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Abstract: Choice-based facility location (CBFL) problem arises in various industrial and business contexts. The problem

stands on a decentralized perspective: companies set up chains of facilities, and customers determine from which chain or

facility to seek service according to their own preferences. Essentially, customer preferences or choices play a key role in

characterizing various CBFL problems, which differ themselves mainly in the models or rules employed to characterize

the choice. Consequently, a large number of formulations appear and are oftentimes solved by dedicatedly designed

approaches in the literature. Such a situation significantly complicates practitioners’ decision-making process when they

are facing practical problems but are unsure which ad-hoc model is suitable for their cases. In this article, we address

this dilemma by providing a unified modeling framework based on the concept of preference dominance. Specifically,

we conceptualize the choice behavior as a sequential two-step procedure: Given a set of open facilities, each customer

first forms a non-dominated consideration set and then splits the buying power within the set. Such an interpretation

renders practitioners high modeling flexibility as they can tailor how preference dominance is constructed according to

their specific contexts. In particular, we show that our model can represent several streams of CBFL problems. To support

our model’s applicability, we design an efficient exact decomposition algorithm. Extensive computational studies reveal

that although the algorithm is designed for a general purpose, it outperforms most approaches that are tailored for ad-hoc

problems by a large margin, which justifies both the effectiveness and the efficiency of the unified framework.
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1 Introduction

Choice-Based Facility Location (CBFL) problem is a rapidly-evolving research area that investigates

the strategic placement of service facilities by one or more companies, with the aim of enhancing market

competitiveness and achieving strategic objectives. The problem is approached from a fully decentral-

ized perspective, in which individual customers make their own decisions regarding which chain or

facility to visit, based on their unique preferences. In this regard, companies are unable to dictate cus-

tomer allocation to facilities in a centralized manner, but instead must rely on designing effective service

profiles, such as the location and design of facilities, to attract and retain customers. The customer

patronage behavior associated with CBFL is typically characterized by well-established discrete choice

models or rules, such as the multinomial logit model and the gravity rule. Notably, CBFL is analogous

to the competitive facility location problem, wherein both arise in a range of industrial and business con-

texts, including park-and-ride station planning (Aros-Vera et al. 2013), locker deployment for last-mile

delivery (Lin et al. 2022a), preventive healthcare network design (Zhang et al. 2012, Krohn et al. 2021),
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and retailer store location (Méndez-Vogel et al. 2022), among others. Departing from these applicable

contexts, CBFL is more general than the competitive facility location problem as it could characterize

various problems with market competition absence. For example, the p-median problem with user pref-

erences also belongs to CBFL since it concerns a spatial monopoly that locates facilities to minimize

its service provision costs, anticipating how customers choose facilities to seek service (Casas-Ramírez

and Camacho-Vallejo 2017).

Given the number of companies under investigation, CBFL studies can be broadly classified into two

streams. The first stream focuses on a single company, which is either a monopoly in the market or oper-

ates alongside other companies that do not change their service profiles during the planning horizon.

Accordingly, the company does not face company-level interactive decision-making situations, and its

main concern is how customers will react to the services it provides. This stream of research has been

studied extensively in previous works (Drezner et al. 2018, Dan and Marcotte 2019, Lin et al. 2022a).

By contrast, the second stream of CBFL research includes multiple companies, and each company is

assumed to maximize its own objective. Therefore, there will be interactive decisions at the company

level. The problem is characterized from a game-theoretical perspective, which leads to two model-

ing paradigms: Nash game (Gur et al. 2018) and Stackelberg game (Drezner et al. 2015). We suggest

interested readers referring to Mallozzi and Daskin (2017) for comprehensive investigation, which pro-

vides an in-depth analysis of the problem, including the mathematical models, solution methods, and

applications of CBFL in various industries.

Initial Stage Stage 1: Location decision Stage 2: Customer choice

Customers Candidate facilities Selected facilities Customer movement

Figure 1 An example of the choice-based facility location problem decision procedure.

This article focuses on the single-company case. We briefly describe the CBFL decision procedure in

Figure 1. Specifically, in the initial stage, customers and candidate facilities are known at discrete sites.

In Stage 1, the company selects a subset of facilities to open and offer services. In the following Stage

2, each customer then determines from which facility to seek service. The objective of each company is

to achieve a specific goal, such as maximum market share, maximum net profit from serving customers,

or minimum service provision cost, while taking into account the choices of customers.

Essentially, the customer choice behavior plays a pivotal role in distinguishing different CBFL prob-

lems. The variations in these problems often stem from the models employed to characterize customer
2
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choices in Stage 2. Currently, the most commonly used models in academia and industry are the multi-

nomial logit model (MNL) and the Huff-based gravity model. Both models operate on a “proportional

choice” principle, where the likelihood of a customer visiting a facility is directly proportional to the

facility’s attractiveness or utility (Aboolian et al. 2007, Aros-Vera et al. 2013, Ljubić and Moreno 2018,

Mai and Lodi 2020). Typically, these problems are formulated as mixed-integer nonlinear programs and

solved using outer-approximation based algorithms or mixed-integer linear program (MILP) approaches

that leverage the inherent structural properties. Other notable models include the “binary choice” rule

(BCR) and the “partially binary choice” rule (PBCR). The BCR assumes that each customer is solely

attracted to the option with the highest utility, representing an all-or-nothing choice mode (Beresnev

2013, Fernández et al. 2017, Lančinskas et al. 2020). Employing such a choice rule in CBFL problems

often leads to bilevel formulations, which require advanced solution approaches. The PBCR, akin to

the binomial logit model, assumes that customers only consider the most attractive facility from the

company. They may also choose not to seek service from this facility and instead opt out of the system

altogether (Biesinger et al. 2016, Fernández et al. 2017). In recent years, more sophisticated models have

emerged. One example is the threshold Luce model (TLM) introduced by Lin et al. (2022a), which per-

mits effective conic reformulation approaches. Another notable model is the Pareto-Huff model (PHM)

proposed by Fernández et al. (2018), which is solved by tailored MILP approaches or efficient heuris-

tics. These advanced models strengthen the capabilities for addressing CBFL problems and expanding

the range of potential solution techniques.

As we review above, the existing research on CBFL problems has primarily focused on utilizing ad-

hoc models and solution approaches that leverage the specific characteristics of the problem at hand.

However, these dedicated studies pose challenges when it comes to comparing and transferring existing

models. Furthermore, the inherent complexity arises from the fact that decision makers are typically

unaware of how customers make choices, and it has been demonstrated that employing different choice

models can lead to substantially different solutions (Suárez-Vega et al. 2004, Fernández et al. 2018,

Lin et al. 2022a). Consequently, the vagueness surrounding customer choices can overwhelm tailored

solution approaches, rendering them ineffective when applied to other business contexts. Developing a

comprehensive modeling and solution framework, derived from thorough surveys, thus becomes invalu-

able. Such a framework would provide valuable insights and guidance for researchers and practitioners

working on CBFL, enabling them to overcome the challenges posed by diverse choice models and

effectively adapt solutions to various intricate business scenarios.

To this end, we propose a unified modeling prescription in this article that can represent a wide range

of problems, including but not limited to proportional choice rule (i.e., MNL), BCR, PBCR, TLM,

PHM, and even nested logit models (NLM). In other words, these models are special outcomes of the

unified modeling prescription. To effectively solve these problems for practical usage, we also develop

a powerful exact solution approach that outperforms existing algorithms in several aspects.
3
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1.1 Related literature

In this section, we aim to position our contributions in the literature by briefly reviewing relevant studies

on single-company CBFL ad-hoc models and their associated solution approaches. To provide contex-

tual structure, we adopt the classification scheme proposed by Suárez-Vega et al. (2004) and Biesinger

et al. (2016), which categorizes studies based on demand models. Within this framework, we identify

two main streams of CBFL research: those concentrating on essential demand and those focusing on

unessential demand.

Within the context of essential demand, customers are certain to use the services of the company,

meaning that demand loss can be completely avoided. After the facilities are opened, customers deter-

mine which facility to seek services from based on the BCR, resulting in the binary essential model

according to Biesinger et al. (2016). Subsequently, the company serves customers based on their individ-

ual choices, which can either generate profits or incur service provision costs. One classical problem in

this regard is the facility location (p-median) problem with user preferences, which is often formulated

as a bilevel integer linear program (Camacho-Vallejo et al. 2014, Casas-Ramírez and Camacho-Vallejo

2017). Prevailing solution approaches are developed relying on single-level MILP reformulation. For

instance, one can leverage the Karush-Kuhn-Tucker (KKT) conditions of the lower-level problem to

derive an equivalent formulation with complementarity constraints. The non-convex complementar-

ity constraints can then be linearized, resulting in a MILP that can be directly solved by off-the-shelf

solvers (Cao and Chen 2006, Casas-Ramírez and Camacho-Vallejo 2017). Alternatively, the closest

assignment constraints (CACs) can be utilized to subtly reformulate the lower-level problem into linear

conditions without introducing dual variables. For a comprehensive discussion on the CACs, we refer

readers to Espejo et al. (2012). It turns out that a general constraint in our modeling prescription exactly

recovers an efficient type of CAC under essential demand.

Unessential demand refers to situations where customers may decide not to use the company’s ser-

vice because there is at least one competitor in the market. In these studies, competition is usually

aggregated into a single “opt-out" option, and customer choices are interpreted probabilistically given

discrete choice models/rules, leading to mathematical formulations with multi-ratio fractional objective

functions. In this aspect, comparative summaries across different models are available in Suárez-Vega

et al. (2004) and Méndez-Vogel et al. (2022). Among others, the MNL and Huff models are deemed as

the most popular ones. On one hand, the literature employing the MNL is usually referred to as the max-

imum capture problem with random utilities, in which a company aims to maximize its market share

through opening a fixed number of facilities (Benati and Hansen 2002). As the market share is a multi-

ratio fractional linear 0-1 function, a standard solution approach is to reformulate the original problem

into a MILP (Borrero et al. 2017). For example, several equivalent MILP formulations are presented for

discussion in Haase and Müller (2014). However, the MILP complexity suffers from scalability issues

for large-scale instances, rendering it unappealing as problem size expands. Fortunately, the market

share under the MNL exhibits both submodularity and concavity with respect to the location vari-

able (Benati and Hansen 2002), allowing for branch-and-cut algorithms based on outer-approximation
4



Lin et. al.: Unified framework for choice-based facility location problem

cuts and submodular cuts to achieve better computational performance on large-scale instances (Lju-

bić and Moreno 2018) . On the other hand, in the Huff model, the utility of a facility provided for a

customer is a function of the instrinct facility attraction and the distance between them, with facility

attraction assumed to depend on facility design. Many related problems thus consider both the location

and the design decision of facilities. For example, Aboolian et al. (2007) assumed that each facility has

a finite number of available design options, and only one option will be selected for each open facility.

The problem is solved by an approximation approach (i.e., Tangent Line Approximation), which yields

near-optimal solutions subject to adjustable errors. Recently, Lin and Tian (2021b) investigated a vari-

ant with facility-customer pairwise attraction, where an iterative Benders decomposition method was

proposed and shown to significantly outperform both the Tangent Line Approximation under reasonable

error bounds and the branch-and-cut out-approximation algorithm in Ljubić and Moreno (2018). Apart

from the proportional choice rule, the PBCR also received considerable attention (Suárez-Vega et al.

2004, Biesinger et al. 2016, Fernández et al. 2017). However, exact solution approaches with PBCR are

rather limited. To the best of our knowledge, all available exact approaches for the PBCR model are

based on the MILP reformulation techniques (Fernández et al. 2017, Méndez-Vogel et al. 2022).

In fact, more and more efforts have been invested to generalize choice modeling in the CBFL litera-

ture, building on recent progress in discrete choice theory about dominance and consideration sets (Ahu-

mada and Ülkü 2018, Echenique and Saito 2019). For example, based on the deterministic dominance

in Echenique and Saito (2019), the TLM allows for flexibly restricting the size of the consideration set.

Lin et al. (2022a) showed that both the proportional choice rule and PBCR are indeed special cases

of the TLM, which is solved via a mixed-integer conic quadratic programming (MICQP) approach.

Another example is the Pareto-Huff model, which assumes that customers are only willing to patronize

facilities that are Pareto-optimal to both facility attraction and distance. This model is rather challenging

and initially solved using a ranking-based heuristic (Fernández et al. 2018). In a very recent work, a spe-

cialized linearization scheme was developed to recast this model into a MILP (Fernández et al. 2021),

which is considered the only exact approach in this subarea. However, such an approach has limited

computational capability, which signalizes the need for developing more efficient exact algorithms.

As discussed earlier, the utilization of different choice models/rules often leads to distinct ad-hoc

formulations, which, in turn, necessitate carefully tailored solution approaches for specific scenarios.

Unfortunately, this restricts the general applicability of these approaches and complicates their imple-

mentation for practitioners. The lack of clarity regarding which choice model to employ further exacer-

bates the dilemma. To tackle this challenge, we propose a unified framework that can comprehensively

capture the diverse characteristics of CBFL problems. Rather than solving each type of CBFL problem

in an ad-hoc manner, our approach is derived from a single underlying unified framework. This frame-

work allows for the systematic incorporation of various choice models and facilitates a more holistic

understanding of the problem.
5
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1.2 Our contributions: Unified framework for CBFL problem

In this article, our main contribution focuses on the development of a unified framework to model and

solve the classical CBFL problem and its variants. Specifically, the unified framework consists of two

key components:

(i) A unified modeling prescription. We first develop a unified modeling prescription, which gener-

alizes the dominance concept in Echenique and Saito (2019) with our novel definitions of preference

dominance types and valid conditions. Specifically, we conceptualize the choice behavior as a sequen-

tial two-step procedure: Given a set of open facilities, each customer first forms a consideration set that

consists of all non-dominated open facilities. Subsequently, customers split their buying powers/demand

among facilities inside the set (possibly also plus an outside option). Such a new interpretation renders

users of the prescription high modeling flexibility as they can configure how preference dominance is

constructed and how the consideration set is formed according to a specific problem setting. To this end,

technically, we propose a dominance inequality to model the consideration set and derive a directed path

inequality to strengthen the formulation by characterizing the dominance relation as a directed acyclic

graph. We then demonstrate that two broad ranges of CBFL (i.e., essential and unessential demand)

can be representable by the unified modeling prescription. Additionally, the prescription can be easily

adapted to a new third class of problem where facilities are subject to “similarity", which does not obey

the proportional rule on the consideration set, and instead, resembles the use of the nested logit model in

a broader context. In fact, the unified modeling prescription is a sharp technique to characterize various

existing CBFL problems, not limited to the aforementioned types.

(ii) A unified solution approach. To support the application of unified modeling prescription in

decision-making contexts, we further design an exact decomposition algorithm, which projects out the

decision variables related to the consideration set and maintains only the location variables during the

searching process. The main algorithm includes an iterative procedure to generate initial cutting planes

and a branch-and-cut process to search for improved solutions and proven optimality. We also propose

acceleration techniques with the analytical support of theoretic results from the dominance and consid-

eration set formation. Finally, the effectiveness of our unified solution approach is verified by comparing

it with other state-of-the-art exact solution approaches in the literature. Specifically, we conduct exten-

sive computational studies on featured CBFL problems. Numerical results reveal that, although the

unified solution approach is designed for a general model, it still outperforms most approaches that are

dedicatedly developed for ad-hoc problems by a large margin.

