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Abstract—The expansion of data coverage and the accuracy of
decoding of the narrowband-internet of things (NB-IOT) mainly
depend on the quality of channel equalizers. Without using
training sequences, blind equalization is an effective method to
overcome adverse effects in the internet of things (IoT). The
constant modulus algorithm (CMA) has become a favorite blind
equalization algorithm due to its least mean square (LMS)-
like complexity and desirable robustness property. However, the
transmission of high-order quadrature amplitude modulation
(QAM) signals in the IoT can degrade its performance and the
convergence speed. This paper investigates a family of modified
constant modulus algorithms for blind equalization of IoT using
high-order QAM. Our theoretical analysis for the first time illus-
trates that the classical CMA has the problem of artificial error
using high-order QAM signals. In order to effectively deal with
these issues, a modified constant modulus algorithm (MCMA)
is proposed to decrease the modulus matched error, which can
efficiently suppress the artificial error and misadjustment at the
expense of reduced sample usage rate. Moreover, a generalized
form of the MCMA (GMCMA) is developed to improve the
sample usage rate and guarantee the desirable equalization
performance. Two modified Newton methods (MNMs) for the
proposed MCMA and GMCMA are constructed to obtain the
optimal equalizer. Theoretical proofs are presented to show the
fast convergence speed of the two MNMs. Numerical results
show that our methods outperform other methods in terms of
equalization performance and convergence speed.

Index Terms—Artificial error, steady-state misadjustment,
modified constant modulus algorithm, generalized modified con-
stant modulus algorithm, modulus matched error.

I. INTRODUCTION

NARROWBAND internet of things (NB-IoT) is a sustain-
able technology for connecting billions of devices from a

great range of utilities, logistics to the industrial applications,
playing an important role in future IoT business [1]. Since NB-
IoT devices often transmit very short message blocks without
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strong error correction coding or pilots for channel equal-
ization. The transmitted signals encounter a severe multipath
channel, the receiver is often unable to equalize the resulting
inter-symbol interference (ISI) via traditional methods, leading
to a high retransmission rate [2]. The accuracy of channel
equalization will significantly affect the performance of the
NB-IoT system [3], [4]. Therefore, it is necessary to study
efficient channel equalization methods for the NB-IoT.

The trained equalization approach uses the repeated trans-
mission of a pseudo-random pattern of bits (training sequence)
known to both the transmitting and receiving ends [5].Various
algorithms exist to perform trained equalization. The least
mean squares (LMS) [6] and minimum mean squared error
(MMSE) [7] equalizations are the most representative ones
among them. In the LMS equalization, the receiver computes
the error between the output of the equalizer and the training
data, namely the LMS error, and then the equalizer updates
its taps by moving them in the direction that, on average,
reduces the LMS error. The MMSE equalization adjusts the
taps of an equalizer to minimize the average error between
the output of the equalizer and the training data. Although
a training sequence provides the equalizer with a helpful
reference, it consumes valuable bandwidth. Even worse, a
training sequence is often inadequate and sometimes even
infeasible in certain communication systems [8].

A blind equalizer (BE) performs channel equalization with-
out a training sequence. Without using training symbols, no
bandwidth is consumed by its transmission. More importantly,
in the uncooperative or point-to-multipoint communication
scenarios, a blind algorithm is the only feasible solution
to achieve system equalization [9], [10]. In the past, many
blind equalization algorithms [11]–[14], [16]–[20] have been
proposed since [21] in 1975.

Up to now, the most popular blind equalization approach-
es for two-dimensional (2D) modulation schemes, such as
quadrature amplitude modulation (QAM) and carrier-less am-
plitude and phase (CAP) modulation, are the constant modulus
algorithm (CMA) [11] and its variants [22]–[24]. On the one
hand, the CMA, whose cost function attempts to minimize
the difference between the outputs’ squared magnitude and
the Godard dispersion constant, has less local minima and
reliable convergence [25], [26]. On the other hand, the CMA
changes the value of its taps in time and has an LMS-like
complexity for ease of implementation [21]. Moreover, with
the above-mentioned characterization, the CMA can explicitly
or implicitly provide a good initial state for two-stage blind
algorithms [18]–[20] or dual mode blind algorithms [16], [17],
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allowing them to obtain better performances. Although the C-
MA and its various variants [27]–[29] have so many preferable
properties, some shortcomings limit their applications.

Firstly, the primary concern of blind equalization is its
performance. The CMA cost function only exploits a part of
amplitude information of high-order QAM signals. It means
that some knowledge about the signal constellations is dis-
carded, leading to the relatively poor performance [30], [31],
especially for the high-order QAM signals with non-constant
modulus. Moreover, the CMA requires an additional procedure
to restore the revolved phase. To overcome this shortcoming,
many researchers developed the modified CMA (MCMA) [14],
[32]–[35], the dual-mode schemes (DMSs) [16], [17], [36],
[37], and the two-stage schemes [18]–[20]. The MCMA main-
ly uses three ways to improve the equalization performance.
The first one, such as the multi-modulus algorithm (MMA)
[14], [15], uses the information of the imaginary part and the
real part simultaneously to overcome the problem of phase
rotation. The second one, such as the constant norm algorithms
(CNAs) [32], creates new norms by combining several existing
norms in order to benefit from the advantages of each original
norm, and then this kind of methods achieves better mean
square error (MSE) performance than the CMA. The third kind
of MCMA, such as [34] and [35], directly or indirectly revises
the equalizer output error with nonlinear transformation, and
then the maladjustment can be relieved to a certain extent.
However, the existing MCMAs cannot completely remove the
maladjustment because of the inherent properties of its cost
function. The DMSs add a term of constellation matched error
(CME) to the constant modulus loss function (CMLF). The
CME term can improve the equalization performance and the
CMLF guarantees the reliable convergence. For example, the
additive CME term was designed in [16] to have the sinu-
soidal form. Although such kind of schemes can achieve the
desirable error level, the computational complexity increases
significantly. The two-stage schemes perform prefiltering of
the received signal based on stable convergent algorithms,
and then implements constellation matching algorithms. In
the first stage, the ISI is mitigated and a good initial value
for the constellation matching algorithm is provided. In the
second stage, the constellation matching algorithm further
relieves the ISI and a desirable equalization performance
is achieved. Taking the work [19] for instance, the joint
generalized multilevel modulus algorithm and modified soft
decision-directed (SDD) equalization were applied at the first
convergence stage. When the convergence process reached
the steady state, the equalizer changed the first equalization
stage to the second stage. At the second stage, the modified
SDD scheme reduced the MSE further. However, this kind
of schemes cannot provide the attainable switching threshold.
To guarantee the stable convergence, the scheme may switch
to the second stage later, but then it converges slowly and
consumes unnecessary computational cost.

Secondly, the convergence of the equalizer using a blind tap
updating algorithm is concerning. Although the CMA is noted
for its LMS-like complexity, it exhibits slow convergence
speed. As in the classical LMS theory, the selection of step
size becomes a tradeoff between the convergence rate and

MSE [30]. Even worse, in order to reduce the well-known
steady-state misadjustment and avoid the initial instability, the
step size of the CMA, which is usually set at 10−5 orders of
magnitude or less, is much smaller than that of its LMS coun-
terpart, which is usually set at 10−2 orders of magnitude [38].
Hence, the CMA has a much slower convergence speed than
other LMS-type algorithms. In contrast, it is widely known
that the Newton method possesses a fast convergence speed.
However, the Newton method requires the computation of the
Hessian matrix of the cost function for its implementation. It
should be noted that we are working with complex signals
and, as a consequence, the Hessian matrix of the constant
modulus loss function is always singular [39], which means
that the fast converging Newton method can hardly be used in
practice without modification. Taking all these into accounts, it
is essential to improve the equation accuracy and convergence
speed of the CMA.

