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ABSTRACT

The importance of measuring topological quantities, such as magnetic helicity, in solar observations has long been recognized.
In particular, topological quantities play an important role in both understanding and predicting solar eruptions. In this paper,
we present ARTop (Active Region Topology), an open-source and end-to-end software tool that allows researchers to calculate
the fluxes of topological quantities based on solar magnetograms. In addition to this, ARTop also allows for the efficient
analysis of these quantities in both 2D maps and time series. ARTop calculates the fluxes of magnetic helicity and magnetic
winding, together with particular decompositions of these quantities. To perform these calculations, SHARP magnetograms are
downloaded and velocity maps are created using the DAVE4VM method. Visualization tools, written in Python, are provided to
aid in the selection of appropriate output variables and for the straightforward creation of maps and time series. Additionally,
other analysis functions are included to facilitate and aid solar flare investigations. This software offers researchers a powerful

tool for investigating the behaviour of active regions and the origins of space weather.
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1 INTRODUCTION

The evolution of solar active regions is characterized by the de-
velopment of topologically complex magnetic field (e.g. van Driel-
Gesztelyi & Green 2015). The word ‘topological’ here indicates the
entanglement of magnetic field lines, and we will specify what this
means shortly. Topologically complex magnetic field both emerges
into the solar atmosphere through the photosphere, and can also be
created by the braiding of the footpoints of the emerged field at the
photosphere (e.g. Amari et al. 2003; Toriumi et al. 2013; Candelaresi
et al. 2018; MacTaggart et al. 2021).

Reliable direct measurements of the solar magnetic field are only
available at the photosphere, whereas the structure of the 3D field
in the solar atmosphere requires additional modelling assumptions
for its construction and estimation. Nonetheless, it is possible to
estimate the flux, through the photosphere, of quantities related to the
magnetic field that provide information about the emerging field’s
topology. One of the most prominent measures of magnetic field
topology is relative magnetic helicity, and measurements of the flux
of this quantity in solar magnetograms have become a staple of active
region analysis over the past 20 yr (e.g. Chae 2001; Yamamoto et al.
2005; Jeong & Chae 2007; LaBonte, Georgoulis & Rust 2007; Yang,
Zhang & Biichner 2009; Chandra et al. 2010; Liu & Schuck 2012;
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Park et al. 2012; Liu et al. 2014; Romano et al. 2014; Vemareddy &
Démoulin 2017). A review of numerical techniques for calculating
magnetic helicity in simulations and observations can be found in
Pariat (2020).

Another important topological quantity that can be estimated
from magnetograms is magnetic winding (MacTaggart et al. 2021).
Although we described magnetic helicity as a topological quantity,
it actually combines two fundamental quantities: magnetic topol-
ogy and magnetic flux. Magnetic winding is a renormalization
of magnetic helicity that provides direct information about the
field line entanglement, i.e. it removes any possible confound on
topological information created by weighting field lines with their
field strength. As the name suggests, the underlying topology of
magnetic field lines is measured by their winding about each other
(Berger 1993; Candelaresi et al. 2021). This generalizes the concept
of field line linkage in classical helicity (Prior & Yeates 2014; Prior
& MacTaggart 2020). Magnetic winding can be shown to provide
distinct information compared to magnetic helicity in observational
studies. It has proven to be an important quantity for identifying the
source of current-carrying magnetic structure (a twisted flux tube) in
the solar atmosphere (MacTaggart et al. 2021).

In this work, we present an open-source software package called
ARTop. This stands for Active Region Topology, and it is designed
to calculate and analyse magnetic helicity and magnetic winding,
together with important decompositions of these quantities. This
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package provides the user with simple functionality to study the
topology of active regions from the downloading of magnetograms
through to the analysis of topological quantities and their relation
to the onset of flares. The paper is outlined as follows. The next
section describes the topological quantities that are calculated in
ARTop. We then describe the structure of the algorithm and present
illustrative examples of the code’s analysis routines. Finally, we
assess the influence of key parameters in ARTop. While this article
provides an overview of the underlying theory and capabilities of
ARTop, code documentation can be found with the source code.!

2 TOPOLOGICAL QUANTITIES

The topological quantities calculated in ARTop are based on mag-
netic fields passing through or evolving on a horizontal and static
plane P that represents a rectangular subset of the photosphere. The
magnetic field distribution on P will be provided by Space-Weather
Helioseismic and Magnetic Imager (HMI) Active Region Patches
(SHARP) vector magnetograms (Hoeksema et al. 2014). Although
a flat and static plane is an approximation of the photospheric
boundary, simulations suggest that it is a reasonable assumption
for the calculation of magnetic helicity and magnetic winding (Prior
& MacTaggart 2019; MacTaggart & Prior 2021).