2 Unified modeling prescription

2.1 Problem description

A classical CBFL problem is described as follows. Consider a company that plans to open p facilities,

selected from J candidate sites N = {1,2, ...,J} to serve I customers M = {1,2, ..., I}. Customers act

as independent decision makers. When facilities are open, each customer will decide which facility to
6
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seek service from based on his/her own preference. It is generally assumed that the choice of a customer

is affected by the facilities’ utilities, so let ui j > 0 denote the utility of an open facility j ∈N provided

for a customer i ∈M .

If customers patronize a company’s facility, then the company earns “rewards" by serving them. The

company aims to locate facilities such that the earned total rewards are maximized. To this end, let us

define a binary decision variable x j, ∀ j ∈N , representing the location decision at site j, i.e., x j = 1

indicates that facility j is open; otherwise, facility j is closed. We might drop the subscript j when it is

not misleading.

To find the optimal sites locations, the company needs to anticipate how the customers will make

patronizing choices given the open sites. Hereafter, we assume that customers may not consider all open

facilities when making the final choices. Instead, given p open facilities, each customer i ∈M first

forms a consideration set, i.e., a subset of open facilities that this customer is willing to consider before

making the final patronizing choice (Masatlioglu et al. 2012, Ahumada and Ülkü 2018, Echenique and

Saito 2019, Lin and Tian 2021a), and all other facilities that are not in the consideration set will, by

definition, have a zero probability of being selected. We introduce another binary decision variable

yi j to denote whether facility j ∈N is in customer i’s consideration set. Given the consideration set,

customer i then selects a facility from the set to patronize based on a certain choice rules. Accordingly,

the patronization allows the company to obtain an estimated reward Ri(yi) from customer i, which

depends on the consideration set variable yi (note that yi is a vector of J binary variables defined for

customer i). Hereafter, we drop the subscript of yi and use Ri(y) as the reward for notational convenience

when it is not misleading.

The above description is able to capture the common features of most existing CBFL models. The

key idea is to re-interpret customer behaviors in a sequential perspective: forming a consideration set at

first and then selecting a facility (or facilities) to patronize. Such perception facilitates us to provide a

unified modeling prescription for the general CBFL problem in the remainder of this section.

2.2 Dominance inequality

The first ingredient in our modeling prescription is preference dominance, which is motivated by recent

advance in choice modeling and will be used to construct the consideration set. Formally, it is given by

DEFINITION 1 (PREFERENCE DOMINANCE). For two alternatives j and k, we say that j dominates k

if k will not be considered by customers in the presence of j.

Let j � k represent that j dominates k or in other words, customers prefer j over k.

In CBFL, each customer maintains an individual consideration set. Consequently, let ji � ki denote

that customer i prefers facility j over facility k. If facility j is open, then customer i will not keep

facility k in the consideration set as it is dominated by j. Mathematically speaking, with the previous

decision variables, this condition can be stated as yik ≤ 1−x j, if ji� ki,∀i∈M , j ∈N ,k∈N , ensuring

that yik = 0 holds if x j = 1. Unfortunately, this representation requires O(IJ2) numbers of constraints,
7
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which leads to an inefficient large-scale formulation. Therefore, we model the dominance in another

way, which is beneficial to scale down the formulation size. Let us define

∆i j = {k ∈N | ji � ki} ∀i ∈M , j ∈N (1)

as the set of facilities dominated by a facility j. Obviously, if the facility j is open, then all facilities

in ∆i j will not appear in the consideration set of the customer i. This interpretation gives rise to the

following dominance inequality

∑
k∈∆i j

yik ≤ Qi j · (1− x j) ∀i ∈M , j ∈N (2)

where Qi j is initially set as Qi j =min{p, |∆i j|} because when p facilities are open, ∑k∈∆i j
yik ≤Qi j always

hold. Note that, it is possible to have even smaller values of Qi j, which can lead to a tighter formulation.

Two types of preference dominance. In our framework, we define two general rules of utility-related

preference dominance. Note that since the dominance is determined specific to each customer, for ease

of exposition, we drop the subscript i tentatively in the definition.

In real-world contexts, the utility of a facility is attributed to multiple features (or factors), and it can

be measured as a function of the relevant features. Here, we consider T available features to reflect the

utility values. More precisely, let π j = {π t
j} be the feature vector with π t

j > 0 being the value of the tth

feature, ∀t = 1, ...,T . Then, we express the utility of facility j as a function of π j, which is stated as

u j = u(π j) = u(π1
j ,π

2
j , ...,π

T
j ) (3)

Without loss of generality, we assume that u j increases with each argument π t
j. For example, in the Huff

model (Huff 1964), the utility of facility j is affected by the intrinsic facility attraction a j > 0 and the

distance between the facility and the customer d j > 0, i.e., u j = a1
j · d−2

j . Given this, the features are

defined as π1
j = a j and π2

j = d−2
j such that u j = π1

j ·π2
j . To connect the utility and dominance, we impose

the following assumption.

ASSUMPTION 1. For two facilities j and k, if u j ≤ uk, then j � k.

This assumption states that a facility will not be dominated by any facilities that cannot generate a higher

utility. Based on the above utility characterization, we proceed to discussing two types of dominance.

DEFINITION 2 (SINGLE-CRITERION DOMINANCE INDICATOR, SDI). For facilities j and k with util-

ities u j and uk, a function D s(u j,uk) is called single-criterion dominance indicator function if (i) j �
k ⇐⇒ D s(u j,uk) = 1, (ii) j � k ⇐⇒ D s(u j,uk) = 0, and (iii) D s(u j,uk) = 0 if u j ≤ uk.

In Definition 2, the dominance is constructed based on a single criterion, i.e., the magnitude of the

utility. As we shall see later, many existing CBFL models fall into this category.

Note that, apart from the single-criterion case, it is possible that the utility values are determined

by multiple features, such as the Pareto-Huff model (Peeters and Plastria 1998, Fernández et al. 2021)

where customers only consider facilities that are “Pareto-optimal" with respect to the features. These

situations motivate us to develop another definition of multi-criteria dominance.

DEFINITION 3 (MULTI-CRITERIA DOMINANCE INDICATOR, MDI). For facilities j and k with utility

feature vector π j and πk, a function Dm(π j,πk) is called multi-criteria dominance indicator function if (i)

j� k ⇐⇒ Dm(π j,πk) = 1, (ii) j� k ⇐⇒ Dm(π j,πk) = 0, and (iii) Dm(π j,πk) = 0 if u(π j)≤ u(πk).
8
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2.3 Directed path inequality

The second ingredient in the unified modeling prescription is directed path inequality (DPI), which is

defined exclusively using the consideration set variable y and imposed to strengthen the formulation.

Essentially, the preference dominance in most choice models is a partial order, which shows the

following properties: (i) Irreflexivity: j� j, i.e., an alternative cannot dominate itself; (ii) Asymmetry: if

j � k, then k � j; and (iii) Transitivity: if j � k and k � l, then j � l.

Given these properties, we can recast the dominance relation of facilities as a Directed Acyclic Graph

(DAG). Specifically, the facilities are represented by vertices and the pairwise dominance j � k is

described as a directed edge ( j,k) linking from vertix j to vertix k. For a customer i ∈M , the graph

Gi(N ,Ei) denotes the associated DAG, where N is the vertex set (which is exactly the set of candidate

facilities) and Ei is the set of direct edges (which includes all pairs of dominance relation defined for

the customer). For example, Figure 2 shows a DAG with 5 candidate facilities for customer i, where

facility 1 and facility 2 are in the consideration set as they are not dominated by any other facilities (i.e.,

no entering edge). Moreover, we have ∆i1 = {3,4,5} (because facility 1 dominates facilities 3, 4, and

5); ∆i2 = {4,5}; ∆i3 = {4,5}; ∆i4 = {5}; and ∆i5 = /0.

1 2 3 4 5

Figure 2 A directed acyclic graph with 5 vertices.

With the recast representation, the DPI is formally defined as follows.

DEFINITION 4 (DIRECTED PATH INEQUALITY, DPI). For customer i, let ρi be a subset of N . If there

exists a permutation σ of ρi, where σn denotes the nth(1 ≤ n ≤ |ρi|) element in the σ , such that σ1 �

σ2 � · · · � σ|ρi|−1 � σ|ρi|, then

∑
j∈ρi

yi j ≤ 1 (4)

is a directed path inequality, and ρi is a path set generated by customer i’s consideration set.

Given Definition 4, ρi is a set of vertices, which can be arranged into sequence σ such that there

is a path in the associated DAG, starting from vertex σ1, transversing through the vertices in σ , and

ending at vertex σ|ρi|, i.e., a sequence σ1→ σ2→ · · · → σ|ρi|−1→ σ|ρi|. Such a path interpretation leads

to inequality (4) and is denoted as DPI.

LEMMA 1. For the consideration set of customer i, inequality (4) is valid, and it enforces

|ρi|(|ρi|−1)/2 pairwise dominance relations holding simultaneously.

The proof is presented in E-Companion EC.2.1. Taking an example, consider the DAG in Figure 2.

{1,3,4,5} is a path set as the path 1→ 3→ 4→ 5 exists in the DAG. The associated DPI is yi1 +

yi3 + yi4 + yi5 ≤ 1. Since there are 4 vertices in the path set, the number of pairwise dominance relations
9
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imposed is 6. They are 1 � {3,4,5}, 3 � {4,5}, and 4 � 5, which correspond to the edges in the

subgraph consisting of vertices 1, 3, 4, and 5. Similarly, {2,4,5} is also a path set, and it embeds 3

pairwise dominance relations.

Obviously, for customer i, there may exist more than one path set. From the computational perspec-

tive, the path set with more vertices is preferable because such type of path imposes more dominance

relations and generates tighter relaxation bound. We thus define the maximal path set as follows.

DEFINITION 5 (MAXIMAL PATH SET, MPS). In Gi(N ,Ei), a path set ρ∗i is maximal if there does not

exist another path set ρ̄i from Gi(N ,Ei) such that ρ∗i (ρ̄i.

Informally, ρ∗i is maximal if we cannot further extend its associated path in Gi. Recall the above

example in Figure 2, we claim that {1,3,4,5} is a maximal path set; whereas {3,4,5} and {4,5} are not

maximal because their associated paths can be extended by adding the vertex 1 (i.e., path 1→ 3→ 4→ 5

and path 1→ 4→ 5 indeed exist in Gi).

In the following sections, the DPI development is based on the maximal path set ρ∗i . It is also worth

noting that there may be more than one maximal path in a DAG. Theoretically, it is possible to identify

all maximal paths. However, the exhaustive enumeration demands significant computational efforts.

Fortunately, in some CBFL models, the maximal path is unique (as we will see in Section 3); therefore,

for consistency, we only generate one MPS for each customer throughout our modeling prescription.

Algorithm 1 presents an efficient approach to generate the MPS. In line 1, we initialize the iteration

Algorithm 1 Maximal path set generation.
1: Set iteration counter n = 1. Select σ1 = argmax

j∈N
|∆i j| and initialize ρ∗i = {σ1}.

2: while |∆iσn |> 0 do

3: σn+1 = argmax
j∈∆iσn

|∆i j|

4: ρ∗i = ρ∗i ∪{σn+1}

5: n = n+1

6: Return ρ∗i .

counter n = 1. Then we select facility σ1 with the most number of dominated facilities as the initial

vertex of the path (i.e., the starting vertex of the path). Note that due to the transitivity of dominance,

facility σ1 will not be dominated by any other facilities (otherwise, there exists a facility k such that

|∆ik| > |∆iσ1 |). Therefore, vertex σ1 is the source vertex in the DAG. Line 3 finds the successor vertex

σn+1 that the path will visit. We select σn+1 from ∆iσt (so that there is a edge linking from σn to σn+1)

such that the number of its dominated facilities is the maximum, i.e., σn+1 = argmax
j∈∆iσn

|∆i j|. This selection

strategy ensures that we cannot further expand the path by inserting a vertex between σn and σn+1

(otherwise, there exists a facility k in ∆iσn leading to |∆ik| > |∆iσn+1 |). Line 4 adds σn+1 into the path.

Then we update the counter n in Line 5 and proceed to next iteration. The while loop is terminated upon

|∆iσn |= 0, which signals that the current vertex σn is a sink vertex, and it is unable to further expand the

current path. As a result, the following result arises immediately.

COROLLARY 1. Algorithm 1 generates a maximal path set ρ∗i for customer i, ∀i ∈M .
10
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2.4 General model for choiced-based facility location (G-CBFL)

With the above ingredients, we obtain the following general model for the CBFL problem.

max ∑
i∈M

Ri(y) (5a)

st. ∑
k∈∆i j

yik ≤ Qi j(1− x j) ∀i ∈M , j ∈N (5b)

[G-CBFL] ∑
j∈ρ∗i

yi j ≤ 1 ∀i ∈M (5c)

∑
j∈N

x j = p (5d)

yi j ≤ x j ∀i ∈M , j ∈N (5e)

x j ∈ {0,1} ∀ j ∈N (5f)

yi j ∈ {0,1} ∀i ∈M , j ∈N (5g)

where the objective (5a) is to maximize the total rewards of the company. More precisely, Ri(y) is

the reward that the company obtains from customer i, which could be revenue, net profit, or market

share, depending on the specific problems that the model describes. The reward is dependent on the

consideration set and the variable y. Constraint (5b) is the dominance inequality, which specifies how

the consideration set of each customer is formed. Constraint (5c) is the DPI, which is independent of the

location decision x and introduced to strengthen the formulation. Such a constraint will be tailored when

applying G-CBFL to specific problems. Constraint (5d) ensures that the company will open p facilities.

Constraint (5e) imposes that if a facility is not open, then it will not be in the consideration set of any

customer. Finally, Constraints (5f) and (5g) defines the binary variables x and y.

3 Representable models

In this section, we present several existing CBFL models that can be represented by the framework

G-CBFL. Consistent with prior research (Suárez-Vega et al. 2004, Biesinger et al. 2016), we utilize a

classification scheme that categorizes demand types into essential and unessential, and then combines

them pairwisely with different choice rules. Next, we proceed to instantiate the G-CBFL with appropri-

ate combination of demand and choice rule. A summary of the classification and acronym of G-CBFL

is given in E-Companion EC.1.

To simplify the formulation in later discussion, we define the following two sets

Ω = {x | (5d),(5 f )} Ξ = {(x,y) | (5d)− (5g)}

where Ω is the feasible space of x, and Ξ is the restricted feasible space of x and y.

3.1 Essenential demand

We begin our analysis by considering a model that assumes essential demand. This means that there

is only one company operating in the market, and customers will definitely seek out its services. As a

result, there is no possibility of demand loss from the company’s perspective. In this model, customer

choices are characterized by BCR, which stipulates that a customer will select the facility that provides

them with the highest utility. Once customers have made their individual choices, the company proceeds
11
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to serve them accordingly. This model allows us to gain insights into the behavior of customers in a

market with no competition and provides a baseline for comparison when considering more complex

market structures. To this end, the following assumption is necessary for the BCR.