This work derives a new family of modified constant modu-
lus algorithms (MCMAs) for blind equalization of high-order
QAM systems. The main contributions are listed as follows.
(i) By selecting the samples corresponding to the symbols
with the same modulus, a new MCMA is proposed, which can
completely remove the misadjustment and the artificial error
at the expense of reduced sample usage rate. (ii) Based on the
MCMA, a new GMCMA is developed to improve the sample
usage rate and meantime preserve the desirable equalization
performance of the MCMA. (iii) According to the optimization
algorithm proposed in [40], the MNMs associated with the new
MCMA and GMCMA are constructed to fast find the optimal
equalizer. (iv) We prove that the classical CMA causes the
artificial error (excess error) and steady-state misadjustment
due to the use of a single modulus for high-order QAM signals.
We prove that the proposed MNMs have fast convergence
speed and can converge to the optimal equalizer ŵ at the
step size of 1

2∥wk − ŵ∥2. (v) We illustrate that the MCMA
can effectively suppress the artificial error and misadjustment
by removing the modulus matched error. Second, a theoretical
analysis is made to show that the proposed MNMs have much
less computational load than other Newton methods due to its
fixed Hessian matrix.

The remainder of this article is outlined as follows. Sec-
tion II introduces the system model for blind equalization. In
Section III, we discuss the MCMA and its fast optimization for
blind equalization of high-order QAM systems, and we also
describe the GMCMA and its fast solution for blind equaliza-
tion. Following that, we analyze the computational complexity
of the benchmark schemes and the proposed algorithms in Sec-
tion IV. Next, we present the performance evaluation results
of the MCMA and GMCMA through extensive experiments in
Section V, followed by conclusions given in the final section.

Throughout the paper, boldface capitals and lower-case
letters stand for matrices and vectors, respectively. Given a
matrix A, symbols A∗, AT , AH and A−1 denote the complex
conjugation, the transpose, the Hermitian transpose and the
inverse, respectively. Moreover, |·| represents the magnitude,
E [·] the expectation operator, ⌊·⌋ the round down operator,
⊗ the discrete convolution, and C the complex number set.
Furthermore, e(τ) indicates a column vector whose (τ +1)th
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element is 1 and all other elements are equal to 0. Finally,
j =

√
−1.

II. SYSTEM DESCRIPTION
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Fig. 1. The model of NB-IoT and its communication system.

The model of NB-IOT system is shown in Fig. 1. In
the system, the user equipment collects the concerned data,
then transmits the information to the base station. Finally,
the information is transmitted to the application platform to
manage equipment. As seen in the Fig. 1, the transmitted
signals pass through wireless channel and experience mul-
tipath fading. To abstain accuracy information, the channel
equalization must be implemented. Assuming the transmitted
signal s(n) is independently and identically distributed (i.i.d.)
and it takes values from high-order QAM symbols with equal
probability. The channel impulse response vector with length
L̄ is h =

[
h (0) , h (1) , · · · , h

(
L̄− 1

)]T is, and h(n) are the
channel coefficients. Let x(n) be the receive data as

x(n) = h(n)⊗ s(n) + u(n)

=
L̄−1∑
l=0

h(l)s(n− l) + u(n)

= hT s(n) + u(n) (1)

where s(n) =
[
s(n), s(n− 1), · · · , s(n− L̄+ 1

]T is the
signal sequence, and u(n) is the complex-valued Gaussian
white noise with variance E[|u(n)|2] = σ2

u and mean zero.
Then the output of the equalizer is described by

y(n) =

L−1∑
l=0

w∗(l)x(n− l) = wHx(n)

= wH (Hs̄(n) + u(n))

= w̄T s̄(n) +wHu(n) (2)

where w = [w(0), w(1), · · · , w(L− 1)]T is the equal-
izer, L is the number of taps in the equalizer, and
x(n) = [x(n), x(n− 1), · · · , x(n− L+ 1)]T is the regres-
sion vector of channel observations. Moreover, we have
s̄(n) =

[
s(n), s(n− 1), · · · , s(n− L̄− L+ 2)

]T , u(n) =

[u(n), u(n− 1), · · · , u(n− L+ 1)]
T , and w̄ = HTw∗ ∈

C(L+L̄−1)×1, where w̄ is the combined impulse response of

the channel and the equalizer, and H is the channel matrix
defined as

H =


h(0) h(1) · · · h(L̄− 1) 0 · · · 0
0 h(0) h(1) · · · h(L̄− 1) · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 · · · h(0) h(1) · · · h(L̄− 1)

.
(3)

A blind equalization algorithm is employed to adjust the tap
weights of the equalizer w depending on the equalizer output
y(n). Therefore, y(n) provides an estimate of the source signal
s(n) with some inherent indeterminacies, i.e., Cy(n) ≈ s(n−
τ), where C is a constant and τ the time delay resulted by
the inherent ambiguity from blind signal processing.

III. MODIFIED CONSTANT MODULUS ALGORITHM

A. Constant Modulus Algorithm

The CMA is perhaps the most popular scheme among all
the blind channel equalization algorithms [11]. The CMA tries
to solve the following optimization problem

min
w

J(w) = E
[
(|y(n)|p −R)

2
]

(4)

where R = E
[
|s(n)|2p

]
/E [|s(n)|p] and p is a positive

integer. If the implementation method is realized by gradient
descent based on an adaptive scheme, then the equalizer taps
are updated according to the following equation

wk+1 = wk − µE
[
(|y(k)|p −R) |y(k)|p−2

y∗(k)x(k)
]

(5)

where µ is the step size governing the speed of conver-
gence and the level of steady-state equalizer performance. For
simplicity, the expectation of the gradient is replaced by its
instantaneous value [41]. Hence, the adaptation equation (5)
is recast as

wk+1 = wk − µ (|y(k)|p −R) |y(k)|p−2
y∗(k)x(k). (6)

The cost function J(w) is an expression for implicitly
embedded higher-order statistics of the equalizer output y(n).
Ideally, the minimization of J(w) aligns the statistics of y(n)
with the transmitted signals. The equalization is accomplished
when the equalized sequence y(n) acquires an identical dis-
tribution of the channel input s(n) [5]. However, in practice,
the statistics of y(n) is estimated by using sample data, while
the statistics of s(n) is provided by the theoretical value. This
inconsistency results in an error called the artificial error. Evi-
dently, the artificial error can cause a slight performance loss.
In addition, the stochastic gradient-based adaptive approach
contains large misadjustments under high-order QAM signals
environment. We have the following proposition.

Proposition 1: In the high-order QAM systems, if the BE
converges to the optimal solution ŵ and completely compen-
sates the channel distortion, i.e.,

ˆ̄w = HT ŵ∗ = e(τ)

then the instantaneous gradient ∇J(w)|w=ŵ, which is cal-
culated by sample data, is unequal to 0 under the noise-free
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environment. Moreover, the instantaneous gradient satisfies the
inequality

(|y(k)|p −R) |y(k)|p−2
y∗(k)x(k)|w=ŵ ̸= 0.

