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A B S T R A C T 

The importance of measuring topological quantities, such as magnetic helicity, in solar observations has long been recognized. 
In particular, topological quantities play an important role in both understanding and predicting solar eruptions. In this paper, 
we present ARTop ( A ctiv e R e gion Top ology), an open-source and end-to-end software tool that allows researchers to calculate 
the fluxes of topological quantities based on solar magnetograms. In addition to this, ARTop also allows for the efficient 
analysis of these quantities in both 2D maps and time series. ARTop calculates the fluxes of magnetic helicity and magnetic 
winding, together with particular decompositions of these quantities. To perform these calculations, SHARP magnetograms are 
downloaded and velocity maps are created using the DAVE4VM method. Visualization tools, written in Python, are provided to 

aid in the selection of appropriate output variables and for the straightforward creation of maps and time series. Additionally, 
other analysis functions are included to facilitate and aid solar flare investigations. This software offers researchers a powerful 
tool for investigating the behaviour of active regions and the origins of space weather. 

Key words: numerical methods – software – magnetic helicity – magnetic winding – solar activ e re gions. 
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 I N T RO D U C T I O N  

he evolution of solar active regions is characterized by the de-
elopment of topologically complex magnetic field (e.g. van Driel-
esztelyi & Green 2015 ). The word ‘topological’ here indicates the

ntanglement of magnetic field lines, and we will specify what this
eans shortly. Topologically complex magnetic field both emerges

nto the solar atmosphere through the photosphere, and can also be
reated by the braiding of the footpoints of the emerged field at the
hotosphere (e.g. Amari et al. 2003 ; Toriumi et al. 2013 ; Candelaresi
t al. 2018 ; MacTaggart et al. 2021 ). 

Reliable direct measurements of the solar magnetic field are only
vailable at the photosphere, whereas the structure of the 3D field
n the solar atmosphere requires additional modelling assumptions
or its construction and estimation. Nonetheless, it is possible to
stimate the flux, through the photosphere, of quantities related to the
agnetic field that provide information about the emerging field’s

opology. One of the most prominent measures of magnetic field
opology is relative magnetic helicity, and measurements of the flux
f this quantity in solar magnetograms have become a staple of active
e gion analysis o v er the past 20 yr (e.g. Chae 2001 ; Yamamoto et al.
005 ; Jeong & Chae 2007 ; LaBonte, Georgoulis & Rust 2007 ; Yang,
hang & B ̈uchner 2009 ; Chandra et al. 2010 ; Liu & Schuck 2012 ;
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Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whi
ark et al. 2012 ; Liu et al. 2014 ; Romano et al. 2014 ; Vemareddy &
 ́emoulin 2017 ). A re vie w of numerical techniques for calculating
agnetic helicity in simulations and observations can be found in
ariat ( 2020 ). 
Another important topological quantity that can be estimated

rom magnetograms is magnetic winding (MacTaggart et al. 2021 ).
lthough we described magnetic helicity as a topological quantity,

t actually combines two fundamental quantities: magnetic topol-
gy and magnetic flux. Magnetic winding is a renormalization
f magnetic helicity that provides direct information about the
eld line entanglement, i.e. it remo v es an y possible confound on

opological information created by weighting field lines with their
eld strength. As the name suggests, the underlying topology of
agnetic field lines is measured by their winding about each other

Berger 1993 ; Candelaresi et al. 2021 ). This generalizes the concept
f field line linkage in classical helicity (Prior & Yeates 2014 ; Prior
 MacTaggart 2020 ). Magnetic winding can be shown to provide

istinct information compared to magnetic helicity in observational
tudies. It has pro v en to be an important quantity for identifying the
ource of current-carrying magnetic structure (a twisted flux tube) in
he solar atmosphere (MacTaggart et al. 2021 ). 