ASSUMPTION 2. In the BCR, there is a strict preference of facilities for every customer, i.e., ui j 6=

uik,∀i ∈M , j ∈N ,k ∈N ,k 6= j.

In other words, for any two facilities j and k, their utilities to customer i are absolutely different (and

not tied), which ensures that only one facility appears in the consideration set of customer i.

Now, let bi j be the net profit if customer i is served by facility j. Then the CBFL problem characteriz-

ing by binary choice rule and essential demand is formulated as a mixed-integer bilevel linear program.

max
x,y

∑
i∈M

∑
j∈N

bi jyi j (7a)

st. x ∈Ω (7b)

max
y

∑
i∈M

∑
j∈N

ui jyi j (7c)

st. ∑
j∈N

yi j ≤ 1 ∀i ∈M (7d)

yi j ≤ x j ∀i ∈M , j ∈N (7e)

yi j ∈ {0,1} ∀i ∈M , j ∈N (7f)

where the upper level problem states that the company aims to maximize the total profits by locating

p facilities; whereas in the lower level problem, each customer will patronize service from the open

facility with the highest utility. Given the Assumption 2, the lower-level problem has a unique solution,

as it resembles the p-median facility location with user preferences (Camacho-Vallejo et al. 2014, Casas-

Ramírez and Camacho-Vallejo 2017).

In the above bilevel model, it is straightforward that customer i prefers facility j over k if ui j > uik,

i.e., ji � ki. The associated SDI function is D s(ui j,uik) = I{ui j>uik}. Accordingly, we define ∆i j as

∆i j = {k ∈N | ui j > uik} ∀i ∈M , j ∈N (8)

As a result, the bilevel model can be restated as a single-level MILP given by

max ∑
i∈M

∑
j∈N

bi jyi j (9a)

[EBCR-CBFL] st. ∑
k∈∆i j

yik ≤ 1− x j ∀i ∈M , j ∈N (9b)

∑
j∈N

yi j ≤ 1 ∀i ∈M (9c)

(x,y) ∈ Ξ (9d)

which matches the generic formulation of G-CBFL with Ri(y) = ∑ j∈N bi jyi j, Qi j = 1, and ρ∗i = N .

Interestingly, Constraint (9b) appears to be a generalization of a closest assignment constraint, named

as WF in Espejo et al. (2012), which has been demonstrated as a very effective way of representing

“all-or-nothing” choices. Furthermore, the maximal path set for all customers is the same and equals to

the set of all candidate facilities. Clearly, the following result holds.

COROLLARY 2. In EBCR-CBFL, set N is the unique maximal path set.
12
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Therefore, we formulate the CBFL problem employing binary choice rule with essential demand as

EBCR-CBFL1.

3.2 Unessential demand

Expanding our analysis beyond the essential demand assumption, we investigate another stream of

CBFL models—the unessential demand ones, where customers may not necessarily choose to patron-

ize the services offered by the company. Given this, apart from the utilities provided by the facilities,

ui j,∀i ∈M , j ∈N , there exists an outside option with a utility of ũi,∀i ∈M . Virtually speaking, this

outside option can be perceived as a “competitor" that competes with the company for customers. In this

scenario, customers must decide whether to seek service from the company or from the outside option,

leading to potential demand losses from the company’s perspective. More specifically, customers split

their buying power/demand proportionally among the facilities in the consideration set plus the outside

option. As a result, customer choices are interpreted probabilistically, and the probability of customer

i seeking service from the company is estimated in proportion to the total utility of the facilities in the

consideration set and the representative utility of the outside option (Aboolian et al. 2007, Lin et al.

2022b), that is,

pi(y) =
∑ j∈N ui jyi j

∑ j∈N ui jyi j + ũi
∀i ∈M (10)

This model provides a more realistic representation of customer behavior in markets where there is

competition and an outside option available. Then, the reward of the company acquired from customer i

is described as Ri(y) = bi pi, where bi > 0 is the buying power of customer i. We thus have the following

formulation to describe the G-CBFL model under unessential demand and the proportional rule:

max ∑
i∈M

bi
∑ j∈N ui jyi j

∑ j∈N ui jyi j + ũi
(11a)

st. ∑
k∈∆i j

yik ≤ Qi j(1− x j) ∀i ∈M , j ∈N (11b)

∑
j∈ρ∗i

yi j ≤ 1 ∀i ∈M (11c)

(x,y) ∈ Ξ (11d)

In the following subsection, we will present two particular models that fall within the generic framework

outlined above and we will elaborate on their specific features and characteristics in detail. Specifically,

they mainly differ in (i) how the consideration set ∆i j is formed, and (ii) how the associated DPI ρ∗i is

defined. Note that, when ∆i j is available, the DPI can be generated as the Algorithm 1. Therefore, in the

rest of this subsection, we will focus on the discussing the ∆i j construction.

3.2.1 Threshold Luce model

The threshold Luce model (TLM) developed by Echenique and Saito (2019), employs SDI to character-

ize the customer choice behavior given competitive market environment. In this regard, an alternative j

dominates an alternative k if j’s utility is strictly higher than 1+ γ times of k’s. The nonnegative param-

eter γ captures a threshold, beyond which alternative k is dominated by a more attractive alternative j.
13
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Applying this concept to the G-CBFL model, we know ji � ki if ui j > (1+ γ)uik for a customer i. That

is, D s(ui j,uik) = I{ui j>(1+γ)uik}, and the dominance set is given by

∆i j = {k ∈N | ui j > (1+ γ)uik} ∀i ∈M , j ∈N (12)

Thus, we formulate the CBFL problem employing threshold Luce model with unessential demand as

UTLM-CBFL.

As discussed in Lin et al. (2022a), several existing models are de facto special cases of the

UTLM-CBFL. For example, on the one hand, when γ = ∞, ∆i j and ρ∗i become empty sets, indicat-

ing that all open facilities are in the consideration set. The TLM thus is degenerated to the standard

Luce model and resembles the multinominal logit model (MNL) (Benati and Hansen 2002, Ljubić and

Moreno 2018), where the probability of a customer visiting a facility is directly proportional to the

facility’s attractiveness or utility. In this case, (11b) and (11c) can be eliminated, and variable y can be

removed by substituting yi j = x j,∀i ∈M , j ∈N . On the other hand, when γ = 0, by introducing an

additional assumption that facilities have distinct utilities, we know ji � ki if ui j > uik. This generates a

consideration set with only one facility (i.e., a facility with the highest utility), and according to equation

(10), the demand is then split proportionally between this facility and the outside option. Such a choice

rule is exactly the well-known partially binary choice rule (PBCR) in the literature (Suárez-Vega et al.

2004, Biesinger et al. 2016, Fernández et al. 2017). Similar to the EBCR-CBFL, set N is the unique

maximal path set for the PBCR, i.e., ρ∗i = N ,∀i ∈M . Therefore, our framework also can be applied

to characterize the CBFL models featuring the classical MNL and PBCR.

3.2.2 Pareto-Huff model

In previous subsection, we discuss the possibility to adopt our modeling framework for the CBFL prob-

lems with SDI condition. Now, we further discuss its applicability on other models by imposing MDI

into the choice rules, called Pareto-Huff model (PHM) (Peeters and Plastria 1998). In this regard, the

utility of facility j to customer i usually consists of two features, i.e., the facility attraction a j and the

distance di j. The utility is typically estimated as

ui j =
a j

dψ

i j
∀i ∈M , j ∈N (13)

where ψ > 0 is a decay parameter, reflecting how fast the utility decreases with the distance.

In the PHM, a customer will visit more distant facility only if that facility has higher attraction than

any other closer facility; therefore, a distant facility will be considered by a customer only if there

does not exist a closer open facility at least with the same attraction. In other words, customers only

consider those facilities that are Pareto optimal to them with respect to attraction and distance (Peeters

and Plastria 1998, Fernández et al. 2018, 2021). These facilities are “Pareto-Huff” ranked, and are used

to form the consideration set in the unified framework.

To construct the set ∆i j, we say that facility j dominates facility k if a j ≥ ak and di j < dik hold for

customer i, i.e., ji � ki. This condition ensures that the customer will eliminate the facilities that is not
14
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Pareto-Huff from the consideration set. In other words, we have the feature vector πi j = {a j,d
−ψ

i j },∀i ∈
M , j ∈N , and Dm(πi j,πik) = I{a j≥ak and d−ψ

i j >d−ψ

ik }
. Then, the set ∆i j is given by

∆i j = {k ∈N | a j ≥ ak and d−ψ

i j > d−ψ

ik } ∀i ∈M , j ∈N (14)

Thus, we formulate the CBFL problem employing Pareto-Huff model with unessential demand as

UPHM-CBFL.

3.3 Unessential demand with two-nest logit model under facility similarity

In the above unessential demand models, when estimating the probability of a customer seeking the

service from the company, the total utility of the chained facilities is computed linearly by summing up

the utilities of all facilities in the consideration set. Implicitly, this assumes that the utility is additive and

that each facility is independent in terms of the utility value. However, since the facilities are provided

by the same company, they may share similarities in terms of the service or products they offer (e.g., a

common brand cannibalization effect or equivalent service), which can result in a non-linear relationship

between the total utility and the number of facilities considered. For example, in the context of chained

business operations, the total utility may not be additive in a linear fashion. Instead, the inclusion of new

facilities to the consideration set may result in a diminishing marginal utility, leading to an overestimated

reward in some scenarios if implementing the above mentioned models.

Inspired by the nested logit model (NLM), we generalize the basic unessential demand models by

incorporating the concept of facility similarity. In particular, we focus on a two-nest scenario where we

treat the facilities in the consideration set as a virtual nest and the outside option as the other. Based on

this approach, customers are expected to first eliminate inferior options from the consideration set and

then make a selection following the nested logit model.

According to the NLM, we introduce a parameter β ∈ (0,1] representing the dissimilarity factor, and

measuring the degree of difference among facilities. A lower value of β indicates that facilities are more

similar to each other, and a higher value indicates the opposite. Moreover, we define Ui j = lnui j,∀i ∈
M , j ∈ N and Ũi = ln ũi,∀i ∈M . Thus, the probability of customer i seeking the service from the

company is estimated as

pi(y) =

(
∑ j∈N eUi j/β · yi j

)β(
∑ j∈N eUi j/β · yi j

)β

+ eŨi
∀i ∈M (15)

Correspondingly, the utility of the company to customer i is represented as a utility of the nest, i.e.,

zi =

(
∑
j∈N

eUi j/β · yi j

)β

∀i ∈M (16)

When β = 1, facilities are totally dissimilar, and the utility becomes linearly additive. In this case, the

equation (15) reduces to (10), and it degenerates to the standard unessential demand model in previ-

ous subsection. However, as the β decreases, zi decreases accordingly, indicating that if facilities show

higher similarity, then the company will attract less customers given the diminishing utilities of open

similar facilities. Note that the resulting reward function Ri(y) = bi pi is concave, which can be eas-

ily verified by composition rules. Our proposed unified modeling framework thus remains applicable

to this extension. Consequently, we formulate the CBFL problem featuring two-nest logit model with

unessential demand as UNLM-CBFL.
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3.4 General discussion on the modeling framework

In this subsection, we present the following examples to facilitate the understanding of how dominance

and directed path come into effect in the G-CBFL representable models. For customer i, let us define

three subsets of N according to the possible scenarios of any feasible solution (x,y), i.e.,

J11
i = { j ∈N | x j = yi j = 1} (17a)

J10
i = { j ∈N | x j = 1,yi j = 0} (17b)

J00
i = { j ∈N | x j = 0,yi j = 0} (17c)

Specifically, J11
i is the set of open facilities that are in the consideration set of customer i; J10

i includes

those open facilities that are dominated and thus does not present in the consideration set; and J00
i is the

set of facilities that are not open in the current location solution.

EXAMPLE 1. Consider SDI and suppose that there are 4 open facilities. For a customer, the utilities of

these facilities are u1 = 4.5, u2 = 3.5, u3 = 2.2, and u4 = 1.0.

(i) For EBCR-CBFL, we have 1 � {2,3,4}, 2 � {3,4}, 3 � {4}. Only facility 1 is in the consideration

set. Therefore, J11
i = {1} and J10

i = {2,3,4}. We can visualize the dominance as Figure 3(a). Accord-

ingly, the maximal path set ρ∗ = {1,2,3,4}.
(ii) For UTLM-CBFL, suppose γ = 1. We have 1 � {3,4}, 2 � {4}, 3 � {4}. Facility 1 and facility 2

are in the consideration set. Therefore, J11
i = {1,2} and J10

i = {3,4}. We can visualize the dominance

as Figure 3(b). Accordingly, the maximal path set ρ∗ = {1,3,4}. �

1 2 3 4

(a) BCR

1 2 3 4

(b) TLM

Figure 3 Visualization of dominance as DAGs. Facilities are represented as vertices. A directed edge pointing from

vertex j to vertex k indicates that facility j dominates facility k.

One interesting observation is that in both cases, facility 1 dominates all open facilities that are not in

the consideration set. In fact, we generalize this result into a formal lemma.

LEMMA 2. Under the SDI, for each customer i, there exists at least one facility in the consideration set

J11
i that dominants all facilities in J10

i .

The proof is presented in E-Companion EC.2.2. Note that the validity of this result cannot be generalized

to the MDI case, as explained in the below example.

EXAMPLE 2. Under the MDI, suppose that there are two features. Consider 9 open facilities whose

features are given as follows

Assume that the indicator function is Dm(π j,πk) = I{π1
j >π2

k and π2
j >π2

k }
. We have J11 = {1,2,3,4} and J10 =

{5,6,7,8,9}. Since 1� {8,9},2� {5,8,9},3� {5,6,9},4� {5,6,7}, there does not exist any facility

in J11 that can dominate all facilities in J10. �
16
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j 1 2 3 4 5 6 7 8 9
π1

j 8 9 5 4 6 7 5 4 3
π2

j 3 2 4 6 3 1 2 4 5

The above discussions provide insights into the structure of the DAGs generated by the SDI and

MDI. In particular, for SDI-based models, the existence of “dominance facility” that dominates all open

facilities outside the consideration set, according to Lemma 2, will greatly facilitate development of

a general solution algorithm for the G-CBFL. For the MDI-based models, the absence of “dominance

facility” will require additional algorithm implementation efforts, as we will see later.

4 Unified solution approach

In this section, we introduce an efficiently exact method for solving the G-CBFL and its representable

models. We begin by presenting an overview of the designed algorithm, followed by a description of

the necessary components, including the Benders separation and implementation procedures.