Proof: See Appendix A.
It is seen that ∇J(w)|w=ŵ ̸= 0 results from the artificial

error as shown in the proof of Proposition 1. Because the gra-
dient is unequal to 0, the BE w will be continuously adjusted
even when it achieves the optimal solution ŵ, which then
produces an extra error (artificial error). Moreover, the instan-
taneous gradient (|y(k)|p −R) |y(k)|p−2

y∗(k)x(k)|w=ŵ ̸= 0
implies that the CMA will continue to adjust the BE when the
BE converges to the optimal solution in its implementation.
This is called the misadjustment, which causes fluctuation of
the CMA in the steady state. To overcome these issues, we
propose a new MCMA in the next subsection.

B. Modified Constant Modulus Algorithm

1) Cost function of the MCMA: From the Proposition 1, the
artificial error and misadjustment of the CMA are caused by
the fact that the amplitudes of the high-order QAM signals
have several different constants and we use the statistical
value to replace the real value. If the transmitted signals have
the same amplitudes, such as the low-order 4-QAM signals,
then these issues can be avoided. Thus, we try to improve
the equalization performance of the CMA by transforming
the high-order signal input into a constant modulus signal
input. Fortunately, it is generally believed that an equalizer is
dependent on the channel but independent of the input signal.
Therefore, if we can identify the received data corresponding
to a specific modulus from all the received data and discard
the other data, then the input signal can be regarded as a
constant modulus signal and the equalization performance can
be improved. In this subsection, a new modified constant
modulus algorithm is designed for high-order QAM signals.

Fig. 2. Schematic diagram of subset division for 16-QAM constellation.

High-order QAM signals can be divided into different sub-
sets according to their moduli. As shown in Fig. 2, 16-QAM
constellation points can be divided into three subsets which
are marked as red, blue and black colors, respectively. The
constellation point sets {±1± 1j}, {±1± 3j,±3± 1j} and
{±3± 3j} correspond to the moduli of

√
2,

√
10 and 3

√
2,

respectively. The set composed of the possible moduli of the
signals is defined as Ω = {Ri} (i = 1, 2, · · · , I). Because the

steady-state outputs (ŷ(n)) of the equalizer are the estimates
of the transmitted signals, these outputs can as well be divided
into different subsets according to their moduli, i.e.,

Ω̄i = {ŷ(n) | |ŷ(n)| = Ri} . (7)

Following the classification of the outputs ŷ(n), the corre-
sponding regression vector of the channel observations x(n)
can also divided into different subsets

Ωi =
{
x(n) |

∣∣ŵHx(n)
∣∣ = Ri

}
(8)

where ŵ is the ideal equalizer. It is easy to validate that the
outputs belonging to the set Ω̄i satisfy the constant modulus
property in the strict sense. Therefore, if we only use the
outputs ŷ(n) that correspond to the channel observations x(n)
belonging to the set Ωi to adjust the equalizer, then the input
signals can be considered as constant modulus signals and the
artificial error and misadjustment can be completely avoided.

Thus, the CMA cost function can be modified as

min
w

JMCMA(w) = E
[(∣∣wHx(n)

∣∣−Ri

)2]
. (9)

s.t. x(n) ∈ Ωi

It is noteworthy that the set Ωi = {xi(1),xi(2), · · · ,xi (Ni)}
for any i = 1, 2, · · · , I is unknown beforehand, where Ni

denotes the cardinality of the set Ωi. Therefore, we need to
find it out from the sample matrix X = [x(1),x(2), · · · ,x(n)]
at first. In order not to affect the readability of the paper, the
determination of the set Ωi is presented in Subsection III-B3.

In the following, to express in a more convenient way, we
symbolize x(n) ∈ Ωi as xi(n) and let yi(n) = wHxi(n).
Then, according to the statistical gradient algorithm, the cor-
responding updating formula of the proposed MCMA is given
by

wk+1 = wk − µ (|yi(k)| −Ri) |yi(k)|−1
y∗i (k)xi(k). (10)

Remark 1: Comparing the updating formula (10) with (6),
the differences between the MCMA and the CMA include: (i)
The MCMA just uses the samples xi(n) (n = 1, 2, · · · , Ni),
where xi(n) is the sample belonging to the set Ωi and Ni

is its size; (ii) The parameter R in (6) is replaced by Ri

in (10); (iii) The parameter p is usually set to be 2 for
the CMA, whilst the MCMA selects the parameter p as 1.
These differences bring the following three merits. Firstly,
the steady-state misadjustment is avoided by adopting the
MCMA. It is due to the fact that

∣∣ŵHxi(n)
∣∣ − Ri =

Ri − Ri = 0 (where Ri = E
[
|si(k)|2

]
/E [|si(k)|] =∑

k

|si(k − τ)|2/
∑
k

|si(k − τ)|) when the BE converges to the

optimal solution. Secondly, the MCMA can eliminate the
artificial error due to ∇JMCMA(w)|w=ŵ = 0. Thirdly, the
MCMA has a typical quadratic structure, which facilitates
designing a fast convergence algorithm to find the optimal
BE.

2) Modified Newton method for MCMA: Although the MC-
MA (9) can be optimized by a gradient descent approach like
other LMS methods, it converges much slowly. Fortunately,
since the constructed cost function

(∣∣wHx(n)
∣∣−Ri

)2
has a



IEEE INTERNET OF THINGS JOURNAL 5

typical quadratic structure, we can easily design a Newton-
type method which has the quadratic order or asymptotically
quadratic order convergence speed to search for the optimal
BE.

In order to construct the MNM associated with the MCMA
conveniently, the statistical average in (9) is replaced with the
time average and x(n) ∈ Ωi is replaced by xi(n). Then the
MCMA cost function can be rewritten as

JMCMA(w) =

Ni∑
n=1

(∣∣wHxi(n)
∣∣−Ri

)2
(11)

where N is the length of available samples which can be
utilized to search the optimal BE. Moreover, it is reasonable
to set Ni to be

⌊
Pi

Q ×N
⌋

, where Pi is the number of the
constellation points with modulus Ri, Q is the order of
the QAM signal, and Pi/Q is the prior probability of the
transmitted signals with modulus Ri. Taking 16-QAM signals
for instance, if Ri =

√
10, then Pi/Q = 8/16 = 1/2.

Now, differentiating JMCMA(w) with respect to w, we
obtain the following gradient expression

∇JMCMA(w) =

Ni∑
n=1

xi(n)x
H
i (n)w −Ri

y∗i (n)

|yi(n)|
xi(n). (12)

Let the sample matrix be Xi = [xi(1),xi(2), · · · ,xi (Ni)]

and the normalized output vector be yi =
[

y∗
i (1)

|yi(1)| ,
y∗
i (2)

|yi(2)| , · · · ,
y∗
i (Ni)

|yi(Ni)|

]T
. Then the gradient ∇JMCMA(w) is simplified as

∇JMCMA(w) = XiX
H
i w −RiXiyi. (13)

It can be seen that the gradient ∇JMCMA(w) can be further
decomposed into A(w)w − b(w), which is required by the
MNM proposed in [40]. Here, the matrix A(w), which is
a positive definite matrix, can be considered as XiX

H
i , and

the vector b(w) can be referred to as RiXiyi. According
to the MNM [40], wk+1 = A−1 (wk)b (wk). Hence, the
updating formula of the MCMA, which is named the MNM
based MCMA (MCMA-MNM), is expressed as

wk+1 = Ri

(
XiX

H
i

)−1
Xiyi,k = RiR

−1
i Xiyi,k (14)

where yi,k(n) = wHxi(n)|w=wk
, yi,k =

[
y∗
i,k(1)

|yi,k(1)| ,
y∗
i,k(2)

|yi,k(2)| ,

· · · , y∗
i,k(Ni)

|yi,k(Ni)|

]T
, and Ri = XiX

H
i . Moreover, a equalizer is

usually initialized with central single-spike.
Remark 2: It is widely known that Newton methods may

not stable due to their indefinite or approximately singular
Hessian matrix. In addition, Newton methods usually have
high computational complexity to calculate the inverse of
Hessian matrix at each iteration. In contrast, the MCMA-
MNM adopts the positive definite modified Hessian matrix
XiX

H
i , making it stable. The matrix Xi should be unchanged

with different wk in theory, since it is predetermined that
which signal constellation can be recovered by a distinct
sample. Thus, the term R−1

i =
(
XiX

H
i

)−1
can be calculated

in advance. The MCMA-MNM mainly requires computing
yk,i and implementing an operation RiRiXiyk,i at each
iteration step as long as Ri is obtained. This greatly reduces
the computational cost of the proposed algorithm.

