Convergence and efficiency of first-order methods
	Structural properties of the optimal storage policy
	Solving the storage problem
	Selecting warehouses for storage: Pareto frontier
	Determining the itermediate storage matrix z*

	The structure of the optimal ordering policy
	Special case: The single-warehouse single-zone problem

	The multi-zone problem
	LP-Mean approximation
	Single-zone approximation
	Single-warehouse approximation
	Hybrid heuristic

	Numerical experiments
	Benchmarks and an evaluation method
	Comparing the hybrid heuristic with the benchmarks

	A case study using real data from an online retailer
	Data description
	Comparing the different policies
	Larger networks with various structures

	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Nested property
	The marginal costs
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Algorithms
	Finding the intermediate storage matrix z*
	Ordering algorithm for the single-warehouse single-zone problem

	The single-warehouse multi-zone problem
	Solving Problem (29) using FISTA
	Solving the storage problem with a single zone

	2513291AAM (2).pdf
	Introduction
	Related literature
	Problem formulation
	The single-zone problem
	Convergence and efficiency of first-order methods
	Structural properties of the optimal storage policy
	Solving the storage problem
	Selecting warehouses for storage: Pareto frontier
	Determining the itermediate storage matrix z*

	The structure of the optimal ordering policy
	Special case: The single-warehouse single-zone problem

	The multi-zone problem
	LP-Mean approximation
	Single-zone approximation
	Single-warehouse approximation
	Hybrid heuristic

	Numerical experiments
	Benchmarks and an evaluation method
	Comparing the hybrid heuristic with the benchmarks

	A case study using real data from an online retailer
	Data description
	Comparing the different policies
	Larger networks with various structures

	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Nested property
	The marginal costs
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Algorithms
	Finding the intermediate storage matrix z*
	Ordering algorithm for the single-warehouse single-zone problem

	The single-warehouse multi-zone problem
	Solving Problem (29) using FISTA
	Solving the storage problem with a single zone