4.1 Overview

To facilitate the following discussion, we define two parameters δi jk and αi j given by

δi jk =
{

1 if k ∈ ∆i j
0 otherwise ∀i ∈M , j ∈N ,k ∈N (18)

αi j =
{1 ∀ j ∈ ρ∗i

0 ∀ j /∈ ρ∗i
∀i ∈M (19)

With these parameters, the unified solution approach is described as follows. Note that for models that

can be recast into the G-CBFL, the binary decision variable y can be relaxed to y ≥ 0. Moreover, as

the reward Ri(y) is a concave function, consequently, the G-CBFL formulation is appealing for Benders

decomposition because we can decompose it into I convex optimization subproblems for any fixed value

x̄ of the location variable x. Meanwhile, these subproblems are always feasible and bounded. They only

contain the consideration set related to the variable y, and solving them allows to generate effective

cutting planes to eliminate non-optimal location solutions. Specifically, we project out the variable y

and consider a master problem, defined on the x-space,

[MP] max
x∈Ω

∑
i∈M

Φi(x) (20a)

in which Φi(x) is obtained by solving an individual subproblem for each customer zone i,

Φi(x) = max
y

Ri(y) (21a)

st. yi j ≤ x j ∀ j ∈N (21b)

[SPi(x)] ∑
k∈N

δi jkyik ≤ Qi j(1− x j) ∀ j ∈N (21c)

∑
j∈N

αi jyi j ≤ 1 (21d)

yi j ≥ 0 ∀ j ∈N (21e)

where constraints (21c) and (21d) utilizes the new defined parameters δi jk and αi j. Essentially, Φi(x)

represents “the reward of the company obtained from customer zone i”, which is expressed as an implicit

function of the location variable x. Obviously, Φi(x) is a concave function due to the concavity of Ri(y).

Therefore, [MP] is a mixed-integer convex optimization problem (MICP).
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To solve this MICP, we linearize Φi(x) by its first-order approximator. That is, for a fixed x̄, we build

a linear cut at x̄ as

wi ≤Φi(x̄)+ si(x̄)T (x− x̄) ∀i ∈M (22)

where si(x̄)∈RJ is the subgradient of Φi(x) at value x̄. Such a cut is often called the generalized Benders

cut (GBC). For [MP], the cut is globally valid because it approximates Φi(x) from above and thus cannot

cut off any feasible region. Consequently, [MP] can be approximated and solved by the following MILP:

[rMP] max ∑
i∈I

wi (23a)

st. wi ≤Φi(x̄)+ si(x̄)T (x− x̄) ∀i ∈M , x̄ ∈T (23b)

x ∈Ω (23c)

where T is the set of x solutions that are visited previously and will be used to define GBCs for Φi(x)

approximation. Such a MILP, defined on the projected decision space x, is called the relaxed master

problem (rMP). In modern Benders decomposition, [rMP] is solved within the branch-and-cut frame-

work using a single B&C tree, wherein the most critical task is to generate the GBC on-the-fly at nodes

of the search tree. This process is commonly referred as Benders separation.

4.2 Benders separation

The key element is the Benders subgradient of Φi(x̄) at x̄, i.e., si(x̄). In fact, the subgradient value

depends on the optimal dual variables of [SPi(x̄)]. Note that there is no duality gap for [SPi(x̄)] because

all related constraints are linear. Let λi ∈ RJ
+, µi ∈ RJ

+, vi ∈ R+, and γi ∈ RJ
+ be the dual variables

associated with constraints (21b), (21c), (21d), and (21e), respectively. The Lagrangian function of

[SPi(x̄)] at x̄ reads as

`i = Ri(y)+ ∑
j∈J

λi j(x̄ j− yi j)+ ∑
j∈J

µi j

[
Qi j(1− x̄ j)− ∑

k∈J
δi jkyik

]
+ vi(1− ∑

j∈J
αi jyi j)+ ∑

j∈J
γi jyi j (24)

The closed form of the Benders subgradient is given by

si(x̄) =
∂`i

∂x

∣∣∣
x=x̄

= λi−Qiµi (25)

where an optimal dual solution (λi,µi) ∈ RJ
+×R

J
+ is required to finalize the subgradient evaluation.

In modern convex optimization computer packages and software (e.g., MOSEK), after solving a

primal problem (i.e., [SPi(x̄)]), an optimal dual solution associated with the constraints can be automat-

ically provided, alongside the optimal primal solution. A lazy and straightforward way of generating

GBCs in the form of inequality (22) is to directly use MOSEK to solve [SPi(x̄)]. Then, we obtain Φi(x̄)

as the optimal objective of [SPi(x̄)], retrieve (λi,µi), and evaluate si(x̄) as equation (25).

4.3 Implementation

Our solution approach is named as Two-phases Generalized Benders Decomposition Algorithm, which

is motivated by Bodur and Luedtke (2017). Figure 4 depict the implementation details.

Phase I involves solving the continuous relaxation of [rMP] using the traditional iterative Benders

algorithm. The relaxed [rMP] is a linear program, and thus, we denote it by [rMP-LP]. At each iteration,
18
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Figure 4 Two-phase generalized Benders decomposition algorithm.

we solve the [rMP-LP] to obtain a continuous upper bound (cUB) and a relaxed solution x̂ (either

fractional or integer). Then we proceed to generating GBCs at x̂. This includes (i) solving [SPi(x̂)]

to obtain Φi(x̂) and (ii) evaluating the subgradient si(x̂) in the form of equation (25). Here, we use

the toolbox CVXPY to model [SPi(x̂)] and subsequently call MOSEK solver to solve the problem.

CVXPY can automatically generate the associated dual variables; therefore, the GBCs can be derived

in a straightforward manner and are added to the [rMP-LP] to tighten the cUB. Then, the continuous

lower bound (cLB) is updated according to the Φi(x̂). This loop repeats until |cUB−cLB|/cUB < 10−4.

We store all generated GBCs at the end of Phase I.

Phase II is the standard branch-and-cut (B&C) process, where we initialize [rMP] with the GBCs

generated in the Phase I. The B&C is conducted within the commerical solver Gurobi 9.5.2. To enhance

the numerical stability, we adopt conservative numerical tolerances in Gurobi, i.e., IntFeasTol, Feasibil-

ityTol, and OptimalityTol are set to the minimum value 10−9. In Figure 4, the 5 procedures (i.e., blocks)

marked with dark color mean that they are conducted automatically by Gurobi’s internal functions. We

only intervene the solution process when Gurobi visits integer nodes in the B&C searching tree. That is,

when the current node relaxation solution produces an integer x̄, we generate the corresponding GBCs

at x̄ by solving [SPi(x̄)] to obtain Φi(x̄) and evaluating si(x̄). In other words, GBCs are only separated at

integer nodes. This step is achieved within the lazy callback module of Gurobi. GBCs are added to the

current node if the current solution violates a minimum threshold of 10−5.

To summarize, the G-CBFL model shows separable convex structure when the location decision is

fixed. Leveraging this property, we design a two-phase Benders decomposition algorithm that projects

out the consideration set variable. However, during the B&C process in Phase II, the separation of

GBCs is performed using external MOSEK. Such separation is indeed straightforward to implement,

particularly owing to the merits that the dual variables of [SPi(x̄)] can be generated automatically, and

thus, si(x̄) can be easily evaluated. However, we typically have to activate the separation for a large

number of times. As a result, the solution process could be significantly slow down because solving

[SPi(x̄)] by an external solver is not trivial, especially for large-scale instances.
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5 Algorithm acceleration

Perceiving that the Benders separation could be a bottleneck of the algorithm, this section is dedicated

to designing a more efficient separation function. In particular, our goal is to obtain Φi(x̄) and the

associated dual variables λi ∈ RJ
+ and µi ∈ RJ

+ analytically.
5.1 Primal solution and KKT condition

Algorithm 2 Computing primal solution of [SPi(x̄)]
1: Initialize ȳi j = 1,∀ j ∈N .

2: for each j ∈N do

3: if x̄ j = 0 then

4: Set ȳi j = 0 . Remove closed facilities from the consideration set

5: else . x̄ j = 1

6: Set ȳik = 0,∀k ∈ ∆i j . Remove facilities that are dominated by j

7: Return ȳi j,∀ j ∈N . Return the consideration set of customer i

To start with, note that given an integer x̄, we can obtain the consideration set for customer i and thus

solve [SPi(x̄)] by Algorithm 2. Intuitively, the algorithm initializes all facilities in the consideration set

(line 1) and then sequentially remove facilities that are either closed (line 4) or dominated (line 6). The

resultant solution ȳ is apparently optimal to [SPi(x̄)] and is obtained in polynomial time.

Given the primal solution pair (x̄, ȳi), the reduced KKT system of [SPi(x̄)] becomes
∂Ri(ȳ)

∂yi j
−λi j− ∑

k∈N
δik jµik−αi jvi + γi j = 0 ∀ j ∈N (26a)

λi j (x̄ j− ȳi j) = 0 ∀ j ∈N (26b)

[KKTi(x̄, ȳ)] µi j

[
Qi j(1− x̄ j)− ∑

k∈N
δi jkȳik

]
= 0 ∀ j ∈N (26c)

vi

(
βi− ∑

j∈N
αi jȳi j

)
= 0 (26d)

γi jȳi j = 0 ∀ j ∈N (26e)

(λi,µi,γi,vi)≥ 0 (26f)

where (26a) is the stationary condition, (26b)-(26e) state complementary slackness, and (26f) ensures

dual feasibility. We omit the primal feasibility because ȳi is feasible and optimal. The remaining task

is to obtain a dual solution (λi,µi,γi,vi) that satisfies [KKTi(x̄, ȳ)]. The feasibility of (λi,µi,γi,vi) to

[KKTi(x̄, ȳ)] guarantees that (λi,µi,γi,vi) is an optimal dual solution because the Lagrangian function

(24) will be reduced to Ri(ȳ), which is exactly the primal objective.

Now, for customer i, we express the sets defined in (17) as J̄11
i , J̄10

i , and J̄00
i to emphasize their depen-

dence on (x̄, ȳi). The following result arises.

LEMMA 3. Given primal solution (x̄, ȳi), for each i ∈M , an optimal dual solution satisfies

vi = I{∑ j∈N αi j ȳi j=1} · min
j∈J̄11

i :αi j=1

∂Ri(ȳ)
∂yi j

(27)

∑
k∈J̄11

i

δik jµik ≥
[

∂Ri(ȳ)
∂yi j

−αi jvi

]+
∀ j ∈ J̄10

i (28)
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λi j =


∂Ri(ȳ)
∂yi j
−αi jvi ∀ j ∈ J̄11

i

0 ∀ j ∈ J̄10
i[

∂Ri(ȳ)
∂yi j
−∑k∈J̄11

i
δik jµik−αi jvi

]+
∀ j ∈ J̄00

i

(29)

where I{·} is the indicator function and [z]+ = max{z,0}. Moreover, µi j = 0,∀ j ∈ J̄00
i ∪ J̄10

i .

We present how we derive these conditions in E-Companion EC.2.3. According to the lemma, given

(x̄, ȳi), vi is immediately available. Unfortunately, |J̄11
i | elements in µi are still unknown and, in fact,

constrained by |J̄10
i | linear inequalities in (28). However, once we know all values of µi, λi can be directly

computed from equation (29). Therefore, the remaining task is to find out the missing pieces of µi.

The RHS of (28) can be evaluated when the primal solution is available. By inspection, setting µik,

∀k ∈ J̄11
i , to a large positive number is straightforwardly feasible for the inequality (28). However, this

will lead to rather weak and ineffective GBCs. Furthermore, our Benders subgradient is defined as

equation (25), where each µi j is multiplied by Qi j (where Qi j serves as a “big-M"). Therefore, we prefer

to keep the vector µi as “sparse" as possible (i.e., to have fewest number of nonzero elements) for the

sake of generating tight cuts.

The following two subsections illustrate how a sparse µi is generated to finalize the design of ana-

lytical Benders separation. It turns out that the approaches for the SDI and MDI models should be

separately developed.

5.2 Dual solution under SDI

We first discuss the case with single-criterion dominance. According to Lemma 2, for each customer i,

it is possible to find out one facility from set J̄11
i that dominants all facilities in J̄10

i . As the dominance

is based on the value of utility, the facility with the highest utility in J̄11 must dominate all facilities in

J̄10. This observation leads to the following dual solution, where exactly one element in vector µi· is

nonzero.

COROLLARY 3. Under the SDI, let mi = argmax
j∈J̄11

i

ui j for customer i. A feasible and sparse µi ∈ RJ
+ is

given by

µi j =

max
k∈J̄10

i

[
∂Ri(ȳ)
∂yik
−αikvi

]+
if j = mi

0 ∀ j ∈N \{mi}
(30)

With the Corollary 3 and an integer x̄ from the B&C searching tree of [rMP], we summarize the

procedures to generate GBCs as follows. Firstly, we appy Algorithm 2 to obtain ȳi. For customer i, we

construct sets J̄11
i , J̄10

i , and J̄00
i . Then, we compute vi and µi according to equations (27) and (30) and,

subsequently, λi according to (29). Finally, with these primal and dual values, we generate GBCs in the

form of (22), where the Benders subgradient is computed by equation (25).

Note that for EBCR-CBFL, the consideration set consists of one facility, i.e., |J̄11
i |= 1. Naturally, this

facility should dominate all other open facilities. For UTLM-CBFL, the distinct preference assumption

is not required; therefore, it is possible that two or more facilities in the consideration set have the same

and maximum utility. In this case, we select the one with the smallest facility index.
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5.3 Dual solution under MDI

Different from the SDI case, under multi-criteria dominance, there may not exist a facility from the

consideration set J̄11
i that dominants all facilities in J̄10

i . Consequently, there could be more than one

nonzero elements in the µi. In the worst case, the number of nonzero elements can go up to
∣∣J̄11

i

∣∣.
For customer i, given a primal solution pair (x̄, ȳi), we define a J̄d

i ⊆ J̄11
i as the “dominant set", such

that each facility in J̄10
i is dominated by at least one facility in J̄d

i . That is, for each k ∈ J̄10
i , there exists

a m ∈ J̄d
i such that m � k. Given the J̄d

i , we can restrict that the set of nonzero elements in µi is only

relevant to J̄d
i .

Now, we need to derive a J̄d
i with as few elements as possible. To this end, we propose a greedy

heuristic in Algorithm 3 to generate the J̄d
i . Specifically, in line 1, we initialize J̄d

i as an empty set. In

the while loop (line 2-7), we select the facility m from the consideration set J̄11
i that dominates the most

open facilities (line 3) and include it to J̄d
i (line 4). Then, we remove this facility from J̄11

i to prevent it

from being selected again later (line 5). Finally, we remove all open facilities that are dominated by the

facility m (line 6). The while loop continues until J̄10
i becomes an empty set, signalizing that all open

facilities that are not in the consideration set are dominated by facilities in J̄d
i . Note that in line 3, if more

than one facility has the same and maximum number of dominated facilities, the one with the smallest

index is selected.

Algorithm 3 Generating dominant set.
1: Given J̄10

i and J̄11
i , initialize J̄d

i = /0.

2: while J̄10
i 6= /0 do

3: m = argmax
j∈J̄11

i

∑

k∈J̄10
i

δi jk

4: J̄d
i = J̄d

i ∪{m} . Append m to dominant set

5: J̄11
i = J̄11

i \{m}

6: J̄10
i = J̄10

i \
(
∆im∩ J̄10

i
)

. Remove open facilities dominated by m

7: Return J̄d
i .

Figure 5 shows an example of Algorithm 3. In iteration 1, facility 1 is selected and added to J̄d
i .