As mentioned in the introduction, field line winding represents
the topological description of the magnetic field that underlines both
magnetic helicity and magnetic winding. Let x(z) = (x1, x;) and
y(t) = (y1, y2) represent the position vectors in P of two field lines
intersecting P at a time 7. The mutual angle ®(x, y) of the two field
line intersection points in P is given by

®(x, y) = arctan (y2 — xz) . (1)
yi—Xi
The vector u(y) = (dy,/dt, dy,/dr) is the planar velocity of the field

line footpoint indicated by y, and is referred to as the field line
velocity. Writing r = y — x, the time derivative of equation (1) can
be expressed as

de (u(x) —u(y)) xr
=e, r ——M—— ——
dr ) |r|?

, (@3]

where e is the unit vector orthogonal to P. Equation (2) represents the
basic building block of the the underlying topological description of
the fluxes that we will calculate — the pairwise winding of field lines
(e.g. Candelaresi et al. 2021). We define a winding kernel based on
equation (2) in order to define subcomponents of the winding/helicity
fluxes,

1 (uz(x) —u () xr

Kluy,u);x,y,t] = —e, -
(ur, uz;x, y, 1] 7 & PE

) 3)

where u; and u, will change depending on what quantity is calcu-
lated. Henceforth, for brevity, we will omit showing the dependence
of K on quantities that come after the semicolon. Derivations of
the topological quantities that we calculate here are treated in other
works (e.g. Prior & Yeates 2014; Prior & MacTaggart 2020). Here,
instead, we list the various quantities that are built on the winding
kernel K.

Thttps://github.com/DavidMacT/ARTop
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2.1 Helicity fluxes

The field line helicity input rate, dH /d¢, that is, the helicity input
rate relative to a field line indicated by x, is

dH 2
?(x) = —Bz(x)/P B.(y)K[u(x), u(y)]d-y. 4

It should be noted that the above definition of the field line helicity
rate is different from some others that are used in the literature (e.g.
Berger 1988). The rate of total magnetic helicity flux, dH/dz, is then
the integral of equation (4) over P, i.e.

- / / B.(x)B.(»)K[u(x), u(y)] d*x d*y. ®)
PJP

Equation (5) shows clearly how the magnetic helicity flux is a com-
bination of information about magnetic flux and field line topology
(see Prior & MacTaggart 2020, for a more detailed discussion).

2.1.1 Decompositions

Equations (4) and (5) represent the two topological quantities that
have been calculated in many previous works. We now consider two
further decompositions. First, the field line velocity can be decom-
posed (Berger 1988; Démoulin & Berger 2003; Pariat, Démoulin &
Berger 2005) as

u(x) =v(x) — ——B)x),

v:(x)
B.(x)

= u, + ue, (6)
where u;, := v is the braiding velocity (due to the horizontal motion
of footpoints in P) and u, := —(v,/B;)B is the emergence velocity
(due to the emergence or submergence of a field line changing the
position of the footpoint in P). Please note that the notation with a
subscript || refers to vectors parallel to P (i.e. horizontal vectors on
the photosphere) and not vectors parallel to the magnetic field (for
which this notation is sometimes used in the literature). The vector v
is the plasma velocity (or the flux-conserving velocity if other non-
resistive terms are included in Ohm’s law). Representations of how
the braiding and emerging velocities affect the field line winding are
displayed in Fig. 1.

With this decomposition, we can determine helicity fluxes due to
braiding and emergence velocities individually. For example, if we
wanted to find the field line helicity rate due to the braiding velocity
alone, the only change to equation (4) would be in the winding kernel,

%(x)

—Bz(x)/ B.(y)K [up(x), up(y)] d’y.
P

The second decomposition that we will consider is the splitting of
the magnetogram magnetic field into a potential part and a ‘current-
carrying’ part, i.e.