In this work, we present an open-source software package called
RTop . This stands for A ctiv e R e gion Top ology, and it is designed

o calculate and analyse magnetic helicity and magnetic winding,
ogether with important decompositions of these quantities. This
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ackage provides the user with simple functionality to study the 
opology of active regions from the downloading of magnetograms 
hrough to the analysis of topological quantities and their relation 
o the onset of flares. The paper is outlined as follows. The next
ection describes the topological quantities that are calculated in 
RTop . We then describe the structure of the algorithm and present

llustrativ e e xamples of the code’s analysis routines. Finally, we 
ssess the influence of key parameters in ARTop . While this article
rovides an overview of the underlying theory and capabilities of 
RTop , code documentation can be found with the source code. 1 

 TO P O L O G I C A L  QUANTITIES  

he topological quantities calculated in ARTop are based on mag- 
etic fields passing through or evolving on a horizontal and static 
lane P that represents a rectangular subset of the photosphere. The 
agnetic field distribution on P will be provided by Space-Weather 
elioseismic and Magnetic Imager (HMI) Activ e Re gion P atches 

SHARP) vector magnetograms (Hoeksema et al. 2014 ). Although 
 flat and static plane is an approximation of the photospheric 
oundary, simulations suggest that it is a reasonable assumption 
or the calculation of magnetic helicity and magnetic winding (Prior 
 MacTaggart 2019 ; MacTaggart & Prior 2021 ). 
As mentioned in the introduction, field line winding represents 

he topological description of the magnetic field that underlines both 
agnetic helicity and magnetic winding. Let x ( t) = ( x 1 , x 2 ) and

y ( t) = ( y 1 , y 2 ) represent the position vectors in P of two field lines
ntersecting P at a time t . The mutual angle � ( x , y ) of the two field
ine intersection points in P is given by 

 ( x , y ) = arctan 

(
y 2 − x 2 

y 1 − x 1 

)
. (1) 

he vector u ( y ) = ( d y 1 / d t, d y 2 / d t) is the planar velocity of the field
ine footpoint indicated by y , and is referred to as the field line
elocity. Writing r = y − x , the time deri v ati ve of equation ( 1 ) can
e expressed as 

d � 

d t 
= e z · ( u ( x ) − u ( y )) × r 

| r | 2 , (2) 

here e z is the unit vector orthogonal to P . Equation ( 2 ) represents the
asic building block of the the underlying topological description of 
he fluxes that we will calculate – the pairwise winding of field lines
e.g. Candelaresi et al. 2021 ). We define a winding kernel based on
quation ( 2 ) in order to define subcomponents of the winding/helicity
uxes, 

[ u 1 , u 2 ; x , y , t] = 

1 

2 π
e z · ( u 2 ( x ) − u 1 ( y )) × r 

| r | 2 , (3) 

here u 1 and u 2 will change depending on what quantity is calcu- 
ated. Henceforth, for brevity, we will omit showing the dependence 
f K on quantities that come after the semicolon. Deri v ations of
he topological quantities that we calculate here are treated in other 
orks (e.g. Prior & Yeates 2014 ; Prior & MacTaggart 2020 ). Here,

nstead, we list the various quantities that are built on the winding
ernel K . 
 https://github.com/DavidMacT/ARTop 

e

u

T

.1 Helicity fluxes 

he field line helicity input rate, d H/ d t , that is, the helicity input
ate relative to a field line indicated by x , is 

d H 

d t 
( x ) = −B z ( x ) 

∫ 
P 

B z ( y ) K[ u ( x ) , u ( y )] d 2 y. (4) 

t should be noted that the abo v e definition of the field line helicity
ate is different from some others that are used in the literature (e.g.
erger 1988 ). The rate of total magnetic helicity flux, d H /d t , is then

he integral of equation ( 4 ) over P , i.e. 

d H 

d t 
= −

∫ 
P 

∫ 
P 

B z ( x ) B z ( y ) K[ u ( x ) , u ( y )] d 2 x d 2 y. (5) 

quation ( 5 ) shows clearly how the magnetic helicity flux is a com-
ination of information about magnetic flux and field line topology 
see Prior & MacTaggart 2020 , for a more detailed discussion). 

.1.1 Decompositions 

quations ( 4 ) and ( 5 ) represent the two topological quantities that
ave been calculated in many previous works. We now consider two
urther decompositions. First, the field line velocity can be decom- 
osed (Berger 1988 ; D ́emoulin & Berger 2003 ; Pariat, D ́emoulin &
erger 2005 ) as 

 ( x ) = v ‖ ( x ) − v z ( x ) 
B z ( x ) 