Also, the proposed MCMA-MNM is fast convergent, as
shown in the following proposition.

Proposition 2: If ŵ is the optimal solution of (11) and
wk ≈ ŵ, i.e.,

wk ∈ ζ (ŵ, δ) = {w | ∥w − ŵ∥2 ≤ δ}

where δ is a small positive constant, then the sequence wk in
the iteration formula (14) converges to the optimal solution ŵ
at the step size of 1

2∥wk − ŵ∥2.
Proof: See Appendix B.

3) Determination of the set Ωi: It is noteworthy that the
set Ωi = {xi(1), xi(2), · · · , xi (Ni)} is unknown beforehand.
Therefore, we need to find it out from the sample matrix
X = [x(1),x(2), · · · ,x(n)] first. Now, we develop a sample
selecting method based on the following theorem.

Theorem 1: If the BE converges to the optimal solution,
i.e., w = ŵ, such that there is the mathematical relationship
|yi(n)| =

∣∣ŵHxi(n)
∣∣ ≈ Ri, then the following inequality

holds: ∣∣∣∣ŵHxi(n)
∣∣−Ri

∣∣ < ∣∣∣∣ŵHxj(n)
∣∣−Ri

∣∣ (15)

for all xi(n) ∈ Ωi and xj(n) /∈ Ωi.
One has

∣∣ŵHxi(n)
∣∣−Ri = 0 in the ideal case according to

the definition of the set Ωi. Moreover,
∣∣ŵHxj(n)

∣∣ ̸= Ri and∣∣∣∣ŵHxj(n)
∣∣−Ri

∣∣ is much larger than 0. Hence, the inequality
(15) holds.

According to the inequality (15), we sort out the equalizer
output errors

∣∣∣∣ŵHx(n)
∣∣−Ri

∣∣ = ê(n) (n = 1, 2, · · · , N)
in the ascending order. Then it seems safe to assume
that the samples corresponding to the first Ni small errors
ê(n) (n = 1, 2, · · · , Ni) are the selected samples which are
thought to make up the set Ωi. However, the optimal equalizer
ŵ is unknown before achieving the channel equalization. To
overcome this issue, the kth iteration value wk is used to take
the place of ŵ, and then the samples corresponding to the first
Ni small errors ek(n) =

∣∣∣∣wH
k x(n)

∣∣−Ri

∣∣ (n = 1, 2, · · · , N)
are considered as the selected samples required.

Fig. 3. Constellation of the output of the kth iteration for 16-QAM
constellation.

Taking the 16-QAM signal into consideration, Fig. 3 shows
the outputs of the kth iteration yk(n) = wH

k x(n). If Ri is
set to be

√
10, then ek(n) =

∣∣|yk(n)| − √
10
∣∣. According to

the above principle, the errors are sorted out in the ascending
order, then the outputs corresponding to the first N/2 (for the
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16-QAM signal and Ri =
√
10, Pi = 8 and Q = 16, so

Pi/Q = 1/2) small errors are considered to be the selected
outputs yi,k(n) = wH

k xi(n) (n = 1, 2, · · · , Ni = N/2). As
shown in Fig. 3, the outputs marked in blue color (located
in the region between the two green circles) are considered as
the selected outputs corresponding to Ri =

√
10. The corre-

sponding samples and the set of these samples are symbolized
as xi,k(n) (n = 1, 2, · · · , Ni) and Ωi,k, respectively, and the
latter one can be considered as the substitute of the set Ωi.

According to the above determination method of the set
Ωi, the selected modulus Ri is an important parameter. The
following two rules are used to choose Ri. Although the
receiver don’t know which symbol was sent, the set of all
symbols is known, namely the Ri (for all i) is known to
the receiver. Firstly, as shown in Fig. 3, the circle with the
selected modulus (radius) should pass through as many points
as possible. Secondly, the distance between the selected circle
and its adjacent circle should be as large as possible.

In the light of the above analysis, the realizable MCMA-
MNM is as

wk+1 = Ri

(
Xi,kX

H
i,k

)−1
Xi,kyk,i = RiR

−1
i,kXi,kyi,k, (16)

where Xi,k = [xi,k(1),xi,k(2), · · · ,xi,k (Ni)] and Ri,k =
Xi,kX

H
i,k.

Note that the sample matrices Xi,k and Ri,k will change
more or less with iterations. Thus, we need updating Ri,k in
each iteration, which results in a significant increase in the
computational load compared with the unchanged Ri in the
theoretical analysis. Fortunately, according to our theoretical
analysis in Subsection III-B1, Xi is predetermined and in-
dependent of the BE. This suggests that the change between
Xi,k and Xi,k+1 is trivial, especially when the BE is close
to convergence. Therefore, the Hessian matrix (correlation
matrix) Ri,k+1 can be fast calculated by the following formula

Ri,k = Ri,k−
∑

n∈{n|x(n)∈Ω̄i,k+1}

x(n)xH(n)+
∑

n∈{n|x(n)∈Ω̄i,k}

x(n)xH(n)

(17)
where Ω̄i,k+1 = {x(n) | x(n) /∈ Ωi,k+1,x(n) ∈ Ωi,k} and
Ω̄i,k = {x(n) | x(n) /∈ Ωi,k,x(n) ∈ Ωi,k+1}. Because there
are only a few elements in the sets Ω̄i,k and Ω̄i,k+1, it requires
a very small amount of calculation to update Ri,k based upon
the formula (17), and then the computational volume of the
proposed MCMA-MNM is greatly reduced.

To sum up, minimizing CF (11) by using the proposed
MNM (14), a optimal BE can be obtained when the solu-
tion wk+1 converges. The detailed rationale of the proposed
MCMA-MNM is summarized in Algorithm 1, where accuracy
parameter η is a sufficiently small positive value, K is the
maximum iteration times.

C. Generalized Modified Constant Modulus Algorithm

Based on the analysis made in Remark 1, we know that the
proposed MCMA can efficiently overcome the misadjustment
and artificial error. However, these advantages are achieved at
the cost of reduced sample usage rate. In 16-QAM signal, the
sample usage rate is 1/2 when Ri =

√
10. In this subsection,

Algorithm 1: The Proposed MCMA-MNM

1: Initialization: We find the optimal solution by using the
proposed MNM. First, the w0 is initialized by unit center criteria,
i.e. w0 = [0, · · · , 1, · · · , 0]H, where the element 1 is in the center
of the vector. The iteration index k is set to be 0 initial error e is
set larger than then accuracy parameter ε.
2: While e > η and k < K do
3: Calculate y(n)n = 1, · · · , N by using w = wk. Then
determine Xi,k according to (15) and Ri,k according to (17).
On this basis, we update wk+1 by using iteration formula (24).
4: Update iteration error e = ∥wk+1 −wk∥2.
5: Update iteration index k = k + 1 and let wk = wk+1.
6: End While
7: Return wk

the generalized modified constant modulus algorithm (GMC-
MA) is proposed to improve the sample usage rate as well as
the convergence speed.