B, (1) + B.(1). ™

Theideais to split the current-carrying components, which are related
to the free energy of the field, from potential components. In terms
of helicity fluxes, the decomposition in (7) allows for more choices.
To construct these, first note that B - e, = B, - e., so B, is a planar
vector field. This means that the field line velocity decomposition in
equation (6) becomes

(%) o (x)
B() B()

The field line velocities for the potential and current-carrying parts

B(t) =

®)

u(x) =v)(x) —
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(a)

(b)

Figure 1 Field line winding due to (a) braiding on the photosphere and (b) emergence through the photosphere. In panel (a) the blue field line x intersects
the photospheric plane, and two other field lines y, y, also pierce the plane. The vectors r; and r; join the intersection points of their field lines and x. The
in-plane plasma velocity v; (shown as yellow arrows) indicates a motion of the field lines y;, y, due to being ‘stirred’ or ‘braided’ by the plasma (under ideal
motion). This motion leads to the vectors r| and r, subtending changes in angle A®; and A®; with respect to x. The winding measures this rotation and we
refer to the change due to this in-plane motion as braiding motion. In panel (b) we see a helical field line y rising up through the photosphere (at velocity v;),
the kinked shape means there is apparent foot-point motion and rotation between the curves x and y, which can also be tracked by the variation in the change
A® in angle ®(x, y) subtended by the two curves. We refer to this motion as emergence motion (which also includes submergence).

of the magnetic field are defined as

v:(x)

uy(x) =v(x)— mBup(x), )
1 (x) = v)(x) — ;ﬁ((’;))BMx). (10)

Since B, is planar, its field line velocity is equivalent to that of
the total magnetic field B. Both equations (9) and (10) can be
decomposed into braiding and emergence components, as before.
Thus, with the above framework, it is straightforward to calculate the
various decompositions by simply selecting the appropriate velocity
fields to insert into the winding kernel.

2.1.2 §-measure

With the braiding/emergence and potential/current-carrying decom-
positions established, we now present a particular measure that pro-
vides information about how the helicity due to the current-carrying
part of the magnetic field compares to that due to the potential part
of the magnetic field. This new measure, §H, is defined by

T
6H=/ /(‘d?—{,p _'d?—[p
o Jp dr

dr
where T is some specified time. The flux of §H, which is calculated

first in practice, is
d(6H) / dH, N
= dy. 12
dr » \| dr Y (12)

This measure has the benefit of the stability of a global quantity
(an integral over P) together with preserving the importance of
local information (the subtraction of absolute values means that
information is not lost upon integration over P). In brief, it indicates
when the field line topology is dominated by the current-carrying
component (it is positive) or the potential component (it is negative).
Later, we will show one possible way in which the §-measure may
be used in relation to flare studies.

) d?ydr, (11)

dt

- ’cmp

2.2 Winding fluxes

The decompositions described above for the magnetic helicity fluxes
(4) and (5), also hold for magnetic winding fluxes. We will not repeat
the description but only define the main winding fluxes. From these,
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the construction of the various decompositions occurs in exactly the
same manner as described previously.

Analogous to the field line helicity rate, the field line winding rate
is given by

dc
o (x) = _Uz(x)/ 0. (K [u(x), u(y)ld’y. (13)
P

Equation (13) is identical to equation (4) but for the fact that B, has
been replaced by an indicator function o ,, which is defined as

1 if B.>0,
o.(x)=¢{ -1 if B, <0, (14)
0 if B.=0.

Equation (14) describes the direction of a field line through P. Itis this
renormalization of the field strength that allows magnetic winding to
be a direct measure of magnetic topology (MacTaggart et al. 2021).
The rate of magnetic winding flux, dL/dt, is given by

dL s o
@ o, (x)o (y)K[u(x), u(y)ldxd-y. (15)
t pJp
Finally there is the §L quantity
T dL. dc
SL = == ) dPyde, 16
/ /,,(‘ ar ‘ d ) ! (o
and its flux
d(6L) d.L. dc, )
= —|—=| d°y, 17
dr /p(’ dr dr Y an

where the same current-carrying/potential field decomposition, as
described above, has been used.

3 ARTop ALGORITHM

With the main topological quantities in place, we now describe the
main stages of the ARTop algorithm. Fig. 2 displays the main pipeline
of ARTop and this is followed by an overview of the main steps.
Specific details required to install and run the code can be found in
the online documentation.