B ‖ ( x ) , 

= u b + u e , (6) 

here u b : = v ‖ is the braiding velocity (due to the horizontal motion
f footpoints in P ) and u e : = −( v z /B z ) B ‖ is the emergence velocity
due to the emergence or submergence of a field line changing the
osition of the footpoint in P ). Please note that the notation with a
ubscript ‖ refers to vectors parallel to P (i.e. horizontal vectors on
he photosphere) and not vectors parallel to the magnetic field (for
hich this notation is sometimes used in the literature). The vector v 

s the plasma velocity (or the flux-conserving velocity if other non-
esistive terms are included in Ohm’s law). Representations of how 

he braiding and emerging velocities affect the field line winding are
isplayed in Fig. 1 . 
With this decomposition, we can determine helicity fluxes due to 

raiding and emergence v elocities individually. F or e xample, if we
anted to find the field line helicity rate due to the braiding velocity

lone, the only change to equation ( 4 ) would be in the winding kernel,

d H b 

d t 
( x ) = −B z ( x ) 

∫ 
P 

B z ( y ) K[ u b ( x ) , u b ( y )] d 2 y. 

The second decomposition that we will consider is the splitting of
he magnetogram magnetic field into a potential part and a ‘current-
arrying’ part, i.e. 

B ( t) = B p ( t) + B c ( t) . (7) 

he idea is to split the current-carrying components, which are related 
o the free energy of the field, from potential components. In terms
f helicity fluxes, the decomposition in ( 7 ) allows for more choices.
o construct these, first note that B · e z = B p · e z , so B c is a planar
ector field. This means that the field line velocity decomposition in
quation ( 6 ) becomes 

 ( x ) = v ‖ ( x ) − v z ( x ) 
B z ( x ) 

B ‖ p ( x ) − v z ( x ) 
B z ( x ) 

B ‖ c ( x ) . (8) 

he field line velocities for the potential and current-carrying parts 
RASTAI 2, 398–407 (2023) 

https://github.com/DavidMacT/ARTop


400 K. Alielden et al. 

R

Figure 1 Field line winding due to (a) braiding on the photosphere and (b) emergence through the photosphere. In panel (a) the blue field line x intersects 
the photospheric plane, and two other field lines y 1 , y 2 also pierce the plane. The vectors r 1 and r 2 join the intersection points of their field lines and x . The 
in-plane plasma velocity v ‖ (shown as yellow arrows) indicates a motion of the field lines y 1 , y 2 due to being ‘stirred’ or ‘braided’ by the plasma (under ideal 
motion). This motion leads to the vectors r 1 and r 2 subtending changes in angle �� 1 and �� 2 with respect to x . The winding measures this rotation and we 
refer to the change due to this in-plane motion as braiding motion . In panel (b) we see a helical field line y rising up through the photosphere (at velocity v z ), 
the kinked shape means there is apparent foot-point motion and rotation between the curves x and y , which can also be tracked by the variation in the change 
�� in angle � ( x , y ) subtended by the two curves. We refer to this motion as emergence motion (which also includes submergence). 
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f the magnetic field are defined as 

u p ( x ) = v ‖ ( x ) − v z ( x ) 
B z ( x ) 

B ‖ p ( x ) , (9) 

u c ( x ) = v ‖ ( x ) − v z ( x ) 
B z ( x ) 

B ‖ c ( x ) . (10) 

ince B c is planar, its field line velocity is equi v alent to that of
he total magnetic field B . Both equations ( 9 ) and ( 10 ) can be
ecomposed into braiding and emergence components, as before.
hus, with the abo v e framework, it is straightforward to calculate the
arious decompositions by simply selecting the appropriate velocity
elds to insert into the winding kernel. 

.1.2 δ-measure 

ith the braiding/emergence and potential/current-carrying decom-
ositions established, we now present a particular measure that pro-
ides information about how the helicity due to the current-carrying
art of the magnetic field compares to that due to the potential part
f the magnetic field. This new measure, δH , is defined by 

H = 

∫ T 

0 

∫ 
P 

(∣∣∣∣d H c 

d t 

∣∣∣∣ −
∣∣∣∣d H p 

d t 

∣∣∣∣
)

d 2 y d t, (11) 

here T is some specified time. The flux of δH , which is calculated
rst in practice, is 

d( δH ) 

d t 
= 

∫ 
P 

(∣∣∣∣d H c 

d t 

∣∣∣∣ −
∣∣∣∣d H p 

d t 

∣∣∣∣
)

d 2 y. (12) 

his measure has the benefit of the stability of a global quantity
an integral over P ) together with preserving the importance of
ocal information (the subtraction of absolute values means that
nformation is not lost upon inte gration o v er P ). In brief, it indicates
hen the field line topology is dominated by the current-carrying

omponent (it is positive) or the potential component (it is ne gativ e).
ater, we will show one possible way in which the δ-measure may
e used in relation to flare studies. 