The reason for the reduced sample usage rate is that only
the samples corresponding to a special Ri (signal modulus)
are used to adjust the BE, whilst the other samples are
discarded. To improve the sample usage rate, the samples
corresponding to several Ri ∈ Ω(i = 1, 2, · · · , I ′; I ′ ≤ I)
are used in the GMCMA. Then, the following optimization
problem is constructed:

min
w

JGMCMA(w) =

I′∑
i=1

E
[(∣∣wHxi(n)

∣∣−Ri

)2]
. (18)

Remark 3: It can be seen from (18) that the GMCMA is
different from the MCMA. The former utilizes the samples
belonging to the sets Ω1,Ω2, · · · ,ΩI′ and penalizes the devi-
ations of the equalized signals’ magnitude from the associated
modulus which is determined by the sample xi(n). In contrast,
the latter one only uses the samples belonging to one of the
sets Ω1,Ω2, · · · ,ΩI , named Ωi, and penalizes the deviations
of the equalized signals’ magnitude from the modulus corre-
sponding to Ωi. Therefore, the GMCMA can preserve all the
merits of the MCMA mentioned in Remark 1. Furthermore,
it greatly improves the sample usage rate. Particularly, in the
extreme case of I ′ = I , the sample usage rate will approach
100%.

Similar to the MCMA, we use the time average to replace
the ensemble average. Then the cost function JGMCMA(w) is
expressed as

JGMCMA(w) =
I′∑
i=1

Ni∑
n=1

(∣∣wHxi(n)
∣∣−Ri

)2
(19)

Now, differentiating JGMCMA(w) with respect to w gives the
gradient

∇JGMCMA(w) =
I′∑
i=1

XiX
H
i w −RiXiyi

= X′X′Hw −X′y′ (20)

where X′ = [X1,X2, · · · ,XI ] and y′ =
[
R1y

T
1 , R2y

T
2 , · · · ,

RI′yT
I′

]T
. Finally, the updating formula of the GMCMA
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based upon the MNM [40], which is named the MNM based
GMCMA (GMCMA-MNM), is derived as

wk+1 =
(
X′X′H

)−1

X′y′
k = R′−1

X′y′
k (21)

where yi,k(n) = wHxi(n)|w=wk
, y′

k =
[
R1

y∗
1,k(1)

|y1,k(1)| , · · · ,

R1
y∗
1,k(N1)

|y1,k(N1)| , · · · , RI′
y∗
I′,k(NI′ )

|yI′,k(NI′ )| , · · · , RI′
y∗
I′,k(NI′ )

|yI′,k(NI′ )|
]T

, and

R′ = X′X′H .
Remark 4: From the updating formula (21), we can deduce

that the proposed GMCMA-MNM persists all the advantages
of the MCMA-MNM. Firstly, The GMCMA-MNM also adopt-
s the positive definite Hessian matrix X′X′H and converges
stably. Secondly, the matrix X′ is predetermined and then R′

and its corresponding inverse matrix R′−1 can be calculated
beforehand. Thus, the computational volume of the GMCMA-
MNM is much less than its Newton-type counterpart. Thirdly,
the GMCMA-MNM has a fast convergence speed. In fact, we
have the following proposition.

Proposition 3: If ŵ is the optimal solution of (19) and
wk ≈ ŵ, i.e.,

wk ∈ ζ (ŵ, δ) = {w | ∥w − ŵ∥2 ≤ δ}

where δ is a small positive constant, then wk+1 in the iteration
formula (21) converges to the optimal solution ŵ at the step
size of 1

2∥wk − ŵ∥2.
Proof: This proposition can be similarly proved by the

method provided in Appendix B.
In practice, the matrix X′ is replaced by the available

matrix X′
k and the iteration formula of the GMCMA-MNM

is modified to

wk+1 =
(
X′

kX
′
k
H
)−1

X′
ky

′
k = R′−1

k X′
ky

′
k (22)

where X′
k = [X1,k,X2,k, · · · ,XI′,k] = X′|w=wk

and y′
k =

y′|w=wk
.

It is worth mentioning that all the matrixes Xk,i

(
i =

1, 2, · · · , I ′
)

are obtained recursively. When the required
samples x1,k(n)(n = 1, · · · , N1), · · · ,xi−1,k(n)(n =
1, · · · , Ni−1) have been selected from the sample matrix
X = [x(1),x(2), · · · ,x(n)], xi,k(n) (n = 1, · · · , Ni) are cho-
sen from the remaining samples with the length of N̄i =
N −N1−N2 · · ·−Ni−1 via the method suggested in Subsec-
tion III-B3. In addition, the Hessian matrix of the GMCMA-
MNM can be efficiently updated according to the generalized
form of (17):

R′
k+1 = R′

k−
∑

n∈{n|x(n)∈Ω̄′
k+1}

x(n)xH(n)+
∑

n∈{n|x(n)∈Ω̄′
k}

x(n)xH(n)

(23)
where

Ω̄′
k+1 =

{
x(n) | x(n) /∈ Ωi,k+1 (i = 1, 2, · · · , I ′),

x(n) ∈ Ωi,k (i = 1, 2, · · · , I ′)
}

Ω̄′
k =

{
x(n) | x(n) /∈ Ωi,k (i = 1, 2, · · · , I ′),

x(n) ∈ Ωi,k+1 (i = 1, 2, · · · , I ′)
}
.

Similarly, there are only a few elements contained in the
sets Ω̄′

k+1 and Ω̄′
k because of the predetermination of

Ωi (i = 1, 2, · · · , I) and the independence between the BE and
Ωi. The computational burden of calculating R′

k+1 can be
noticeably decreased through the utilization of (23), and fur-
thermore the computational burden of the proposed GMCMA-
MNM is significantly reduced. Especially, in the extreme
case of I ′ = I , both the sets Ω̄′

k+1 and Ω̄′
k are empty and

R = XXH = R′
k for all k (k = 1, 2, · · · ). The matrix R′

k

and its inverse matrix R′
k
−1 will be unchanged and can be

pre-computed.
To sum up, the detailed rationale of the proposed GMCMA-

MNM is summarized in Algorithm 2.

Algorithm 2: The Proposed GMCMA-MNM

1: Initialization: We find the optimal solution by using the
proposed MNM. First, the w0 is initialized by unit center criteria,
i.e. w0 = [0, · · · , 1, · · · , 0]H, where the element 1 is in the center
of the vector. The iteration index k is set to be 0 initial error e is
set larger than then accuracy parameter ε.
2: While e > η and k < K do
3: Calculate y(n)n = 1, · · · , N by using w = wk. Then
determine Xi,k for i = 1, 2, · · · , I ′ according to (15) and Ri,k

for i = 1, 2, · · · , I ′ according to (23). Finally, we update wk+1

by using iteration formula (24).
4: Update iteration error e = ∥wk+1 −wk∥2.
5: Update iteration index k = k + 1 and let wk = wk+1.
6: End While
7: Return wk

Interestingly, the proposed method can be easily converted
into an adaptive algorithm and the can be applied to a time-
vary channel via the following updating formula

wk+1 = R
−1

k+1

(
λbk +

y∗(k + 1)

|y(k + 1)|
Rix(k + 1)

)
,

where x (k + 1) ∈ Ωi,

R
−1

k+1 = λ−1R
−1

k − λ−2R
−1

k x(k + 1)xH(k + 1)R
−1

k

1 + λ−1xH(k + 1)R
−1

k x(k + 1)
,

and
bk+1=λbk +

y∗(k + 1)

|y(k + 1)|
Rix(k + 1).