Accordingly, the facilities 5, 6, and 7 are removed because they are dominated by the facility 1. In

iteration 2, facility 4 is selected and added to J̄d
i . J̄10

i becomes an empty set since we remove facilities 8

and 9. Then, we know that with the facilities 1 and 4, all facilities in the original J̄10
i are dominated.

Facilities in set 𝐉̅!"" Facilities in set 𝐉̅!"# Dominance link

Iteration 0: 𝐉̅!$ = ∅ Iteration 1: 𝐉̅!$ = {1} Iteration 2: 𝐉̅!$ = {1,4} Result Visualization

1 2 3 4 2 3 4 2 3 1 4

5 6 7 8 9 8 9 5 6 7 8 9

Figure 5 Example of finding a dominant set for multi-dimensional preference ordering using Algorithm 3.

With the J̄d
i generated by Algorithm 3, the following result arises immediately.
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COROLLARY 4. Under the MDI, let J̄d
i represent the dominant set for customer i. A feasible and sparse

µ is given by

µi j =

 max
k∈J̄10

i ∩∆i j

[
∂Ri(ȳ)
∂yik
−αikvi

]+
∀ j ∈ J̄d

i

0 ∀ j ∈N \ J̄d
i

(31)

The above corollary ensures that the inequality (28) holds, thereby allowing us to complete all missing

pieces of µi necessary for Lemma 3. The rest of the Benders separation for multi-criteria dominance can

be achieved in the same way as that for the SDI.

This section develops acceleration techniques for the unified solution approach by exploring the gen-

eral problem structures under SDI and MDI respectively. The acceleration is achieved through replacing

the use of external solvers by analytical formulas to handle Benders separation at integer nodes of B&C

searching tree, which turns out to be rather effective in our preliminary computational test. Therefore, in

what follows, when mentioning our solution algorithm, we explicitly refer to the two-phase generalized

Benders decomposition in which acceleration techniques are default executed.

6 Featured computational study

In this section, we present computational experiments and results analysis. We refer to our generalized

Benders decomposition approach as GBD, and primarily compare GBD with existing exact methods.

To further demonstrate the efficiency of GBD, we also conduct extensive experiments using heuristics

or approximation benchmarks. For more detailed discussions, interested readers are directed to EC.4.4.

To implement the algorithm, we code it by Python 3.10.6 on a 32 GB RAM Macbook with M1

processor and adopt Gurobi 9.5.2 as the solver. Unless explicitly mentioned below, Gurobi runs in

the single-thread mode. We refer interested readers to Lin et al. (2024) for all codes that we used.

For later discussion, we define several performance measurements: t[s] denotes the computational time

in seconds. By default, we set a 2-hour time limit (i.e., 7200 seconds). rg[%] stands for the relative

exit gap in percentages when the solution process terminates, computed as |zbb-zopt|/|zbb| × 100%,

where zopt is the value of the current best solution and zbb is the best bound. An instance is solved to

optimality if rg < 0.01%. ‘# branch nodes’ is the number of branch-and-cut nodes explored by Gurobi,

and ‘# instances unsolved/tested’ indicates the number of unsolved instances among tested instances.

6.1 Experiment on Binary Choice Rule with Essential Demand

Our first experiment is concerned about the CBFL featuring binary choice rule with essential demand.

According to the unfined framework, the traditional CBFL models can be reformulated into the

EBCR-CBFL and further solved following the GBD procedure. Furthermore, we consider two bench-

marks: (i) directly solving the reformulated MILP in Equation (9), which is called EBCR-CBFL2, and

(ii) reformulating the bilevel CBFL in Equation (7) into a MILP using the KKT-based approach (Casas-

Ramírez and Camacho-Vallejo 2017), as EBCR-KKT, then solve it directly. We present the KKT-based

reformulation details in E-Companion EC.3.1 and name such a benchmark as EBCR-KKT.
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6.1.1 Rnd-EBCR instances

We test randomly generated instances with 100 candidate facilities, where the coordinates of cus-

tomers and facilities are generated from U [1,100]×U [1,100]. Distance di j between facility j and

customer i is computed by the Euclidean distance. The utility is defined as ui j = 1/Di j, where Di j ∼

U [0.4 · di j,1.6 · di j]. Additionally, let us set bi j = 150− di j. All data are generated with fixed ran-

dom seeds. These instances are referred as Rnd-EBCR instances. In total, we consider 30 Rnd-EBCR

instances with the following combination of instance scale and parameter: number of customers I =

{100,150,200,300,400} and p = {3,5,7,10,15,20}. The complete computational results are given in

E-Companion EC.4.1.
Table 1 Computational results summary of Rnd-EBCR instances for EBCR-CBFL.

I
EBCR-KKT EBCR-CBFL GBD

t[s] rg[%] # branch
nodes

# instances
unsolved/tested t[s] rg[%] # branch

nodes
# instances

unsolved/tested t[s] rg[%] # branch
nodes

# instances
unsolved/tested

100 39.1 0.00 722 0/6 28.2 0.00 37 0/6 5.9 0.00 138 0/6
150 772.1 0.00 5359 0/6 50.3 0.00 151 0/6 11.4 0.00 729 0/6
200 1838.3 0.00 13312 0/6 81.7 0.00 494 0/6 23.5 0.00 2363 0/6
300 6515.5 0.16 14270 4/6 333.6 0.00 2362 0/6 111.1 0.00 13085 0/6
400 6956.6 0.39 7030 5/6 1220.3 0.00 6417 0/6 524.8 0.00 55480 0/6

Table 1 provides the summary of the computational results. In each row, ‘t[s]’, ‘rg[%]’ and ‘# branch

nodes’ are average values over 6 instances. We mainly have two observations. First of all, EBCR-CBFL

is more efficient than EBCR-KKT in general. For example, when I = 150, the average computational

times of these two approaches are 50.3 seconds versus 772.1 seconds. Moreover, EBCR-CBFL success-

fully solves all instances to optimal, whereas EBCR-KKT fails in 9 instances. In fact, by comparing the

formulation of EBCR-CBFL and EBCR-KKT, we know that the EBCR-KKT significantly expands the

formulation size (i.e., introducing more variables and constraints). Furthermore, the EBCR-KKT seems

weaker in the continuous relaxation tightness because it typically requires exploring substantially more

branching nodes to solve an instance optimally. Therefore, it is clear that the advantage of EBCR-CBFL

over EBCR-KKT is primarily owing to its smaller formulation size and tighter relaxation.

Secondly, GBD is the most efficient approach as it requires the lowest computational time to solve

all instances to optimality. The advantage of GBD is that only the location variable x is maintained in

the algorithm, and the consideration set related variable y is projected out through the decomposition

scheme. Compared to EBCR-CBFL, the searching space is further reduced in GBD, which, together

with the effectiveness of the proposed Benders separation technique in Section 5, substantially improves

the efficiency to solve the Rnd-BCR instances.

6.1.2 PMPUP instances

We then tested 30 structured problem data PMPUP, which is a standard testbed for p-Median Problem

with Users Preferences from benchmark library Discrete Location Problems3. For ease of exposition, the

detailed description and testing results of 30 PMPUP instances are presented in E-Companion EC.4.2.

We show the graphical insights in Figure 6. Figure 6(a) reports the boxplot of the computational time

(in log-scale). Apparently, GBD is the fastest approach to successfully solve all instances. In particular, it

outperforms EBCR-KKT by almost an order of magnitude. Figure 6(b) shows the percentage of instances
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solved optimally (% instances solved) within any given computational time. Clearly, GBD is the best

one as the blue solid-line consistently dominates the others with solving all instances within time limit.

In fact, for EBCR-CBFL and EBCR-KKT, their average computational times are 1736.6 seconds versus

2139.8 seconds, and their average branching nodes are 97881 versus 238250 respectively. Such an

observation is conformed with that in the Rnd-BCR experiments.

   
101

102

103

t [
s]

EBCR-KKT
EBCR-CBFL
GBD

(a)

0 1000 2000 3000 4000 5000 6000 7000
t [s]

0

20

40

60

80

100

%
 in

st
an

ce
s s

ol
ve

d

EBCR-KKT
EBCR-CBFL
GBD

(b)

Figure 6 Computational results of PMPUP instances for EBCR-CBFL: (a) run time (b) performance profile.

Based on the computational results of the above two datasets, we conclude that the unified modeling

framework could yield a tighter MILP formulation than the KKT-based approach. Furthermore, the

GBD is comparatively powerful to solve the reformulated MILP model as it can reduce the run time for

a siginificant order of magnitude.

6.2 Experiment on Threshold Luce Model with Unessential Demand

The next experiment is conducted on the CBFL problem characterized by the threshold Luce model

with unessential demand. As discussed in Section 3.2.1, under the assumption of distinct utility, the

TLM reduces to the PBCR when γ = 0. Therefore, we separately conduct experiments on the general

cases with γ > 0 and the special case with γ = 0 which is equivalent to PBCR.

6.2.1 General case

The state-of-the-art exact solution approach for such a problem is proposed by Lin et al. (2022a). The

authors took advantage of the path-based inequality, provided a model similar to the UTLM-CBFL

in this article, reformulated the model as a mixed-integer conic quadratic program (MICQP) and then

solved it by a commercial solver. This method is demonstrated to outperform several approaches in

the literature and we thus take it as a benchmark for GBD. Specifically, we follow the reformulation

procedure in E-Companion EC.3.3 and obtain a benchmark denoted as MICQP.

For a fair comparison, we adopt the dataset in Lin et al. (2022a) as our testbed4. The dataset is named

as LLPTL and consists of two classes of instances, one with 200 customers and 100 facilities and the

other with 400 customers and 150 facilities. The data also provides the coordinates of customers and

facilities in plane space, and the distance matrix d is measured by Euclidean distance. According to Lin

et al. (2022a), we set the utility as ui j = e−di j ,∀i ∈M , j ∈N , and ũi = e−1,∀i ∈M .
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Table 2 Computational results of LLPTL instances for UTLM-CBFL.

p γ
(I,J) = (200,100) (I,J) = (400,150)

MICQP GBD MICQP GBD
t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%]

10 1 170.1 0.00 24.9 0.00 686.5 0.00 52.8 0.00
10 3 862.5 0.00 23.5 0.00 724.5 0.00 58.6 0.00
10 5 591.3 0.00 24.0 0.00 1392.4 0.00 65.5 0.00
10 7 657.7 0.00 21.4 0.00 867.9 0.00 58.8 0.00
10 10 687.3 0.00 18.8 0.00 748.5 0.00 54.8 0.00
10 20 610.8 0.00 16.4 0.00 691.5 0.00 61.0 0.00
20 1 733.4 0.00 250.7 0.00 1423.4 0.00 74.3 0.00
20 3 1318.1 0.00 140.1 0.00 2624.0 0.00 67.1 0.00
20 5 711.0 0.00 83.3 0.00 2332.3 0.00 71.8 0.00
20 7 890.4 0.00 41.2 0.00 2213.7 0.00 63.0 0.00
20 10 589.2 0.00 26.9 0.00 2243.8 0.00 56.1 0.00
20 20 615.8 0.00 25.8 0.00 2135.7 0.00 50.8 0.00
30 1 680.6 0.00 385.5 0.00 7200.0 0.67 1317.9 0.00
30 3 749.0 0.00 217.5 0.00 7200.0 0.53 1195.5 0.00
30 5 564.6 0.00 87.1 0.00 7200.0 0.64 717.8 0.00
30 7 578.3 0.00 60.5 0.00 7200.0 0.44 384.6 0.00
30 10 732.5 0.00 34.1 0.00 7200.0 0.37 192.5 0.00
30 20 562.9 0.00 26.0 0.00 5433.4 0.00 128.4 0.00

Here, we consider instances with p = {10,20,30} and threshold γ = {1,3,5,7,10,20}. Computa-

tional results in Table 2 show that the GBD outperforms MICQP. In general, GBD is faster by more

than one-order of magnitude. More importantly, it successfully solves all instances (the maximum time

is only 1317.9 seconds), while the MICQP struggles in 5 instances with size (I,J) = (400,150) and

terminates with non-trivial gaps. Therefore, we argue that the proposed modeling prescription and

corresponding solution approach perform efficiently and effectively on the CBFL problem employing

Theshold Luce model with unessential demand.

6.2.2 Special case: partially binary choice rule with unessential demand

Now, we focus on a special case where γ = 0 and the utility is distinct. The underlying choice rule thus

degenerates to the PBCR. In Lin and Tian (2021a), a Benders approach was proposed and shown to be

efficient for the CBFL problem under PBCR and unessential demand. We thus take this method, denoted

by BendersLT, as the benchmark for our GBD. We also adopt the original dataset and the same solver

configuration as Lin and Tian (2021a) for a fair comparison.

The computational results are summarized in Table 3. In general, when dealing with relatively eas-

ier instances (e.g., J = 100), BendersLT exhibits faster performance. However, for more challenging

instances, GBD outperforms BendersLT in terms of efficiency and solution quality. Overall, GBD

achieves optimality for all except one instance, and even in that unsolved instance, the termination gap

is smaller than BendersLT. Consequently, we claim that GBD remains competitive when compared to

the state-of-the-art Benders approach, particularly when solving large-scale challenging instances.

Table 3 Computational results of state-of-the-art BendersLT approach and GBD for the PBCR case.

I J
BendersLT GBD

t[s] rg[%] # branch
nodes t[s] rg[%] # branch

nodes
1500 100 105.6 0.00 1953 159.4 0.00 215
1500 200 400.4 0.00 3527 916.4 0.00 8781
1500 300 2866.7 0.00 94361 2150.8 0.00 2624
2000 100 213.6 0.00 2246 305.7 0.00 525
2000 200 1435.7 0.00 14105 1357.6 0.00 8661
2000 300 7200.0 1.56 73433 4199.6 0.00 6868
3000 100 765.4 0.00 2048 545.5 0.00 371
3000 200 7200.0 0.85 32955 3708.3 0.00 2997
3000 300 7200.0 3.95 23540 7200.0 1.53 3082
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6.3 Experiment on Pareto-Huff Model with Unessential Demand

We proceed to discuss the computational experiment on the CBFL problem characterized by Pareto-

Huff model with unessential demand given three benchmarks. The first one is a MILP reformulation

approach, which, to the best of our knowledge, is the only exact method dedicated to solving the

CBFL model under PHM in the literature (Fernández et al. 2021). The reformulation procedure is illus-

trated in E-Companion EC.3.2, which utilizes a set of inequalities to construct the Pareto consideration

set. We refer to this benchmark as MILPF. Moreover, the MICQP reformulation approach is also applica-

ble to this problem. Therefore, our second benchmark is a MICQP approach (also see EC.3.2), referred

to as MICQPF, which leverages the consideration set inequalities in Fernández et al. (2021). Finally, we

obtain a MICQP formulation based on the model UPHM-CBFL and denote this benchmark as MICQP.

The instances are generated as follows. In PHM, the utility consists of two dimensions, i.e., the attrac-

tion a j and the distance di j. We first generate a j ∼U [1,100]. Then, we generate the coordinates of cus-

tomers and facilities as U [0,100]×U [0,100] and compute the di j by Euclidean distance. Accordingly,

utility ui j is defined in the standard way as ui j = a j/dψ

i j . Finally, we randomly draw bi ∼U [1,1000].
Table 4 Computational results of random instances for UPHM-CBFL.