.2 Winding fluxes 

he decompositions described abo v e for the magnetic helicity fluxes
 4 ) and ( 5 ), also hold for magnetic winding fluxes. We will not repeat
he description but only define the main winding fluxes. From these,
ASTAI 2, 398–407 (2023) 
he construction of the various decompositions occurs in exactly the
ame manner as described previously. 

Analogous to the field line helicity rate, the field line winding rate
s given by 

d L 

d t 
( x ) = −σz ( x ) 

∫ 
P 

σz ( y ) K[ u ( x ) , u ( y )] d 2 y. (13) 

quation ( 13 ) is identical to equation ( 4 ) but for the fact that B z has
een replaced by an indicator function σ z , which is defined as 

z ( x ) = 

⎧ ⎨ 

⎩ 

1 if B z > 0 , 
−1 if B z < 0 , 
0 if B z = 0 . 

(14) 

quation ( 14 ) describes the direction of a field line through P . It is this
enormalization of the field strength that allows magnetic winding to
e a direct measure of magnetic topology (MacTaggart et al. 2021 ).
he rate of magnetic winding flux, d L /d t , is given by 

d L 

d t 
= −

∫ 
P 

∫ 
P 

σz ( x ) σz ( y ) K[ u ( x ) , u ( y )] d 2 x d 2 y. (15) 

inally there is the δL quantity 

L = 

∫ T 

0 

∫ 
P 

(∣∣∣∣d L c 

d t 

∣∣∣∣ −
∣∣∣∣d L p 

d t 

∣∣∣∣
)

d 2 y d t, (16) 

nd its flux 

d( δL ) 

d t 
= 

∫ 
P 

(∣∣∣∣d L c 

d t 

∣∣∣∣ −
∣∣∣∣d L p 

d t 

∣∣∣∣
)

d 2 y, (17) 

here the same current-carrying/potential field decomposition, as
escribed abo v e, has been used. 

 ARTop A L G O R I T H M  

ith the main topological quantities in place, we now describe the
ain stages of the ARTop algorithm. Fig. 2 displays the main pipeline

f ARTop and this is followed by an o v erview of the main steps.
pecific details required to install and run the code can be found in

he online documentation. 

.1 Step 1: Setup 

fter downloading ARTop , and assuming all the necessary depen-
encies are installed (these are detailed in the online documentation),

art/rzad029_f1.eps
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Figure 2 The algorithm of ARTop . For each of the steps, the main script/e x ecutable associated with that step is labelled. Bi-directional arrows indicate 
communication in both directions – all the main steps either read from or write to the input/output directories. 
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he user first needs to compile the C ++ part of the code by running
 makefile. The user then specifies details about the active region 
n read data.txt . Once the necessary input parameters are 
nserted, the code is e x ecuted by running run ARTop.py . 

.2 Step 2: Magnetogram downloads 

hile, in practice, a user would specify all input parameters before 
unning the code (i.e. in Step 1), for ease of description, we refer to
articular input parameters when describing the part of the algorithm 

o which they are associated. 
The ARTop code obtains magnetic field data (the components of 

he field B ) for the appropriate active region by downloading, via 
rms (Glogowski et al. 2019 ), the CEA hmi.sharp cea 720s
roduct for that region (see Bobra et al. 2014 ). The download makes
se of the url-tar method, in which a single tar file containing
he necessary FITS files is downloaded and unpacked. Once the code 
as read all the FITS files and produced files of the magnetic field
omponents in the format necessary for the next step of the algorithm, 
he FITS files are deleted (but the downloaded tar file remains and
an be reused if needed). 

The magnetic field data are mapped using the Lambert equal area 
ylindrical mapping which gives components ( B r , B φ , B θ ). These
point) values can then be identified with Cartesian components 
hrough the correspondence B z = B r , B x = B φ, B y = −B θ . The
e gativ e sign for the y -component accounts for the camera image
nversion. We rely on the inbuilt 180-degree field disambiguation 
rovided automatically for the product via a minimum energy method 
Metcalf 1994 ; Leka et al. 2009 ). 