3.1 Step 1: Setup

After downloading ARTop, and assuming all the necessary depen-
dencies are installed (these are detailed in the online documentation),
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Setup:
Complete read_data. txt
Launch run_ARTop.py

Download magnetograms:
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I/O directories created:
${input dir}
${output dir}/Data
Parameter files:
${output dir}/header.txt
${output dir}/specifications.txt

MagDown. py

Velocity calculations (DAVE4VM):

getVelocity (C++)

Potential field calculations:

potentialbxby.py

Topological calculations:

observationalWindingPotentialFast
(C++)

End of ARTop algorithm

Figure 2 The algorithm of ARTop. For each of the steps, the main script/executable associated with that step is labelled. Bi-directional arrows indicate
communication in both directions — all the main steps either read from or write to the input/output directories.

the user first needs to compile the C++ part of the code by running
a makefile. The user then specifies details about the active region
in read_data.txt. Once the necessary input parameters are
inserted, the code is executed by running run_ARTop . py.

3.2 Step 2: Magnetogram downloads

While, in practice, a user would specify all input parameters before
running the code (i.e. in Step 1), for ease of description, we refer to
particular input parameters when describing the part of the algorithm
to which they are associated.

The ARTop code obtains magnetic field data (the components of
the field B) for the appropriate active region by downloading, via
drms (Glogowski et al. 2019), the CEA hmi . sharp-cea_720s
product for that region (see Bobra et al. 2014). The download makes
use of the url-tar method, in which a single tar file containing
the necessary FITS files is downloaded and unpacked. Once the code
has read all the FITS files and produced files of the magnetic field
components in the format necessary for the next step of the algorithm,
the FITS files are deleted (but the downloaded tar file remains and
can be reused if needed).

The magnetic field data are mapped using the Lambert equal area
cylindrical mapping which gives components (B,, By, By). These
(point) values can then be identified with Cartesian components
through the correspondence B, = B,, B, = By, By = —By. The
negative sign for the y-component accounts for the camera image
inversion. We rely on the inbuilt 180-degree field disambiguation

provided automatically for the product via a minimum energy method
(Metcalf 1994; Leka et al. 2009).

The SHARP number of the active region to be studied, plus
the start and end times for the search, are the basic requirements
for downloading magnetograms. Often, the SHARP number of an
active region is not known a priori, but the National Oceanic and
Atmospheric (NOAA) number is. ARTop includes a script for finding
the SHARP number of an active region for a given NOAA number.

At this stage, the code also produces two auxiliary files,
header.txt and specifications.txt, that are used by
many parts of the algorithm. The first file contains header information
relating to the downloaded magnetograms, and is needed for the
visualization routines. The second auxiliary file contains the active
region number, the magnetogram resolution, the number of time
dumps and the values of three parameters (the smoothing factor, the
cut-off, and the downsampling factor) which are discussed later.

3.3 Step 3: velocity calculations

Velocities are determined using the Differential Affine Velocity Esti-
mator for Vector Magnetograms (DAVE4VM), developed by Schuck
(2008). A C++ version of this algorithm has been implemented to
speed up the calculations, which is a direct translation of the original
IDL code. Thus the effectiveness of the method is identical to that
demonstrated in Schuck (2008) (where results were compared to real
velocity fields and anelastic 3D models). This method has become
standard in the field (e.g. Liu & Team 2011; Romano et al. 2014;

RASTAI 2, 398-407 (2023)
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Table 1. Spatially varying quantities output by ARTop.

Description Symbol
Normal component of magnetic field B.

Normal field line velocity component u

Normal Poynting flux S.(=e;-(E x B))
Field line winding rate dL/dr
Current-carrying field line winding rate dL./dt
Potential field line winding rate dL,/dt
Braiding field line winding rate dLy/dt

Field line helicity rate dH/dt

Current-carrying field line helicity rate dH,./dt
Potential field line helicity rate dH,/de
Braiding field line helicity rate dHy/dt

§-measure winding rate integrand
S-measure helicity rate integrand

|dL./dt] —|dL, /dt]|
[dHc/dt| — |dH p/de]|

Tziotziou et al. 2015; Vemareddy & Démoulin 2017). The velocity
components are determined at each time only if two consecutive sets
(x-,y-, and z-components) of magnetograms exist. If two consecutive
sets do not exist, the code skips to the next time when two consecutive
sets do exist. This can be seen in time series of the outputted variables
as regions of zero (for flux data) or flat regions (for time-integrated
data), see figs 2 and 6 of MacTaggart et al. (2021) for clear examples
of the effects of missing data.

An important input parameter for the velocity calculations is the
size of the smoothing window which is used to generate differentiable
data sets from the noisy magnetogram data. This value is specified
in pixels. Recommendations on what values to use are discussed in
Schuck (2008), but the choices of 11 or 20 pixels are typical in the
literature (e.g. Romano et al. 2014; MacTaggart et al. 2021). We
show later the effect of varying this parameter.