The initial values are taken as R
−1

0 =I and b0 = 0.

IV. COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational complexity
of CMA [11], MMA [14], CNA [32], DMS [17] and the
proposed MCMA and GMCMA. To simplify the analysis, the
computational cost lower than L is omitted in the following
discussion.

For CMA/MMA, the precalculation of the output requires L
complex multiplications. Once the output is provided, updating
the blind equalizer at each iteration requires L multiplications
approximately. Thus, the CMA/MMA requires a computation-
al complexity of approximately 2L to update the BE once.

For CNA, the computational complexity is similar to the
CMA except with 7 additional exponents at each iteration.
Accordingly, if the computational cost lower than L is disre-
garded, the CNA requires 2L complex multiplications and 7
exponents at each iteration.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE RELATED METHODS

Methods CMA MMA CNA DMS MCMA GMCMA

Complexity 14000L 14000L 50000L 21000L NL2 + 210NiL+ 210NL NL2 + 210NL+ 210
I′∑
i=1

NiL

The DMS decomposes the BE into two components which
are related to the CMA and the soft decision-directed al-
gorithm (SDDA), respectively. If the output of the BE is
calculated in advance, then the DMS approximately requires
L multiplications associated with the CMA, and L multiplica-
tions and 4 exponential operations associated with the SDDA.
Hence, the computational complexity of the DMS at each
iteration is approximately 3L multiplications and 4 exponential
operations.

Finally, for the proposed MCMA (GMCMA), all the
x(n)xH(n) (n = 1, 2, · · · , N ) can be calculated in advance,
which requires NL2 multiplications. Then, o(L3) multiplica-
tions is needed to calculate R−1

i,k

(
R′

k
−1). Once R−1

i,k

(
R′

k
−1)

is obtained, the MCMA (GMCMA) only requires to update
yk,i (y′

k) and implement RiR
−1
i,kXi,kyi,k

(
R′

k
−1

X′
ky

′
k

)
at

each iteration, which takes approximately NL multiplications
and an approximate computational complexity of NiL + L2( I′∑
i=1

NiL + L2
)

, respectively. It is worth noting that L ≪

Ni (i = 1, 2, · · · , I ′), thus L2 is considerably less than NiL
and can be omitted. Accordingly, the total computational
cost of the MCMA (GMCMA) at each iteration is NL +

NiL
(
NL+

I′∑
i=1

NiL
)

when R−1
i,k

(
R′

k
−1) is calculated in

advance.
For the simulations described in the next section, the

iteration times for the CMA, MMA, CNA, DMS, MCMA
and GMCMA for the 36-QAM system are 7000, 7000,
25000, 7000, 210 and 140, respectively. Therefore, their
total computational volumes of multiplications are 14000L,
14000L, 50000L, 21000L, NL2 + 210NiL + 210NL and

NL2 + 210
I′∑
i=1

NiL + 210NL, respectively. Moreover, the

CNA requires 175000 additional exponentiations and the DMS
requires 28000 exponential operations. Without considering
the exponentiation and exponent operations, the comparison
of the computational complexity of the methods is listed in
Table I.

V. SIMULATION RESULTS AND DISCUSSION

To verify the effectiveness of the proposed algorithms,
we compare the proposed MCMA and GMCMA with the
conventional CMA (p = 2) [11], MMA, CNA DMS and
improved DMS (IDMS) [37] using the symbol error rate
(SER), the MSE and the ISI in this section. The MSE is
defined as

MSE = E
[
|Cy(k)− s(k − τ)|2

]

where [C, τ ] = arg min
C,τ

E
[
|Cy(n)− s(n− τ)|2

]
. Moreover,

the ISI is defined as

ISI =

L̄+L−2∑
n=0,n̸=nmax

|w̄(n)|2
/
|w̄ (nmax)|2

in which w̄(n) = [w̄ (0) , w̄(1), · · · , w̄
(
L+ L̄− 2

)
]T is the

combined impulse response of the channel and the equalizer
defined in Section II, and nmax = argmax

n
|w̄(n)|.

In the simulation, we consider the QAM signaling
over a complex-valued frequency-selective channel with
Gaussian noise. The channel impulse response with
order L̄ = 5 is assumed to be h1 = [0.250 + j0.201,
0.153 + j0.171, 0.100 + j0.097, 0.073 + j0.062, 0.041 +
j0.063]T , corresponding to the channel gain of [−9.8758,
−12.7860, −17.1200, −20.3749, −22.4795] in dB.
To demonstrate the universality of these methods,
the typical data-quality telephone channel h2 =
[0.04,−0.05, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]×
exp(−jπ/5) [42] and the non-minimum phase channels
h3 = [0.0545 + 0.05j, 0.2832 − 0.11971j,−0.7676 +
0.2788j,−0.0641 − 0.0576j, 0.0466 − 0.02275j] [43] are
used to future illustrate the good performance of the proposed
algorithms.

Moreover, a six-tap equalizer is used and initialized with
central single-spike. Two modulation schemes are analyzed:
first the 16-QAM for the special case of high-order modulation
scheme and then the 36-QAM for the general case. The set
Ω is defined as

{
R1 =

√
10, R2 =

√
2, R3 = 3

√
2
}

for the
16-QAM and {R1 =

√
26, R2 =

√
34, R3 =

√
10, R4 =√

18, R5 =
√
2, R6 = 5

√
2} for the 36-QAM.

Firstly, we compare the CMA, MMA, DMS, IDMS, MCMA
and GMCMA under h1. The step size of the CMA, MMA
and IDMS is chosen as 5 × 10−5, 8 × 10−4 and 5 × 10−4,
respectively. For the DMS, the step size associated with CMLF
is set to be 5× 10−5, and the other one associated with CME
is taken as 5 × 10−3. Additionally, the parameters Ri of the
MCMA and I ′ of the GMCMA is taken as Ri|i=1 =

√
10 and

I ′ = 2, respectively. Lastly, the sample number N = 1500 is
adopted in the following except for the MSE versus the number
of samples.

Firstly, the simulation results under channel h1 is presented.

Fig. 4 and Fig. 5 show the MSE and SER versus the
SNR, respectively. It can be seen from these two figures that
the proposed method nearly approaches the optimal (trained)
MMSE equalizer and has better performance than the other
methods. This is due to the following two reasons. 1) The
MCMA and GMCMA can efficiently suppress the artificial
error and steady-state misadjustment as analyzed in Remark 1.
2) Since the proposed algorithms use a large number of sam-
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Fig. 4. MSE versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 16-QAM system.

18 19 20 21 22 23 24 25 26

SNR(dB)

10-5

10-4

10-3

10-2

10-1

S
E

R

DMS
MCMA
GMCMA
CMA
MMA
CNA-6
IDMS
MMSE

Fig. 5. SER versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 16-QAM system.

ples simultaneously, they avoid the well-known excess error
caused by the adaptive methods that only adopt one sample
per iteration. Furthermore, the performance of GMCMA is
slightly better than that of MCMA, because GMCMA utilizes
more samples than MCMA.

0 0.5 1 1.5 2
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CMA
MMA
IDMS
CNA-6
DMS

0 20 40 60 80 100

Iteration times

10-2

100
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Fig. 6. ISI versus iteration times for CMA, MMA, DMS, IDMS, MCMA
and GMCMA used for 16-QAM system.