The SHARP number of the active region to be studied, plus
he start and end times for the search, are the basic requirements
or downloading magnetograms. Often, the SHARP number of an 
ctiv e re gion is not known a priori, but the National Oceanic and
tmospheric (NOAA) number is. ARTop includes a script for finding 

he SHARP number of an active region for a given NOAA number. 
At this stage, the code also produces two auxiliary files, 
eader.txt and specifications.txt , that are used by 
any parts of the algorithm. The first file contains header information 

elating to the downloaded magnetograms, and is needed for the 
isualization routines. The second auxiliary file contains the active 
egion number, the magnetogram resolution, the number of time 
umps and the values of three parameters (the smoothing factor, the
ut-off, and the downsampling factor) which are discussed later. 

.3 Step 3: velocity calculations 

elocities are determined using the Dif ferential Af fine Velocity Esti-
ator for Vector Magnetograms (DAVE4VM), developed by Schuck 

 2008 ). A C ++ version of this algorithm has been implemented to
peed up the calculations, which is a direct translation of the original
DL code. Thus the ef fecti veness of the method is identical to that
emonstrated in Schuck ( 2008 ) (where results were compared to real
elocity fields and anelastic 3D models). This method has become 
tandard in the field (e.g. Liu & Team 2011 ; Romano et al. 2014 ;
RASTAI 2, 398–407 (2023) 

art/rzad029_f2.eps


402 K. Alielden et al. 

R

Table 1. Spatially varying quantities output by ARTop . 

Description Symbol 

Normal component of magnetic field B z 

Normal field line velocity component u z 
Normal Poynting flux S z ( = e z · ( E × B )) 
Field line winding rate d L / d t 
Current-carrying field line winding rate d L c / d t 
Potential field line winding rate d L p / d t 
Braiding field line winding rate d L b / d t 
Field line helicity rate d H/ d t 
Current-carrying field line helicity rate d H c / d t 
Potential field line helicity rate d H p / d t 
Braiding field line helicity rate d H b / d t 
δ-measure winding rate integrand | d L c / d t | − | d L p / d t | 
δ-measure helicity rate integrand | d H c / d t | − | d H p / d t | 
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Table 2. Spatially integrated quantities output by ARTop . 

Description Symbol 

Current-carrying winding rate d L c /d t 
Potential winding rate d L p /d t 
Braiding winding rate d L b /d t 
Current-carrying helicity rate d H c /d t 
Potential helicity rate rate d H p /d t 
Braiding helicity rate d H b /d t 
Total winding rate d L /d t 
Total helicity rate d H /d t 
δ-measure winding rate d( δL )/d t 
δ-measure helicity rate d( δH )/d t 
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ziotziou et al. 2015 ; Vemareddy & D ́emoulin 2017 ). The velocity
omponents are determined at each time only if two consecutive sets
 x -, y -, and z -components) of magnetograms exist. If two consecutive
ets do not exist, the code skips to the next time when two consecutive
ets do exist. This can be seen in time series of the outputted variables
s regions of zero (for flux data) or flat regions (for time-integrated
ata), see figs 2 and 6 of MacTaggart et al. ( 2021 ) for clear examples
f the effects of missing data. 
An important input parameter for the velocity calculations is the

ize of the smoothing window which is used to generate differentiable
ata sets from the noisy magnetogram data. This value is specified
n pixels. Recommendations on what values to use are discussed in
chuck ( 2008 ), but the choices of 11 or 20 pixels are typical in the

iterature (e.g. Romano et al. 2014 ; MacTaggart et al. 2021 ). We
how later the effect of varying this parameter. 

.4 Step 4: potential field calculations 

n order to perform the decomposition in equation ( 7 ), the x -
nd y -components of B p must be determined. This is performed
fficiently in a Python script, for every time step, using a Fourier
eries decomposition, as described in Gary ( 1989 ) (a linear force-
ree method from which we take the potential case). This method
mplicitly assumes periodicity in the data, which is reasonable for
HARP data sets where the field is significantly weak at the boundary
f the domain. It also matches a periodic assumption made in a least
quare fit deri v ati ve estimate of the field in the DAVE4VM method. 

.5 Step 5: Topological calculations 

he stages described previously have been in preparation for the
ain calculations of ARTop . Table 1 lists all the quantities that are

ither taken from previous calculations or calculated at this stage.
or each time dump, there is a file with these variables as columns. 
All of the variables in Table 1 are spatial quantities, i.e. they vary

 v er P . Note that the emergence fluxes, although not listed explicitly,
an be calculated as d L / d t − d L b / d t and d H/ d t − d H b / d t . 