3.4 Step 4: potential field calculations

In order to perform the decomposition in equation (7), the x-
and y-components of B, must be determined. This is performed
efficiently in a Python script, for every time step, using a Fourier
series decomposition, as described in Gary (1989) (a linear force-
free method from which we take the potential case). This method
implicitly assumes periodicity in the data, which is reasonable for
SHARP data sets where the field is significantly weak at the boundary
of the domain. It also matches a periodic assumption made in a least
square fit derivative estimate of the field in the DAVE4VM method.

3.5 Step 5: Topological calculations

The stages described previously have been in preparation for the
main calculations of ARTop. Table 1 lists all the quantities that are
either taken from previous calculations or calculated at this stage.
For each time dump, there is a file with these variables as columns.

All of the variables in Table 1 are spatial quantities, i.e. they vary
over P. Note that the emergence fluxes, although not listed explicitly,
can be calculated as d£/dt — dL,/dt and dH /dr — dH,,/dr.

At the end of each output file, there are ten variables with spatially
integrated quantities. These are displayed in Table 2.

The quantities in this stage are calculated using a C4++ code
with OpenMP. Quantities based on quadrature are determined with a
standard midpoint rule, which is fast and suitable for the smoothness
of the magnetogram data.

An important input parameter for this stage is the downsampling
number. This parameter allows for much faster calculations by

RASTAI 2, 398-407 (2023)

Table 2. Spatially integrated quantities output by ARTop.

Description Symbol
Current-carrying winding rate dL./dt
Potential winding rate dL,/dt
Braiding winding rate dL,/dt
Current-carrying helicity rate dH/dt
Potential helicity rate rate dH,/dt
Braiding helicity rate dHp/dt
Total winding rate dL/dt
Total helicity rate dH/dt
§-measure winding rate d(sL)/dt
§-measure helicity rate d(§H)/dt

reducing the resolution of calculations. Later, we will provide a
description of how this is achieved in ARTop without sacrificing the
behaviour of important features of the output.

This completes our overview of the main calculations of the
ARTop algorithm. We now present briefly the main analysis routines
available in ARTop, that allow the user to evaluate the data easily
with just a few lines of Python code.

4 ANALYSIS ROUTINES

The best way for a user to learn about the analysis routines of
ARTop is to work through the guided examples that are provided in
Jupyter notebooks that accompany the source code. In this section,
we will focus on the core functionality of the analysis routines — the
production of maps and time series.

In order to highlight the core features, we focus on AR11158
(SHARP 377). This region has been studied in many previous works
(e.g. Jing et al. 2012; Tarr, Longcope & Millhouse 2013; Toriumi
et al. 2013; Tziotziou, Georgoulis & Liu 2013; Kazachenko et al.
2015; Li & Liu 2015; Thalmann et al. 2019). The magnetograms of
AR11158 have been downloaded from 22:00 UT on 2011 February
10 and last for 150 h. For what follows, the above starting time
corresponds to hour zero in the plots and all times are reported in
hours relative to this start time.

4.1 Maps

All the variables from Table 1 can be displayed as maps, and
these maps are created by means of SunPy’s Map class? (The
SunPy Community 2020, (10.5281/zenodo.7582087)). Fig. 3 shows
examples of maps at time t = 60 h.

4.2 Time series and flare analysis

The variables in Table 2 and their time-integrated versions can be
displayed as time series. To do this, ARTop makes use of Pandas
DataFrames?® which are highly portable.

Fig. 4 shows an example of such series for d(6L)/dz. In Fig. 4, the
time series of d(6L)/dt is displayed together with a running mean
(m30) and an envelope of three standard deviations centred on the
running mean (u39 + 30). The subscript corresponds to the number
of time steps used in calculating the running mean. In this example,
30 time steps corresponds to 6 h of data. This parameter, as well as
the height of the envelope, can be changed easily in ARTop.

Zhttps://docs.sunpy.org/en/stable/guide/data_types/maps.html
3https://pandas.pydata.org/
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Figure 3 Maps, at t = 60 h, of (a) B, (b) u, (c) dH;/dz, (d) dLp/dz, and (e) d#H /dt with contours of B, (blue: +800 G, red: —800 G). The parameters (see
Section 5 for definitions) used for the calculation are CO = 50, VS = 20, and D = 1. All colour scales are between minimum and maximum values.