Given SNR = 28dB and N = 1500, the convergence
performance of the CMA, MMA, DMS, IDMS, MCMA and
GMCMA in terms of the ISI is depicted in Fig. 6 for the
16-QAM system. From this figure, it is observed that the
proposed MCMA and GMCMA converge much faster than the

other three methods. The reasons are listed as follows: 1) The
proposed algorithms efficiently suppress the artificial error and
steady-state misadjustment and can steadily converge without
fluctuation accordingly. 2) A comparison of (14) and (21)
with (6) reveals that an iteration of the proposed algorithms
is approximately equivalent to calculating a large number of
samples by the adaptive algorithm. 3) The proposed algorithms
adopt the constructed MNM, so their convergence speed is
faster. More specifically, the GMCMA has a slightly faster
convergence speed than the MCMA because of its higher
sample usage rate. On the other hand, the proposed methods
can also converge to a much lower steady-state ISI than the
CMA and MMA, and has a similar steady-state ISI with the
DMS and IDMS. The good ISI performance is also due to the
facts mentioned in the fourth paragraph of Section V.

500 1000 1500 2000

Sample numbers

0

0.5

1

1.5

2

2.5

3

M
S

E

MCMA
GMCMA I'=2
GMCMA I'=3

Fig. 7. MSE versus the number of samples for MCMA and GMCMA when
SNR = 28dB for 16-QAM system.

For SNR = 28dB, Fig. 7 depicts the variation of the MSE
versus the number of samples for the MCMA and GMCMA
with different I ′. It is clear that the GMCMA needs fewer
samples to achieve a good MSE than the MCMA due to its
improvement in the sample usage rate. Furthermore, if the
sample sequence is long enough, then both the MCMA and
GMCMA have similar low MSE. In this case, the samples
are sufficient even for the MCMA which has a low sample
usage rate to impose a strict constraint to the BE. Therefore,
the MCMA and GMCMA are slightly affected by the length
of samples when it is longer than 800 as seen in Fig. 7.

Secondly, we compare the CMA, MMA, DMS, IDMS,
MCMA and GMCMA for 36-QAM. The step size of the CMA
and MMA is set to be 6 × 10−6 and 2 × 10−4, respectively.
In the DMS, the step size of the CMLF and CME is taken as
6 × 10−6 and 2 × 10−3, respectively. Moreover, the sample
number N = 6000 is used in the simulations related to the
MSE/SER versus the SNR and the ISI versus iteration times.
Additionally, the other parameters are chosen as the same as
the 16-QAM system.

Fig. 8 and Fig. 9 show the MSE and SER versus the
SNR for 36-QAM signals, respectively. It can be seen from
Fig. 8 and Fig. 9 that the proposed MCMA and GMCMA
have 1dB gain at SER = 0.01 compared with the CMA and
MMA. Moreover, their MSE and SER are even lower than
the DMS/IDMS and is closest to the optimal MMSE. The
reasons for the good performance of the proposed algorithms
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Fig. 8. MSE versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 36-QAM system.
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Fig. 9. SER versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 36-QAM system.

used for the 36-QAM symbol are partly identical as those
for the 16-QAM symbol.The misadjustment caused by the
CMA or MMA increases rapidly with the increase of the
signal modulation order, whereas the proposed algorithms can
effectively eliminate the misadjustment no matter how high
the signal order is.
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Fig. 10. ISI versus iteration times for CMA, MMA, DMS, IDMS, MCMA
and GMCMA used for 36-QAM system.

When SNR = 30dB, the convergence performances of all
the five methods are presented in Fig. 10 for the 36-QAM
system. It can be seen that both the MCMA and GMCMA still
converge faster than the other methods obviously due to the
same reasons that we have concluded for the fast convergence

speed of the 16-QAM system. Comparing Fig. 10 with Fig. 6,
we can observe that all the methods used for the 36-QAM
system converge at a slower speed than the case when they are
used for the 16-QAM system. This is because the discrepancy
between the initial output of the BE and the desirable symbol
of the 36-QAM system is larger than that of the 16-QAM
system under the condition of equal initial ISI. Moreover, it is
worth noting that the gap of the convergence speeds between
the MCMA and GMCMA are further enlarged. This is because
the sample usage rate of the MCMA of the 36-QAM system
is rather low, namely 2/9, while the GMCMA has a relatively
much higher sample usage rate, namely 4/9.
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Fig. 11. MSE versus the number of samples for MCMA and GMCMA under
the condition of SNR = 30dB for 36-QAM system.

Fig. 11 depicts the MSE versus the sample number when
SNR = 30dB for the MCMA and GMCMA. The result
indicates that the GMCMA requires fewer samples to achieve
desirable equalization performance than the MCMA and both
of them can approach the satisfactory performance when the
sample sequence is long enough. This result is similar to
that of the 16-QAM system. However, it is generally agreed
that the proportion of the signals with the same amplitude
falls quickly with the rise of the signal modulation order.
Therefore, it can be deduced that the MCMA for the 36-
QAM symbol needs much more samples to obtain a small
MSE than the 16-QAM symbol. Fortunately, comparing with
the MCMA, the increased amount of samples needed by the
GMCMA is relatively small. More important, there are always
enough samples for a blind method, since all received data
can be used as samples in practice. Therefore, although the
MCMA may need a large number of samples to complete
channel equalization, its requirement can always be satisfied.
Moreover, we can employ the GMCMA to improve the sample
usage rate and then a desired equalization performance can be
achieved in the case of a small number of samples.

In the following, the SER of all the method under channel
h2 and h3 is presented.

As seen in the Fig. and Fig. 12 and Fig. 13, the proposed
MCMA and GMCMA still have lower SER than the other
methods under channel h2 and h3.

Finally, the equalization performance in term of SER is
given under time-varying channel. The time variation of chan-
nel is approximated by autoregressive model [44]. The initial
channel is set to be h1.
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Fig. 12. SER versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 16-QAM system under h2.
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Fig. 13. SER versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 16-QAM system under h3.
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Fig. 14. SER versus SNR for CMA, MMA, DMS, IDMS, MCMA and
GMCMA used for 16-QAM system under time-vary channel.

It can be seen from Fig. 14 that the proposed GMCMA has
the lowest SER under time-vary channel. This is due to its fast
convergence and good original equalization performance.

VI. CONCLUSION

In this paper, two modified constant modulus algorithms
have been proposed for channel equalization of BN-IOT. The
proposed MCMA can efficiently deal with these issues at
the cost of reduction in the sample usage rate. Moreover,
the proposed GMCMA can guarantee the desirable error
performance of the MCMA whilst preserving the sample usage

rate. Simulation results have demonstrated that the proposed
MCMA and GMCMA have more preferable equalization
performances than the other existing methods and then the
reliability of the IoT can be guaranteed.

APPENDIX A
PROOF OF PROPOSITION 1

Proposition 1: If the BE converges to the optimal
solution ŵ, then the gradient calculated by K samples can
be obtained as

∇J(w)|w=ŵ =
1

K

∑
k

(|y(k)|p−R) |y(k)|p−2
y∗(k)x(k)|w=ŵ

=
1

K

∑
k

|y(k)|2p−2
y∗(k)x(k)

−R|y(k)|p−2
y∗(k)x(k)|w=ŵ. (24)

Substituting y(n) = wHHs̄(n) and ˆ̄w = HT ŵ∗ = e(τ) into
(24) generates

∇J(w)|w=ŵ =
1

K

∑
k

∣∣ŵHHs̄(k)
∣∣2p−2(

ŵHHs̄(k)
)∗
x(k)

−R
∣∣ŵHHs̄(k)

∣∣p−2(
ŵHHs̄(k)

)∗
x(k)

=
1

K

∑
k

∣∣eT (τ )̄s(k)∣∣2p−2(
eT (τ )̄s(k)

)∗
x(k)

−R
∣∣eT (τ )̄s(k)∣∣p−2(

eT (τ )̄s(k)
)∗
x(k).