At the end of each output file, there are ten variables with spatially
ntegrated quantities. These are displayed in Table 2 . 

The quantities in this stage are calculated using a C ++ code
ith OpenMP. Quantities based on quadrature are determined with a

tandard midpoint rule, which is fast and suitable for the smoothness
f the magnetogram data. 
An important input parameter for this stage is the downsampling

umber. This parameter allows for much faster calculations by
ASTAI 2, 398–407 (2023) 
educing the resolution of calculations. Later, we will provide a
escription of how this is achieved in ARTop without sacrificing the
ehaviour of important features of the output. 
This completes our o v erview of the main calculations of the
RTop algorithm. We now present briefly the main analysis routines
vailable in ARTop , that allow the user to e v aluate the data easily
ith just a few lines of Python code. 

 ANALYSI S  RO UTI NES  

he best way for a user to learn about the analysis routines of
RTop is to work through the guided examples that are provided in
upyter notebooks that accompany the source code. In this section,
e will focus on the core functionality of the analysis routines – the
roduction of maps and time series. 
In order to highlight the core features, we focus on AR11158

SHARP 377). This region has been studied in many previous works
e.g. Jing et al. 2012 ; Tarr, Longcope & Millhouse 2013 ; Toriumi
t al. 2013 ; Tziotziou, Georgoulis & Liu 2013 ; Kazachenko et al.
015 ; Li & Liu 2015 ; Thalmann et al. 2019 ). The magnetograms of
R11158 have been downloaded from 22:00 UT on 2011 February
0 and last for 150 h. For what follows, the above starting time
orresponds to hour zero in the plots and all times are reported in
ours relative to this start time. 

.1 Maps 

ll the variables from Table 1 can be displayed as maps, and
hese maps are created by means of SunPy’s Map class 2 (The
unPy Community 2020 , (10.5281/zenodo.7582087)). Fig. 3 shows
xamples of maps at time t = 60 h. 

.2 Time series and flare analysis 

he variables in Table 2 and their time-integrated versions can be
isplayed as time series. To do this, ARTop makes use of Pandas
ataFrames 3 which are highly portable. 
Fig. 4 shows an example of such series for d( δL )/d t . In Fig. 4 , the

ime series of d( δL )/d t is displayed together with a running mean
 μ30 ) and an envelope of three standard deviations centred on the
unning mean ( μ30 + 3 σ ). The subscript corresponds to the number
f time steps used in calculating the running mean. In this example,
0 time steps corresponds to 6 h of data. This parameter, as well as
he height of the envelope, can be changed easily in ARTop . 

https://docs.sunpy.org/en/stable/guide/data_types/maps.html
https://pandas.pydata.org/
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Figure 3 Maps, at t = 60 h, of (a) B z , (b) u z , (c) d H b / d t , (d) d L b / d t , and (e) d H/ d t with contours of B z (blue: + 800 G, red: −800 G). The parameters (see 
Section 5 for definitions) used for the calculation are CO = 50, VS = 20, and D = 1. All colour scales are between minimum and maximum values. 
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One possible application of including the running mean and the 
nvelope is to find a threshold condition that indicates the onset 
f solar flares. A possible signature of flare onset is for d( δL )/d t
o break through the envelope. Such a signature would signify a 
apid and substantial change of complex field line topology at the 
hotosphere, which is typical of many pre-flare scenarios (e.g. Joshi 
t al. 2011 ; Woods et al. 2017 ; MacTaggart & Fletcher 2019 ; Mitra,
oshi & Prasad 2020 ). In Fig. 4 , the vertical black lines correspond
o recorded flare times. To find these times, ARTop makes use of
nformation from the daily NOAA Space Weather Prediction Center 
eports on solar activity, which are downloaded from Solar Monitor. 4 

s well as flare times, these reports contain information about GOES
-ray events (the beginning, the maximum, and the end times of local
RASTAI 2, 398–407 (2023) 
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R

Figure 4 A time series of d( δL )/d t together with a running mean μ30 , based on the past 6 h of data, and an envelope of 2.5 standard deviations. The vertical 
black lines correspond to recorded flare times in AR11158 (see the main text for more details). The calculation parameters are the same as those for Fig. 3 . 
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eaks) and their strength classifications. Both flare and X-ray event
imes can be downloaded in ARTop and incorporated easily into time
eries plots such as that in Fig. 4 . 