I J p
ψ = 2 ψ = 3

MILPF MICQPF MICQP GBD MILPF MICQPF MICQP GBD
t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%] t[s] rg[%]

100 50 5 446.6 0.00 295.9 0.00 26.1 0.00 3.9 0.00 16.8 0.00 10.6 0.00 7.2 0.00 2.4 0.00
100 50 7 639.5 0.00 94.0 0.00 28.3 0.00 6.4 0.00 19.7 0.00 13.3 0.00 6.7 0.00 2.0 0.00
100 50 10 1055.8 0.00 596.6 0.00 42.1 0.00 17.8 0.00 27.2 0.00 15.3 0.00 7.7 0.00 2.4 0.00
100 80 5 567.1 0.00 135.3 0.00 49.8 0.00 8.8 0.00 47.3 0.00 22.6 0.00 8.5 0.00 3.9 0.00
100 80 7 1450.2 0.00 189.3 0.00 54.8 0.00 11.6 0.00 81.2 0.00 44.5 0.00 27.2 0.00 3.8 0.00
100 80 10 7200.0 18.01 3036.1 0.00 344.1 0.00 41.7 0.00 81.1 0.00 31.0 0.00 25.0 0.00 4.6 0.00
100 100 5 770.5 0.00 3095.4 0.00 73.1 0.00 11.6 0.00 60.9 0.00 65.3 0.00 18.8 0.00 5.1 0.00
100 100 7 7200.0 15.05 3734.5 0.00 371.5 0.00 25.9 0.00 136.8 0.00 79.8 0.00 26.4 0.00 5.1 0.00
100 100 10 7200.0 29.95 7200.0 3.02 554.0 0.00 86.7 0.00 350.6 0.00 104.0 0.00 41.0 0.00 5.8 0.00
200 100 5 7200.0 13.97 7200.0 11.95 1264.6 0.00 65.4 0.00 329.3 0.00 1064.8 0.00 152.3 0.00 16.2 0.00
200 100 7 7200.0 31.39 7200.0 12.18 2283.4 0.00 240.5 0.00 452.6 0.00 1384.4 0.00 349.4 0.00 14.3 0.00
200 100 10 7200.0 51.81 7200.0 11.15 4248.5 0.00 1643.3 0.00 826.8 0.00 1144.9 0.00 320.5 0.00 15.9 0.00
300 100 5 7200.0 20.53 7200.0 13.56 4662.8 0.00 106.8 0.00 1117.8 0.00 1805.9 0.00 187.2 0.00 25.7 0.00
300 100 7 7200.0 44.13 7200.0 12.79 4533.2 0.00 246.1 0.00 1529.2 0.00 6392.0 0.00 362.5 0.00 25.1 0.00
300 100 10 7200.0 53.58 7200.0 13.52 7200.0 10.14 2569.0 0.00 1694.8 0.00 6547.9 0.00 431.8 0.00 26.8 0.00
400 100 5 7200.0 6.92 7200.0 11.14 7200.0 5.39 58.7 0.00 1358.9 0.00 5873.2 0.00 555.8 0.00 30.2 0.00
400 100 7 7200.0 43.83 7200.0 14.65 7200.0 5.08 214.2 0.00 2525.3 0.00 7200.0 4.42 881.0 0.00 32.9 0.00
400 100 10 7200.0 56.20 7200.0 17.36 7200.0 10.45 4112.9 0.00 4010.3 0.00 7200.0 6.64 1002.0 0.00 33.3 0.00

Table 4 shows the computational results of three solution approaches under different instance scales

(i.e., number of customers and candidate facilities), numbers of facilities to open p, and distance decay

parameter ψ . Clearly, instances under ψ = 2 are substantially more challenging than those under ψ = 3.

We also find that the benchmarks MILPF and MICQPF are not as powerful as the MICQP and GBD.

Although MILPF can solve all instances under ψ = 3, it requires significantly longer computational

time than MICQP and GBD. Besides, MICQPF even fails to solve 2 instances. Furthermore, under ψ =

2, MILPF and MICQPF can only handle instances with limited scales. As the number of candidate

facilities exceeding 100, most instances are unsolved and terminated with large gaps. Note that MILPF

and MICQPF are formulated based on the consideration set inequalities in Fernández et al. (2021),

whereas MICQP and GBD are based on our unified modeling framework. Therefore, we conclude that

our formulation is more effective in addressing the CBFL problem featuring Pareto-Huff model with

unessential demand.

For MICQP, although its overall performance seems satisfactory, it still shows scalable weakness

under ψ = 2 because there are 4 large-scale instances unsolved with considerable large gaps (≥ 5%).

Clearly, GBD is the most powerful approach as it solves all instances with the shortest computational

time (on average 270.2 seconds). In particular, all instances under ψ = 3 are solved within 34 seconds.
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6.4 Experiment on Two-nest Logit Model with Unessential Demand

In the final experiment, we discuss the computational performance of GBD under different facility

similarity levels. Here, we do not test any MICQP or MILP reformulation approaches for benchmark

comparison because they are not applicable to this case.

Specifically, we select the CBFL problem with Pareto-Huff model and unessential demand as the

baseline to generate the consideration set but replace the reward function by the one with facility similar-

ity. Moreover, we directly borrow the challenging (i.e., ψ = 2) PHM instances from the last subsection.

For those 18 combinations of different (I,J, p), we consider 4 scenarios on the dissimilarity factor, i.e.,

β = {0.3,0.7,0.9,1.0}. The complete computational results are presented in E-Companion EC.4.3, and

we show a performance overview in Figure 7 .
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Figure 7 Computational results for UNLM-CBFL with different facility dissimilarity levels β .

Each data point in Figure 7 represents the average values over 18 instances and the number of B&C

nodes is reported in log-scale, i.e., log(# branch nodes). Note that when β = 1, the instances are exactly

the same as those investigated in the UPHM-CBFL when ψ = 2, marked as a red dot in the figure. As β

increases, solving instances becomes computationally challenging. This can be observed through signif-

icant increases in both the computational time and the number of required B&C nodes. Specifically, the

number of branch nodes grows almost exponentially with respect to β . Considering that GBD has been

shown to be effective and efficient in solving the UPHM-CBFL, which represents the most challenging

scenario of the UNLM-CBFL (with β = 1), it is reasonable to infer that GBD would perform well for

the UNLM-CBFL in general.

7 Conclusion and Future Research

In this article, we introduced a unified framework for classes of CBFL problems arising from various

industrial and business contexts. The unified framework consists of two key ingredients, a unified mod-

eling prescription and a unified solution approach. Specifically, the modeling technique leverages the

dominance consideration set and flexibly recasts common CBFL problems into unified representable

formulations G-CBFL. Specifically, considering the essential or unessential demand, we investigated

the reformulation of CBFL problems employing the BCR, TLM, and PHM models to capture customer

choice behaviors respectively. We also showed that G-CBFL can effectively characterize unessential
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demand models concerning facility similarity. In fact, the unified modeling prescription is capable of

representing more CBFL problems beyond the aforementioned scenarios. To support its application

in decision-making contexts, we also design an exact two-phase generalized Benders decomposition

algorithm and accelerate it with analytical separation functions given different dominance indicators.

Extensive computational studies demonstrate the effectiveness of the proposed unified framework.

We note that our framework permits the possibility of using a mixture of choice models to represent

the varying behaviors of customers (for example, in the same problem, some customers may follow

the TLM, whereas others may follow the PHM), which can be easily achieved by applying the corre-

sponding rules, described in Section 3, to generate a dedicated consideration set for each customer. The

validity lies in the fact that each individual’s behavior is assumed to be independent in the existing litera-

ture and in our framework. This observation, in return, leads us to a question, i.e., would it be possible to

consider the behavior correlation between customers in the CBFL problem? Indeed, the choice of a cus-

tomer could be affected by the choices of others in some scenarios (e.g., the effect of word-of-mouth).

Thus, developing a model that can characterize such a correlative effect could be meaningful.

Endnotes
1Please note that in this particular model, we replace the ‘G’ with ‘EBCR’ to signify the specific demand type and choice

rule combination. To maintain consistency, we will also reacronym the G-CBFL in the subsequent models.
2Note that, we apply the font ‘TEX Gyre Cursor’ on a model name to indicate that this model is solved by a commerical

solver directly. For example, EBCR-CBFL represents the model EBCR-CBFL is solved by the commerical solver directly.
3see http://old.math.nsc.ru/AP/benchmarks/Bilevel/bilevel-eng.html
4available at https://doi.org/10.13140/RG.2.2.34645.55527
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E-Companion for “Unified framework for choice-based facility
location problem”

EC.1 Classification and acronym of choice-based facility location problems

Figure EC.1 gives the summary of classification and acronym of the CBFL literature where only one

company is involved in the decision making process.

Choice-based facility location problem (CBFL)

Unessential demand

Threshold Luce model Pareto-Huff model

Essential demandDemand type

Two-nest logit model

UTLM-CBFL UPHM-CBFL UNLM-CBFL

Binary choice rule 

EBCR-CBFL

Other choice models

∗-CBFL

Choice model

Acronym

Figure EC.1 Classification and acronym of choice-based facility location problems.

The literature is first classified according to the demand type and then categorized by the choice

model employed to characterize customer choices. Then, the acronyms of different CBFL problems

are derived by combining the demand type (with ‘E’ denoting essential demand and ‘U’ denoting

unessential demand) and the choice model. For example, EBCR-CBFL refers to the CFLB problem

under essential demand and binary choice rule.

EC.2 Proofs

EC.2.1 Lemma 1

We prove the validity of the path strengthening inequality by induction. (i) If facility σ1 is open, then we

have ∑ j∈ρi\{σ1} yi j = 0 since facility σ1 dominates all facilities in ρi \{σ1}. Therefore, ∑ j∈ρi
yi j = yiσ1 ≤ 1.

(ii) If facility σ1 is not open and facility σ2 is open, then we have ∑ j∈ρi\{σ2} yi j = 0 since xσ1 = 0 and

facility σ2 dominates all facilities in ρi \{σ1,σ2}. Therefore, ∑ j∈ρi
yi j = yiσ2 ≤ 1. (iii) If facility σ1 and

facility σ2 are not open and facility σ3 is open, then ∑ j∈ρi\{σ3} yi j = 0 since xσ1 = xσ2 = 0 and σ3 dominates

all facilities in ρi \ {σ1,σ2,σ3}. Therefore, ∑ j∈ρi
yi j = yiσ3 ≤ 1. Continuing this procedure leads us to

∑ j∈ρi
yi j ≤ 1. Therefore, the path strengthening inequality is valid.

Moreover, σ1 dominates |ρi|−1 facilities; σ2 dominates |ρi|−2 facilities; σ3 dominates |ρi|−3 facil-

ities; and so on. In total, ∑ j∈ρi
yi j ≤ 1 imposes |ρi|(|ρi|−1)/2 pariwise dominance.
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EC.2.2 Lemma 2

For the ease of exposition, we drop subscript i. For j ∈ J11, sort the preference u j in nonincreasing order,

i.e.,

u[1] ≥ u[2] ≥ · · · ≥ u[|J11|]

Let set Π[ j] be the set of facilities in J10 that are dominated by the facility with rank j , i.e., Π[ j] =

∆i[ j]∩J10. For two facilities with ranks j and k, if j < k, then Π[ j]⊇Π[k] (which leverages Assumption 1).

As a result, we have

J10 ⊇Π[1] ⊇Π[2] ⊇ · · · ⊇Π[|J11|]

Now, suppose that Π[1]  J10 (i.e., Π[1] is a strict subset of J10). Then, at least one facility from J10

is not dominated by any open facility and thus should appear in the consideration set. This, however,

contradicts to the definition that all facilities in J10 are not in the consideration set. Therefore, we must

have Π[1] = J10.

EC.2.3 Lemma 3: Recasting the KKT system

To begin with, note that if facility j is not open, then we safely have µi j = 0 since Qi j acts like a “Big-

M", which presents the constraint from being active when x̄ j = 0 (i.e., j ∈ J̄00
i ). Furthermore, for j ∈ J̄10

i ,

facility j is not in the consideration set and thus must be dominated by at least one facility in J̄11
i . Let

m be a facility in J̄11
i that dominates facility j, i.e., mi � ji. We can also set µi j to 0. This is because

(21c) becomes ∑k∈N δi jkyik ≤ 0. Facilities dominate by facility j are also dominated by facility m due

to the transitivity of dominance relation. As a result, perturbing the right hand side of (21c) will not

change the solution of y since the existence of facility m still enforce ∑k∈N δi jkyik = 0. Therefore, we set

µi j = 0,∀ j ∈ J̄00
i ∪ J̄10

i .

We then discuss these three scenarios in detail.

Scenario 1: j ∈ J̄11
i . Since x̄ j = ȳi j = 1, γi j = 0 due to (26e). Facilitiy j is in the consideration set and

thus must be not dominated by any open facility; therefore, ∑k∈N δik jµik = ∑k∈J̄11
i

δik jµik = 0, giving rise

to following result

λi j =
∂Ri(ȳ)

∂yi j
−αi jvi ∀ j ∈ J̄11

i (EC.1a)

Note that λi j ≥ 0. We must have
∂Ri(ȳ)

∂yi j
≥ αi jvi ∀ j ∈ J̄11

i (EC.2a)

If αi j = 0, then the above condition holds naturally. Therefore, we can set vi as

vi = I{∑ j∈N αi j ȳi j=1} · min
j∈J̄11

i :αi j=1

∂Ri(ȳ)
∂yi j

(EC.3)

where the indicator function I{·} is introduced to enforce the complementary condition (26d).

Scenario 2: j ∈ J̄10
i . Since x̄ j > ȳi j, λi j = 0 due to (26b). Facility j is dominated by at least one opened

facility. As a result, we have
∂Ri(ȳ)

∂yi j
− ∑

k∈J̄11
i

δik jµik−αi jvi + γi j = 0 ∀ j ∈ J̄10
i (EC.4a)
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Rearranging the equation leads us to

∑
k∈J̄11

i

δik jµik =
∂Ri(ȳ)

∂yi j
−αi jvi + γi j ≥max

{
0,

∂Ri(ȳ)
∂yi j

−αi jvi

}
∀ j ∈ J̄10

i (EC.5)

which can be further restated as

∑
k∈J̄11

i

δik jµik ≥
[

∂Ri(ȳ)
∂yi j

−αi jvi

]
+

∀ j ∈ J̄10
i (EC.6)

where [z] = max{0,z}.

Scenario 3: j ∈ J̄00
i . Since x̄ j = ȳi j = 0, we have µi j = 0 and

∂Ri(ȳ)
∂yi j

−λi j− ∑
k∈J̄11

i

δik jµik−αi jvi + γi j = 0 ∀ j ∈ J̄00
i (EC.7a)

We can set

λi j =

∂Ri(ȳ)
∂yi j

− ∑
k∈J̄11

i

δik jµik−αi jvi


+

∀ j ∈ J̄00
i (EC.8)

Summarizing the above results give rise to Lemma 3.