(25)

It is a clear derivation that eT (τ )̄s(k) = s(k − τ). Taking it
into (25), the gradient ∇J(w)|w=ŵ can be simplified as

∇J(w)|w=ŵ = H× 1

K

∑
k

|s(k − τ)|2p−2
s∗(k − τ )̄s(k)

−R|s(k − τ)|p−2
s∗(k − τ )̄s(k). (26)

Obviously, the formula 1
K

∑
k

|s(k)|2p−2
s∗(k)s (j) ≈ 0

holds for k ̸= j. Thus, the gradient ∇J(w)|w=ŵ can be
reduced to

∇J(w)|w=ŵ = He(τ)× 1

K

∑
k

|s(k − τ)|2p−R|s(k − τ)|p.

(27)

Making formula (26) be equal to 0, then
∑
k

|s(k − τ)|2p

−R|s(k − τ)|p must be equal to 0, i.e.,

R =

∑
k

|s(k − τ)|2p∑
k

|s(k − τ)|p
. (28)

However,

R =
E
[
|s(k)|2p

]
E [|s(k)|p]

≈

∑
k

|s(k − τ)|2p∑
k

|s(k − τ)|p

for a large sample number. Hence, ∇J(w)|w=ŵ is very close
to 0 but not equal to 0.
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Moreover, according to (27), the instantaneous gradient is
equal to

(|y(k)|p −R) |y(k)|p−2
y∗(k)x(k)|w=ŵ

= Hs̄(k)s∗(k − τ)
(
|s(k − τ)|2p−2 −R|s(k − τ)|p−2

)
.

(29)

There is no doubt that |s(k − τ)|2p−2 − R|s(k − τ)|p−2 ̸=
0. Thus, (|y(k)|p −R) |y(k)|p−2

y∗(k)x(k)|w=ŵ ̸= 0 always
holds. This completes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Proposition 2: It is clear that lim
k→∞

∥wk+1−ŵ∥2

∥wk−ŵ∥2
= 1

2

indicates that the sequence wk converges to ŵ at the step size
of 1

2∥wk − ŵ∥2 per iteration. The limit can be completely
proved by considering

lim
k→∞

(
wk+1 − ŵ

)
=

1

2
lim
k→∞

(
wk − ŵ

)
or

wk+1 − ŵ =
1

2

(
wk − ŵ

)
. (30)

If follows from (30) that

1

2
wk −wk+1 = −1

2
ŵ. (31)

Now, adding 1
2wk to both sides of (31) and combining the

like terms together, (31) can be rewritten as

wk −wk+1 =
1

2
(wk − ŵ) . (32)

To prove that the above equation holds, we start deriva-
tion from the left-hand side of (32). Replacing wk+1 with
RiR

−1
i Xiyi,k in (32) yields

wk −wk+1 = wk −RiR
−1
i Xiyi,k

= R−1
i (Riwk −RiXiyi,k) . (33)

It is easily deduced from (13) that

Riwk −RiXiyi,k = ∇JMCMA(wk). (34)

Then (33) can be rewritten as

wk −wk+1 = R−1
i ∇JMCMA(wk). (35)

Let us now find the Taylor’s series expansion of
∇JMCMA(wk) up to the first-order terms at the point
ŵ. Noticing that ∇JMCMA(ŵ) = 0, then we obtain

∇JMCMA(wk)

= ∇JMCMA(ŵ) +
∂∇JMCMA(w)

∂wT

∣∣∣∣
w=ŵ

(wk − ŵ)

+ o (wk − ŵ)

= Ri (wk − ŵ)−RiXi
∂yi

∂wT

∣∣∣∣
w=ŵ

(wk − ŵ)

+ o (wk − ŵ) (36)

where o (wk − ŵ) is a quadratic function with respect to
wk − ŵ. To calculate ∂yi

∂wT , we first differentiate Ri
y∗
i (n)

|yi(n)|
with respect to wT as follows:

∂Ri
y∗
i (n)

|yi(n)|

∂wT

= Ri

(
1

|yi(n)|2

(
|yi(n)|

∂y∗i (n)

∂wT
− y∗i (n)

∂ |yi(n)|
∂wT

))

= Ri

(
1

|yi(n)|2

(
|yi(n)|xH

i (n)− 1

2
y∗i (n)

yi(n)x
H
i (n)

|yi(n)|

))

= Ri

(
1

|yi(n)|2

(
|yi(n)|xH

i (n)− 1

2
|yi(n)|2

xH
i (n)

|yi(n)|

))

=
1

2
Ri

xH
i (n)

|yi(n)|
. (37)

It is undoubted that |yi(n)| is close enough to Ri when w
approaches ŵ, i.e.,

|yi(n)|
∣∣
w=ŵ

≈ Ri. (38)

Hence, differentiating Ri
y∗
i (n)

|yi(n)| with respect to wT at the point
ŵ gives the below expression

∂Ri
y∗
i (n)

|yi(n)|

∂wT

∣∣∣∣∣
w=ŵ

=
1

2
xH
i (n). (39)

Moreover, because yi =
[

y∗
i (1)

|yi(1)| ,
y∗
i (2)

|yi(2)| , · · · ,
y∗
i (Ni)

|yi(Ni)|

]T
and

XH
i = [xi(1),xi(2), · · · ,xi (Ni)]

H , the gradient expression
RiXi

∂yi

∂wT

∣∣
w=ŵ

is given as

RiXi
∂yi

∂wT

∣∣∣∣
w=ŵ

=
1

2
XiX

H
i =

1

2
Ri. (40)

Furthermore, substituting the above derivation result into (36),
the gradient of ∇JMCMA(wk) can be eventually expressed by
Taylor’s series expansion as

∇JMCMA(wk) =
1

2
Ri (wk − ŵ) + o (wk − ŵ) . (41)

Finally, based on the above derivation, (35) can be reexpressed
s

wk −wk+1 = R−1
i

(
1

2
Ri (wk − ŵ) + o (wk − ŵ)

)
=

1

2
(wk − ŵ) +R−1

i × o (wk − ŵ) . (42)

Since o (wk − ŵ) is a quadratic function with respect to wk−
ŵ, the term R−1

i × o (wk − ŵ) can often be ignoblue when
wk is close enough to the optimal point ŵ. Then the above
mathematical relationship can be directly simplified as

wk −wk+1 =
1

2
(wk − ŵ) . (43)

This means that wk+1 − ŵ = 1
2 (wk − ŵ) when wk is close

enough to the optimal point ŵ. Additionally, it is defaulted
that wk belongs to the set ζ (ŵ, δ) = {w | ∥w − ŵ∥2 ≤ δ},
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i.e., wk is close enough to the optimal point ŵ, when k tends
to infinity. Therefore, we have the following conclusion

lim
k→∞

∥wk+1 − ŵ∥2
∥wk − ŵ∥2

=
1

2
. (44)

The above limit shows that the sequence wk converges to
the optimal solution ŵ at the step size of 1

2∥wk − ŵ∥2 per
iteration. This completes the proof of Proposition 2.
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