Much detailed information can be found from these time series.
 or e xample, in Fig. 4 , the rise just before t = 50 corresponds to the
mergence of topologically complex magnetic field. This time marks
he arri v al of topologically complex magnetic field in the atmosphere
nd several flares follow this rise. Later there are several examples
f the time series breaking through the envelope shortly before the
nset of flares. 

 PA R A M E T E R S  

he calculations in ARTop are dependent on three user-controlled
arameters: the magnetic field cut-off CO , the velocity smoothing
indow VS , and the downsampling factor D . The effect of changing
O has been discussed in MacTaggart et al. ( 2021 ), so we will
nly mention it here briefly. The effects of changing VS and D
re discussed below. In particular, we will pay attention to how
ownsampling is incorporated into the calculations so that speed-up
s gained without sacrificing significant accuracy. 

.1 Cut-off CO 

he selected CO in ARTop imposes a lower limit on what magnetic
eld strengths are included in calculations. This is important in order

o remo v e magnetic field that may be highly entangled but has very
eak field strength, thus being irrele v ant dynamically. In MacTaggart

t al. ( 2021 ), it was shown how winding and helicity calculations
ehave in similar ways qualitatively as a function of varying CO . If
O is chosen to be too large ( > 100G) there can be a large quantitative
ffect on the calculations. Previous tests, however, such as those in
acTaggart et al. ( 2021 ), suggest that qualitative behaviours, none

he less, remain similar. 

.2 Velocity smoothing parameter VS 

he VS parameter is related to the DAVE4VM method, it represents
he number of surrounding pixels (the number VS ) o v er which the
ASTAI 2, 398–407 (2023) 
ata are smoothed for the inversion to be well defined. Its value
nfluences how smooth the derived velocity maps are. Descriptions
f suitable choices are given in Schuck ( 2008 ). Examples of VS =
2 and 20 are provided in Fig. 5 . 
In Figs 5 (a) and (b), we see comparisons of the time-integrated time

eries L ( t ) and H ( t ). There is very little qualitative difference, with
he morphologies of the curves for each variable being very similar.
uantitati ve dif ferences are much less than an order of magnitude. 
For the δ-measures, displayed in Figs 5 (c) and (d), the morpholo-

ies of the curves for the different VS are again very similar. There is a
arger difference in magnitude for the majority of the time displayed,
hough this is still less than an order of magnitude. The difference
ncreases at the very end of the displayed time, when the active region
e gins to mo v e be yond 60 ◦ longitude, i.e. be yond the position in
hich projection effects can lead to substantial errors in calculations.

.3 Downsampling factor D 

he downsampling factor, D , is included to speed up calculations.
his is an important feature if hundreds of active regions are to be
tudied, each with hundreds of time steps. In ARTop , downsampling
s implemented in a particular way that aims to strike a balance
etween speed-up and the preservation of important topological
eatures. 

All of the helicity and winding fluxes depend on double integrals. 5 

n the inner integral, a point (field line) is chosen and the contribution
o the winding/helicity flux of all other points (field lines) about this
s calculated. The outer integral is then (at least numerically) the
eighted sum of all these field line windings (compare equations ( 4 )
ith ( 5 ) and ( 13 ) with ( 15 )). Reducing the resolution of the magne-

ograms used for both the inner and outer integrals is too drastic and
eads to qualitative changes in the output. Instead, we implement the
ollowing, which is illustrated in Fig. 6 . 

The inner integral, represented by the red grid in Fig. 6 , is related
o calculating the field line winding or helicity fluxes, d L / d t or

art/rzad029_f4.eps
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Figure 5 Comparisons of the effect of the velocity smoothing window parameter VS various of the quantities calculated by the ARTop code. Panels (a) and (b) 
are the total integrated winding L and helicity H , panels (c) and (d) the time-integrated metrics δL and δH . 

Figure 6 Downsampling in ARTop . The grids for each integral (inner and 
outer) are displayed. In each dimension, the resolution of the outer integral’s 
grid (blue) is reduced by a factor D . The inner integral uses a grid (red) with 
the full resolution. 
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 H/ d t , which are al w ays calculated on the full grid. For the outer
ntegral, the number of points at which this calculation is performed 
s represented by the blue grid. In ARTop , selecting D > 1 results
n a reduction of the blue outer grid (magnetogram) resolution for
he outer integral by a factor of D in each dimension. Therefore,
lthough the number of points used to e v aluate a particular flux is
educed, the value of the field line winding at each point still uses the
ull grid. In this way, important signatures of topological quantities 
an be preserved whilst also performing much faster calculations. 