EC.2.4 Corollary 3

Based on the definition of mi, we have mi � J̄10
i , or equivalently, δi,mi, j = 1,∀ j ∈ J̄10

i . We rewrite (28) as

µimi + ∑
k∈J̄11

i \{mi}

δik jµik ≥
[

∂Ri(ȳ)
∂yi j

−αi jvi

]
+

∀ j ∈ J̄10
i (EC.9)

To have a sparse µ , we set µik = 0,∀k ∈ J̄11
i \{mi}, leading to (30).

EC.3 Benchmark approaches and reformulation models

EC.3.1 KKT-based MILP reformulation technique

Here, we will show how leverage the KKT-based reformulation technique to obtain a MILP for the

mixed-integer bilevel linear program relevant to CBFL problem characterizing by binary choice rule

and essential demand in the manuscript Section 3.1. Let gi and hi j be the dual variables associated with

Constraints (7d) and (7e). We have the KKT conditions for the lower-level problem as

∑
j∈N

yi j ≤ 1 ∀i ∈M (EC.10a)

yi j ≤ x j ∀i ∈M , j ∈N (EC.10b)

yi j ≥ 0 ∀i ∈M , j ∈N (EC.10c)

hi j ≥ 0 ∀i ∈M , j ∈N (EC.10d)

gi +hi j−ui j ≥ 0 ∀i ∈M , j ∈N (EC.10e)

yi j(gi +hi j−ui j) = 0 ∀i ∈M , j ∈N (EC.10f)

hi j(x j− yi j) = 0 ∀i ∈M , j ∈N (EC.10g)

(EC.10f) and (EC.10g) are bilinear but can be exactly linearized as

gi +hi j−ui j ≤M1
i j(1− yi j) ∀i ∈M , j ∈N (EC.11a)

hi j ≤M2
i j(x j− yi j) ∀i ∈M , j ∈N (EC.11b)



ec4

where M1
i j and M1

i j are sufficiently large numbers. To achieve tight relaxation bounds, they can be set

as M1
i j = max j∈N ui j and M2

i j = ui j. We then replace the lower-level problem by the linear constraints:

(EC.10a)-(EC.10e), (EC.11a)-(EC.11b). In our experiment, we found that restricting yi j to binary vari-

able can enhance the numerical stability and efficiency of the approach.

EC.3.2 MILP formulation for CBFL problem employing Pareto-Huff model with

unessential demand

This appendix shows a MILP reformulation approach for CBFL problem employing Pareto-Huff model

with unessential demand. leveraging the techniques presented by Fernández et al. (2021). We first define

set Di j as the set of facilities that dominates facility j for customer i, that is,

Di j = {k ∈N | Ak ≥ A j and dik ≤ di j and uik > ui j} (EC.12)

Now, yi j = 1 if and only if x j = 1 (facility j is open) and xk = 0,∀k ∈ Di j (all facilities that dominate

facility j are not open). This logic can be expressed as the following constraints

yi j ≤ x j ∀i ∈M , j ∈N (EC.13a)

∑
k∈Di j

xk + yi j ≥ x j ∀i ∈M , j ∈N (EC.13b)

∑
k∈Di j

xk ≤ |Di j| · (1− yi j) ∀i ∈M , j ∈N (EC.13c)

Therefore, this problem can be restated as

max ∑
i∈M

bi
∑ j∈N ui jyi j

∑ j∈N ui jyi j + ũi
(EC.14a)

st. ∑
j∈N

x j = p (EC.14b)

yi j ≤ x j ∀i ∈M , j ∈N (EC.14c)

∑
k∈Di j

xk + yi j ≥ x j ∀i ∈M , j ∈N (EC.14d)

∑
k∈Di j

xk ≤ |Di j| · (1− yi j) ∀i ∈M , j ∈N (EC.14e)

x j ∈ {0,1} ∀ j ∈N (EC.14f)

yi j ∈ {0,1} ∀i ∈M , j ∈N (EC.14g)

Note that in this model, yi j cannot be relaxed to yi j ≥ 0.

Now, we linearize the objective function. Let zi = 1/(∑ j∈N ui jyi j + ũi). We have equation

∑ j∈N ui jyi jzi + ũizi = 1, and the objective function becomes ∑i∈M ∑ j∈N biui jyi jzi with a bilinear term

yi jzi.

To proceed, define an additional variable ti j such that ti j = yi jzi. Note that, a valid upper bound of zi is

1/ũi, we can thus rewrite ti j = yi jzi as

0≤ ti j ≤ yi j/ũi ∀i ∈M , j ∈N (EC.15a)

zi− (1− yi j)/ũi ≤ ti j ≤ zi ∀i ∈M , j ∈N (EC.15b)

which ensure that when yi j = 0, we have ti j = 0 and that when yi j = 1, we have ti j = zi.

Altogether, this problem can be equivalently restated as

max ∑
i∈M

∑
j∈N

biui jti j (EC.16a)
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st. (EC.13),(EC.15) (EC.16b)

∑
j∈N

ui jti j + ũizi = 1 ∀i ∈M (EC.16c)

yi j ∈ {0,1} ∀i ∈M , j ∈N (EC.16d)

x ∈Ω
p (EC.16e)

which is a MILP model and is ready to be solved by off-the-shelf solvers. For notational convenience,

we use the MILPF to represent this MILP model in the manuscript.

In fact, the objective function (EC.14a) can be reformulated as a rotated conic inequality, leading to

a MICQP formulation (for more details about the reformulation, refer to E-Companion EC.3.3). This

MICQP, leveraging the dominance condition (EC.13), is referred to as MICQPF, and it is used as a

benchmark approach in Section 6.3.

EC.3.3 General MICQP reformulation for G-CBFL under unessential demand

When demand loss or competition exists, the reward is often modeled as a linear fractional function,

which is second-order conic representable. Here, we show that G-CBFL can be reformulated as a

mixed-integer conic quadratic program (MICQP), to which effective algorithms are available in modern

commercial solvers.

Define variable ni such that ni = ∑ j∈N ui jyi j + ũi. We can rewrite the objective function as

max ∑
i∈M

bi

(
1− ũi

ni

)
(EC.17)

We then introduce variable qi such that qi ≥ ũi/ni holds. Noting that ũi and ni are positive by definition

and 0≤ qi ≤ 1, the following quadratic rotated conic inequality arises immediately

qini ≥ ũi ∀i ∈M (EC.18)

Therefore, G-CBFL can be equivalently restated as the following program

max ∑
i∈M

bi (1−qi) (EC.19a)

st. ni = ∑
j∈N

ui jyi j + ũi ∀i ∈M (EC.19b)

qini ≥ ũi ∀i ∈M (EC.19c)

[MICQP] 0≤ qi ≤ 1 ∀i ∈M (EC.19d)

∑
k∈∆i j

yik ≤ Qi j(1− x j) ∀i ∈M , j ∈N (EC.19e)

∑
j∈N

αi jyi ≤ βi ∀i ∈M (EC.19f)

(x,y) ∈ Ξ (EC.19g)

which is a MICQP since, except for the rotated conic inequality, all other constraints and the objective

function are linear.
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EC.4 Supplementary computational result

EC.4.1 Complete computational results of Rnd-EBCR instances for EBCR-CBFL

See Table EC.1.

Table EC.1 Complete computational results of Rnd-EBCR instances.

I p EBCR-KKT EBCR-CBFL GBD

t[s] rg[%] # branch
nodes t[s] rg[%] # branch

nodes t[s] rg[%] # branch
nodes

100 3 113.7 0.00 886 36.1 0.00 55 6.1 0.00 211
5 30.3 0.00 1188 28.6 0.00 60 6.4 0.00 232
7 42.3 0.00 2256 28.9 0.00 101 6.9 0.00 338

10 22.6 0.00 1 26.0 0.00 1 5.6 0.00 7
15 13.4 0.00 1 26.2 0.00 1 5.4 0.00 24
20 12.4 0.00 1 23.2 0.00 1 5.3 0.00 15

150 3 895.3 0.00 5532 64.7 0.00 196 13.1 0.00 679
5 2581.2 0.00 17549 60.3 0.00 319 13.0 0.00 1195
7 168.0 0.00 2891 49.1 0.00 124 11.9 0.00 795

10 473.6 0.00 4478 43.7 0.00 177 12.0 0.00 960
15 445.2 0.00 1586 43.2 0.00 54 9.9 0.00 578
20 69.4 0.00 118 40.7 0.00 38 8.5 0.00 168

200 3 1806.3 0.00 11282 97.6 0.00 375 23.0 0.00 1054
5 2632.9 0.00 14912 90.8 0.00 441 21.9 0.00 1616
7 818.1 0.00 5476 72.4 0.00 210 19.1 0.00 1606

10 3983.2 0.00 37068 98.1 0.00 1192 41.7 0.00 5947
15 1235.2 0.00 8285 70.9 0.00 540 20.3 0.00 2393
20 553.8 0.00 2847 60.5 0.00 205 15.1 0.00 1559

300 3 3488.9 0.00 7737 171.0 0.00 305 31.3 0.00 902
5 7200.0 0.40 12789 231.5 0.00 835 91.0 0.00 5175
7 7200.0 0.23 16829 409.2 0.00 1533 106.0 0.00 6430

10 7200.0 0.12 19640 423.5 0.00 1828 99.0 0.00 7579
15 7200.0 0.23 10322 577.5 0.00 7797 264.5 0.00 45497
20 6794.6 0.00 18304 188.9 0.00 1874 74.8 0.00 12926

400 3 5739.5 0.00 7993 262.1 0.00 289 46.6 0.00 908
5 7200.0 0.34 8453 418.2 0.00 829 129.6 0.00 4318
7 7200.0 0.71 4658 1117.5 0.00 2747 424.0 0.00 17598

10 7200.0 0.76 3189 1985.5 0.00 8377 706.7 0.00 51739
15 7200.0 0.39 7645 3083.6 0.00 23762 1651.7 0.00 232355
20 7200.0 0.16 10243 454.7 0.00 2497 190.2 0.00 25961

EC.4.2 Complete computational results of PMPUP instances

PMPUP is a standard testbed for p-Median Problem with Users Preferences from benchmark

library Discrete Location Problems (see http://old.math.nsc.ru/AP/benchmarks/Bilevel/

bilevel-eng.html). There are 30 structured problem instances. The instance number identifiers are

333,433,533, ...,3122,3233. Note that in the dataset, for each customer, only a subset of facilities are

accessible. We thus define a parameter Ai j, which is 1 if facility j is accessible to customer i and 0

otherwise. We then add constraints ∑ j∈N Ai jx j ≥ 1. For the case of Ai j = 1, the original data provides

the cost ci j by serving customer i from facility j and the disutility gi j of facility j to customer i. To

adapt the data set for our problem, if Ai j = 1, we set bi j = 6−ci j and define utility ui j = 12−gi j; and if

Ai j = 0, we set bi j = ui j = 0.

The complete computational results of these 30 instances are given in Table EC.2.

EC.4.3 GBD complete computational results under different values of dissimilarity factor

See Table EC.3.
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Table EC.2 Complete computational results of PMPUP instances. For the unsolved EBCR-KKT, the associated

relative gap is 5.61%.

inst. EBCR-KKT EBCR-CBFL GBD

t[s] # branch
nodes t[s] # branch

nodes t[s] # branch
nodes

333 3355.4 478462 2212.6 118139 555.2 410757
433 1356.6 149256 557.5 30751 239.6 181913
533 1002.3 92269 876.9 49356 72.0 48806
633 2905.8 398720 1864.9 96586 601.8 457050
733 1416.3 163283 1460.6 97712 450.5 344386
833 2153.5 266050 2061.2 130103 510.3 380221
933 1300.4 161715 1540.9 76651 377.6 277112

1033 1989.8 168224 1137.8 67199 357.1 286651
1133 1532.5 188952 1323.9 60954 297.6 240192
1233 2226.5 299522 2180.8 130400 601.2 459875
1333 3049.5 400954 2855.4 169213 693.3 502185
1433 4417.1 603615 5376.1 343720 773.2 561274
1533 789.8 85668 943.2 61802 293.3 233319
1633 5639.6 439625 1726.5 125623 518.3 386361
1733 1211.2 142690 1000.4 53957 641.4 398606
1833 1309.3 129806 1005.9 42101 262.4 224922
1933 1620.5 196945 2587.7 158856 406.6 319641
2033 993.3 113250 1404.6 70596 373.1 305335
2133 2113.1 250156 1995.1 111075 402.5 315131
2233 1004.9 93535 841.5 43975 310.0 249943
2333 1232.2 139956 711.6 43121 320.3 263137
2433 726.9 72235 624.1 34954 229.9 183124
2533 2859.4 231344 516.6 22945 252.9 201687
2633 1983.7 282047 1836.8 105071 293.9 230517
2733 2548.1 352723 2169.4 110713 341.1 272842
2833 7200.0* 505088 4701.9 268624 570.9 446524
2933 967.9 89717 625.2 31027 248.1 211054
3033 1340 158659 1287.4 108972 374.3 300182
3133 2337.2 316049 896.6 50668 370.4 288360
3233 1610.3 176983 3775.4 121553 574.9 439770
Avg 2139.8 238250 1736.6 97881 410.5 314029

Table EC.3 GBD computational results under different values of dissimilarity factor β .

I J p β = 0.3 β = 0.7

t[s] # branch
nodes Profit t[s] # branch

nodes Profit

100 50 5 4.4 211 14256.3 5.9 74 14863.7
100 50 7 6.9 448 16426.7 6.5 683 17349.3
100 50 10 4.8 213 18731.7 16.7 4066 19937.4
100 80 5 6.0 351 14989.3 8.4 744 15573.5
100 80 7 8.1 1 17719.4 9.6 1156 18605.0
100 80 10 7.6 236 20902.9 29.8 5367 21792.0
100 100 5 13.6 535 15433.5 11.6 983 15942.0
100 100 7 9.9 761 18009.7 21.2 1772 18655.7
100 100 10 18.6 1209 21050.4 46.8 8586 21993.5
200 100 5 43.0 709 29965.5 61.8 3402 30947.0
200 100 7 37.4 604 35870.9 97.5 6900 37430.2
200 100 10 35.5 576 42606.4 393.4 44788 44755.0
300 100 5 60.3 659 44395.4 80.8 2263 46062.8
300 100 7 62.7 600 53559.8 165.0 4126 55992.0
300 100 10 54.1 622 63137.5 328.6 23167 66006.4
400 100 5 44.1 544 61948.5 88.0 852 64328.6
400 100 7 68.1 679 73485.1 127.5 2471 76534.5
400 100 10 86.9 873 84508.3 564.2 22333 88574.8

I J p β = 0.9 β = 1.0

t[s] # branch
nodes Profit t[s] # branch

nodes Profit

100 50 5 4.2 193 15438.9 3.9 230 15794.9
100 50 7 7.4 1026 18198.5 6.4 758 18753.8
100 50 10 16.9 3651 21064.7 17.8 5154 21712.9
100 80 5 8.5 1082 16127.4 8.8 977 16472.2
100 80 7 13.7 2365 19437.6 11.6 1276 19931.7
100 80 10 38.2 6376 22712.0 41.7 8330 23260.1
100 100 5 11.4 1204 16432.7 11.6 1318 16742.5
100 100 7 31.5 5046 19455.6 25.9 5613 19966.5
100 100 10 139.1 30363 22972.1 86.7 21468 23558.7
200 100 5 63.0 4018 32234.1 65.4 4321 33168.3
200 100 7 181.3 13302 38972.6 240.5 21879 39905.1
200 100 10 1322.8 172026 46659.2 1643.3 264490 47823.5
300 100 5 102.7 3463 47799.8 106.8 2925 48872.0
300 100 7 270.4 13951 58166.3 246.1 7974 59487.9
300 100 10 1356.7 87956 68694.5 2569.0 127775 70302.7
400 100 5 70.5 1688 66566.8 58.7 1557 67956.6
400 100 7 252.5 7257 79328.7 214.2 5611 81116.2
400 100 10 2508.0 62447 92170.0 4112.9 184946 94328.3

EC.4.4 Comparing GBD and Rank-based Discrete Optimization Algorithm

The Rank-based Discrete Optimization Algorithm (RDOA) might be perceived as one of the most

widely used and effective heuristic/approximation algorithms for choice-based facility location prob-
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lems and competitive facility location problems in recent years (Fernández et al. 2017, Lančinskas et al.

2020, Yu 2020). In light of this, we implement the RDOA presented in Fernández et al. (2017) for

solving the unified formulation and take it as a heuristic benchmark for our proposed exact algorithm

GBD.

To facilitate the subsequent discussion, we refer to the Rank-based Discrete Optimization Algorithm

with n numbers of function evaluations as RDOA-n. For example, if the algorithm is executed with 3000

function evaluations, it will be denoted as RDOA-3000. In this context, a function evaluation entails

utilizing Algorithm 2 to calculate the optimal y given a location decision x, followed by evaluating the

associated profit under x.

The RDOA-n employs a randomized subroutine to search for improved x solutions. Due to its inherent

randomness, the best solution obtained by RDOA-n upon completion may vary across different runs.

Consistent with Fernández et al. (2017), we conduct 10 independent runs of RDOA-n (using fixed

and independent random seeds) for each problem instance. All results pertaining to RDOA-n are then

averaged over these 10 independent runs. Furthermore, to facilitate solution quality comparison, we

define the relative profit difference as follows:

diff =
Profit( GBD)−Profit(RDOA-n)

Profit( GBD)
×100%

A positive value of diff indicates that GBD finds a better solution. When GBD achieves an optimal

solution for a given instance, it guarantees that the global best solution has been reached. In such cases,

the value of diff is nonnegative and can be regarded as an indicator of the "optimality gap" associated

with RDOA-n.

We mainly test the GBD and RDOA-n on three categories of CBFL problems and analyze their

computational performances as follows.

Computational results under UPHM. RDOA-n has been used to solve the CBFL under PHM. There-

fore, we first compare its performance with GBD on UPHM-CBFL. We use the same random instances

as presented in Section 6.3. Table EC.4 reports the computational results obtained by GBD, RDOA-

3000, and RDOA-5000 for these instances. We observe that: (i) RDOA-3000 exhibits the capability to

generate high-quality solutions, with several instances even achieving optimality. The maximum value

of diff is 0.56%, which is an acceptable optimality gap. (ii) The computational time of RDOA-n seems to

be more stable across instances. Since the function evaluation within RDOA-n can be executed in poly-

nomial time using Algorithm 2, the computational complexity of RDOA-n increases only polynomially

with respect to the problem size and near-linearly with respect to the number of function evaluations.

However, as the model itself is inherently NP-hard, attempting to solve it exactly may encounter an

exponential increase in computational complexity as the problem size grows. This accounts for the

longer computational times observed for a few instances using GBD (mainly when ψ = 2 and p = 10).

Despite this, GBD remains considerably efficient. As an exact algorithm, it successfully achieves opti-

mal solutions for all instances (and it has been shown to outperform other exact approaches by a large

margin in Section 6.3). In particular, when the instances are relatively less challenging (i.e., ψ = 3),

GBD often takes a shorter computation time than RDOA-3000.
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Table EC.4 Computational results of GBD and RDOA-n on the random instances of UPHM-CBFL.

ψ I J p GBD RDOA-3000 RDOA-5000
t[s] rg[%] Profit t[s] Profit diff[%] t[s] Profit diff[%]

2 100 50 5 3.9 0.00 15794.9 4.2 15794.9 0.00 6.7 15794.9 0.00
100 50 7 6.4 0.00 18753.8 6.0 18753.8 0.00 9.4 18753.8 0.00
100 50 10 17.8 0.00 21712.9 8.3 21706.5 0.03 13.3 21712.9 0.00
100 80 5 8.8 0.00 16472.2 5.3 16472.2 0.00 8.3 16472.2 0.00
100 80 7 11.6 0.00 19931.7 7.6 19914.5 0.09 11.7 19931.7 0.00
100 80 10 41.7 0.00 23260.1 10.6 23233.5 0.11 16.8 23246.5 0.06
100 100 5 11.6 0.00 16742.5 6.0 16742.5 0.00 9.6 16742.5 0.00
100 100 7 25.9 0.00 19966.5 8.4 19932.6 0.17 13.1 19952.2 0.07
100 100 10 86.7 0.00 23558.7 12.2 23500.5 0.25 19.2 23558.7 0.00
200 100 5 65.4 0.00 33168.3 12.1 32984.0 0.56 19.8 32984.0 0.56
200 100 7 240.5 0.00 39905.1 16.5 39834.4 0.18 25.7 39876.7 0.07
200 100 10 1643.3 0.00 47823.5 23.4 47685.5 0.29 37.2 47775.0 0.10
300 100 5 106.8 0.00 48872.0 18.0 48621.1 0.51 28.4 48696.5 0.36
300 100 7 246.1 0.00 59487.9 24.7 59316.9 0.29 38.6 59461.9 0.04
300 100 10 2569.0 0.00 70302.7 35.1 70195.1 0.15 54.8 70195.1 0.15
400 100 5 58.7 0.00 67956.6 23.2 67891.4 0.10 40.2 67956.6 0.00
400 100 7 214.2 0.00 81116.2 32.2 81031.1 0.10 53.3 81116.2 0.00
400 100 10 4112.9 0.00 94328.3 45.8 93846.2 0.51 73.9 94031.3 0.31

3 100 50 5 2.4 0.00 4730.9 4.0 4730.9 0.00 6.6 4730.9 0.00
100 50 7 2.0 0.00 5863.5 5.5 5863.5 0.00 9.0 5863.5 0.00
100 50 10 2.4 0.00 7217.7 7.4 7217.7 0.00 12.4 7217.7 0.00
100 80 5 3.9 0.00 5538.9 5.1 5538.9 0.00 8.4 5538.9 0.00
100 80 7 3.8 0.00 6849.6 6.9 6849.6 0.00 11.2 6849.6 0.00
100 80 10 4.6 0.00 8532.3 9.6 8503.5 0.34 14.8 8532.3 0.00
100 100 5 5.1 0.00 5595.4 5.4 5595.4 0.00 9.2 5595.4 0.00
100 100 7 5.1 0.00 7012.0 7.5 7012.0 0.00 12.2 7012.0 0.00
100 100 10 5.8 0.00 8796.6 10.5 8796.3 0.00 17.7 8796.6 0.00
200 100 5 16.2 0.00 9330.3 11.9 9330.3 0.00 19.5 9330.3 0.00
200 100 7 14.3 0.00 12331.3 15.8 12331.3 0.00 25.3 12331.3 0.00
200 100 10 15.9 0.00 16148.9 22.2 16058.5 0.56 35.5 16148.9 0.00
300 100 5 25.7 0.00 13837.6 17.6 13835.7 0.01 29.8 13837.6 0.00
300 100 7 25.1 0.00 18035.0 23.9 18031.4 0.02 39.2 18035.0 0.00
300 100 10 26.8 0.00 23941.6 33.0 23919.9 0.09 52.8 23931.8 0.04
400 100 5 30.2 0.00 17740.0 23.6 17740.0 0.00 38.7 17740.0 0.00
400 100 7 32.9 0.00 22975.8 32.9 22968.7 0.03 52.7 22968.7 0.03
400 100 10 33.3 0.00 30025.3 45.3 29991.1 0.11 72.3 30025.3 0.00

Computational results under UPBCR. RDOA-n has also been utilized in the context of partially

binary choice rule (PBCR), which is a special case for UTLM with γ = 0. Therefore, we conduct exper-

iments on this type of problem. We use a large-scale dataset for PBCR from Lin and Tian (2021a)

and set p = 10. The computational results of GBD, RDOA-5000 and RDOA-10000 are summarized

in Table EC.5. In terms of solution quality, the performance of RDOA-5000 is not satisfactory as the

maximum diff can exceed 1%. This indicates the need for an increase in the number of function eval-

uations. On the other hand, RDOA-10000 produces better solutions, albeit at the cost of doubling the

computational time. Note that for the most challenging instance with I = 3000 and J = 300, GBD fails

to solve it optimally and terminates with a relative exit gap of 1.53%. Consequently, the resulting solu-

tion obtained by GBD is not optimal. Interestingly, this instance is the only case where RDOA-10000

outperforms GBD by finding a better solution. Regarding computational time, we once again observe

that for relatively less complex problem instances (i.e., J = 100 and 200), GBD generally presents faster

computation times compared to RDOA-10000.

Table EC.5 Computational results of GBD and RDOA-n under PBCR using the dataset from Lin and Tian (2021a).

I J GBD RDOA-5000 RDOA-10000
t[s] rg[%] Profit t[s] Profit diff[%] t[s] Profit diff[%]

1500 100 159.4 0.00 165283.3 314.4 165178.0 0.06 617.5 165283.3 0.00
1500 200 916.4 0.00 168425.8 537.2 167594.7 0.49 1063.8 168353.7 0.04
1500 300 2150.8 0.00 171838.0 761.3 170033.6 1.05 1471.9 171485.4 0.21
2000 100 305.7 0.00 217028.8 457.8 216560.3 0.22 940.6 216703.4 0.15
2000 200 1357.6 0.00 220568.6 713.2 218423.4 0.97 1430.1 219238.0 0.60
2000 300 4199.6 0.00 221516.6 1029.2 220292.7 0.55 1989.5 221204.6 0.14
3000 100 545.5 0.00 316193.8 671.2 313731.9 0.78 1310.2 314209.9 0.63
3000 200 3708.3 0.00 319984.4 1090.8 318738.2 0.39 2227.6 319545.8 0.14
3000 300 7200.0 1.53 316436.8 1562.3 316170.0 0.08 3108.8 317336.9 -0.28
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Computational results under UTLM. In the final experiment, we conduct experiments on the

UPHM-CBFL using the LLPTL instances described in Section 6.2. The computational results are pre-

sented in Table EC.6 and Figure EC.2. The key observations from this experiment align with the findings

of the previous two experiments.

Table EC.6 Computational results of GBD and RDOA-n on the LLPTL instances of UPHM-CBFL.

I p γ
GBD RDOA-5000 RDOA-10000

t[s] rg[%] Profit t[s] Profit diff[%] t[s] Profit diff[%]
200 10 1 24.9 0.00 16066.7 41.3 16066.2 0.00 82.8 16066.7 0.00

10 3 23.5 0.00 16154.4 40.2 16147.3 0.04 80.6 16154.4 0.00
10 5 24.0 0.00 16185.4 37.7 16185.4 0.00 78.8 16185.4 0.00
10 7 21.4 0.00 16243.9 37.5 16242.5 0.01 78.2 16243.9 0.00
10 10 18.8 0.00 16299.7 36.8 16299.5 0.00 76.4 16299.7 0.00
10 20 16.4 0.00 16358.6 35.7 16358.6 0.00 74.0 16358.6 0.00
20 1 250.7 0.00 25159.3 83.8 25126.7 0.13 163.8 25142.4 0.07
20 3 140.1 0.00 25726.0 79.7 25688.7 0.14 155.9 25717.0 0.03
20 5 83.3 0.00 26157.1 77.9 26139.9 0.07 153.9 26157.1 0.00
20 7 41.2 0.00 26464.2 76.3 26449.2 0.06 150.2 26464.2 0.00
20 10 26.9 0.00 26617.1 73.1 26611.4 0.02 146.1 26617.1 0.00
20 20 25.8 0.00 26861.4 72.2 26826.5 0.13 143.8 26861.4 0.00
30 1 385.5 0.00 31790.5 123.6 31726.7 0.20 240.3 31758.9 0.10
30 3 217.5 0.00 32992.1 115.5 32899.8 0.28 234.2 32960.4 0.10
30 5 87.1 0.00 33577.4 111.8 33479.2 0.29 230.9 33559.5 0.05
30 7 60.5 0.00 33917.0 110.4 33850.5 0.20 224.5 33912.9 0.01
30 10 34.1 0.00 34173.3 108.3 34093.9 0.23 222.3 34160.4 0.04
30 20 26.0 0.00 34552.8 109.3 34538.1 0.04 215.9 34549.4 0.01

400 10 1 52.8 0.00 21625.8 106.3 21609.0 0.08 212.1 21625.8 0.00
10 3 58.6 0.00 21703.9 103.1 21627.5 0.35 202.7 21701.5 0.01
10 5 65.5 0.00 21732.6 101.9 21703.7 0.13 205.8 21732.6 0.00
10 7 58.8 0.00 21773.1 101.1 21769.1 0.02 203.4 21773.1 0.00
10 10 54.8 0.00 21801.4 99.6 21767.5 0.16 200.9 21801.4 0.00
10 20 61.0 0.00 21849.7 98.2 21787.5 0.28 194.0 21849.7 0.00
20 1 74.3 0.00 37284.3 214.1 36789.3 1.33 427.8 37135.6 0.40
20 3 67.1 0.00 37512.5 219.9 37333.6 0.48 419.7 37411.9 0.27
20 5 71.8 0.00 37624.2 207.8 37363.1 0.69 410.0 37555.3 0.18
20 7 63.0 0.00 37879.2 199.3 37651.4 0.60 405.8 37858.5 0.05
20 10 56.1 0.00 37987.0 198.8 37800.7 0.49 400.1 37961.7 0.07
20 20 50.8 0.00 38142.2 196.3 37964.8 0.47 383.4 38054.6 0.23
30 1 1317.9 0.00 48144.0 335.4 47728.5 0.86 645.3 47971.1 0.36
30 3 1195.5 0.00 48836.2 305.5 48487.6 0.71 621.8 48696.7 0.29
30 5 717.8 0.00 49193.8 314.1 48890.3 0.62 617.7 49086.1 0.22
30 7 384.6 0.00 49608.4 300.2 49324.6 0.57 608.7 49484.0 0.25
30 10 192.5 0.00 49889.9 297.5 49622.4 0.54 607.1 49729.4 0.32
30 20 128.4 0.00 50293.1 287.9 50039.2 0.50 582.5 50158.4 0.27
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Figure EC.2 Computational results of LLPTL instances for UPHM-CBFL: (a) run time (b) optimality gap.

Through the above experiments, we have demonstrated that the computational time of GBD is com-

petitive when compared to the heuristic RDOA-n under acceptable optimality gaps. This provides fur-

ther validation of the efficiency of GBD as an exact algorithm.
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