As an example of the practical effects of downsampling, we display 
ow setting D = 1, 2, 3, 5, and 10 affects the behaviour of δH and
L . These quantities are the time-integrated d( δH )/d t and d( δL )/d t ,
espectively, and are an optional calculation in ARTop . The results
re shown in Fig. 7 . 

One striking feature of the time series in Fig. 7 is that the
orphologies of the curves for D = 1, 2, and 3 are almost identical

or the entire time span. The main difference is in the magnitude,
nd this is expected since each calculation uses different data (i.e.
if ferent pixels). A qualitati ve dif ference between the dif ferent time
eries is only strongly noticeable in δL for D = 5, 10. These large
alues would not be used in practice, but here they indicate that they
an still produce accurate results for about 100 h of data representing
ifferent phases of complex dynamics. 
As mentioned before, the main purpose of downsampling is to 

peed up calculations significantly without sacrificing important 
eatures of the time series. With the implementation described here, 
he theoretical speed-up should scale as O ( D 

2 ). Normalizing with
espect to the D = 1 (full resolution) case, the comparison of
ctual speed-ups to the theoretical values (for the cases shown in
ig. 7 ) and the normalized differences are displayed in Fig. 8 . These
esults clearly show that significant speed-up can be achieved without 
acrificing key features in the data. 
RASTAI 2, 398–407 (2023) 

art/rzad029_f5.eps
art/rzad029_f6.eps


406 K. Alielden et al. 

R

Figure 7 Plots of (a) δH and (b) δL versus time for different downsampling parameters D = 1, 2, 3, 5, and 10. 

Figure 8 Two representations of how the run time (per snapshot) depends on 
D . Panel (a) shows a comparison of actual speed-ups (blue stars) compared 
to theoretical speed-ups (red dots). Downsampling values D are indicated 
beside each point. Subscripts T and A correspond to ‘theoretical’ and ‘actual’, 
respectiv ely. P anel (b) shows the normalized difference with respect to D = 1. 
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.4 Benchmarking/testing 

he code has been checked against an existing IDL code (which is
ot publicly available) in MacTaggart et al. ( 2021 ), for active region
R11318, whose (braiding) helicity fluxes were calculated in Ro-
ano et al. ( 2014 ) using the IDL code. Although we found a small dif-
ASTAI 2, 398–407 (2023) 
erence in the magnitudes (in part due to different methods of ‘clean-
ng’ the magnetograms), the morphology of the curves from ARTop
nd the code of Romano et al. ( 2014 ) were found to be very close. 

To the best of our knowledge ARTop is currently the only publicly
vailable helicity/winding flux calculation code, so further systematic
enchmarking is not possible at this time. We hope that by publishing
his code that situation can be altered. We note that the net helicity
 ( t ) calculated here for AR11158 yields very similar values to that
f fig. 5(a) of Tziotziou et al. ( 2013 ), with magnitudes of the order
f 10 43 and a similar slope. 

 C O N C L U S I O N S  

RTop provides researchers with an ef fecti ve tool for analysing
opological quantities in solar activ e re gions. The code has been
ested in previous works and has pro v ed to be very useful in
dentifying the topology of emerging structures (MacTaggart et al.
021 ). The analysis routines of ARTop allow researchers to produce
ast and detailed information about active region topology. In
his paper, we have demonstrated ARTop ’s analysis routines on a
omple x activ e re gion. We hav e discussed how parameters in the code
ffect the output and have shown that a particular implementation of
ownsampling can result in significant speed-ups without sacrificing
he qualitative nature of the output. 

The topological quantities in ARTop provide distinct and impor-
ant information about magnetic field topology and, thus, about active
egion evolution. To use them effectively in the analysis of an active
egion, it is recommended that a researcher use them together and
ot in isolation. Although magnetic winding flux can provide more
irect information about magnetic field topology, it is al w ays useful
o interpret its results together with helicity flux, in order to identify
hich signatures are important dynamically. Further, topological

ignatures, such as a steep rise in helicity/winding shortly before
 flare, should be cross-checked with other variables, like u z or S z ,
n order to provide a deeper spatiotemporal picture of what they are
onv e ying. This type of analysis can be performed simply in ARTop ,
aking it an ef fecti ve tool for solar active region research. 
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