One possible application of including the running mean and the
envelope is to find a threshold condition that indicates the onset
of solar flares. A possible signature of flare onset is for d(SL)/d¢
to break through the envelope. Such a signature would signify a
rapid and substantial change of complex field line topology at the
photosphere, which is typical of many pre-flare scenarios (e.g. Joshi
et al. 2011; Woods et al. 2017; MacTaggart & Fletcher 2019; Mitra,
Joshi & Prasad 2020). In Fig. 4, the vertical black lines correspond

to recorded flare times. To find these times, ARTop makes use of
information from the daily NOAA Space Weather Prediction Center
reports on solar activity, which are downloaded from Solar Monitor.*
As well as flare times, these reports contain information about GOES
X-ray events (the beginning, the maximum, and the end times of local

“https://www.SolarMonitor.com
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Figure 4 A time series of d(8L)/dr together with a running mean j30, based on the past 6 h of data, and an envelope of 2.5 standard deviations. The vertical
black lines correspond to recorded flare times in AR11158 (see the main text for more details). The calculation parameters are the same as those for Fig. 3.

peaks) and their strength classifications. Both flare and X-ray event
times can be downloaded in ARTop and incorporated easily into time
series plots such as that in Fig. 4.

Much detailed information can be found from these time series.
For example, in Fig. 4, the rise just before r = 50 corresponds to the
emergence of topologically complex magnetic field. This time marks
the arrival of topologically complex magnetic field in the atmosphere
and several flares follow this rise. Later there are several examples
of the time series breaking through the envelope shortly before the
onset of flares.

5 PARAMETERS

The calculations in ARTop are dependent on three user-controlled
parameters: the magnetic field cut-off CO, the velocity smoothing
window VS, and the downsampling factor D. The effect of changing
CO has been discussed in MacTaggart et al. (2021), so we will
only mention it here briefly. The effects of changing VS and D
are discussed below. In particular, we will pay attention to how
downsampling is incorporated into the calculations so that speed-up
is gained without sacrificing significant accuracy.

5.1 Cut-off CO

The selected CO in ARTop imposes a lower limit on what magnetic
field strengths are included in calculations. This is important in order
to remove magnetic field that may be highly entangled but has very
weak field strength, thus being irrelevant dynamically. In MacTaggart
et al. (2021), it was shown how winding and helicity calculations
behave in similar ways qualitatively as a function of varying CO. If
CO s chosen to be too large (>100G) there can be a large quantitative
effect on the calculations. Previous tests, however, such as those in
MacTaggart et al. (2021), suggest that qualitative behaviours, none
the less, remain similar.

5.2 Velocity smoothing parameter VS

The VS parameter is related to the DAVE4VM method, it represents
the number of surrounding pixels (the number VS) over which the
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data are smoothed for the inversion to be well defined. Its value
influences how smooth the derived velocity maps are. Descriptions
of suitable choices are given in Schuck (2008). Examples of VS =
12 and 20 are provided in Fig. 5.

InFigs 5(a) and (b), we see comparisons of the time-integrated time
series L(#) and H(?). There is very little qualitative difference, with
the morphologies of the curves for each variable being very similar.
Quantitative differences are much less than an order of magnitude.

For the §-measures, displayed in Figs 5(c) and (d), the morpholo-
gies of the curves for the different VS are again very similar. There is a
larger difference in magnitude for the majority of the time displayed,
though this is still less than an order of magnitude. The difference
increases at the very end of the displayed time, when the active region
begins to move beyond 60° longitude, i.e. beyond the position in
which projection effects can lead to substantial errors in calculations.

5.3 Downsampling factor D

The downsampling factor, D, is included to speed up calculations.
This is an important feature if hundreds of active regions are to be
studied, each with hundreds of time steps. In ARTop, downsampling
is implemented in a particular way that aims to strike a balance
between speed-up and the preservation of important topological
features.

All of the helicity and winding fluxes depend on double integrals.?
In the inner integral, a point (field line) is chosen and the contribution
to the winding/helicity flux of all other points (field lines) about this
is calculated. The outer integral is then (at least numerically) the
weighted sum of all these field line windings (compare equations (4)
with (5) and (13) with (15)). Reducing the resolution of the magne-
tograms used for both the inner and outer integrals is too drastic and
leads to qualitative changes in the output. Instead, we implement the
following, which is illustrated in Fig. 6.

The inner integral, represented by the red grid in Fig. 6, is related
to calculating the field line winding or helicity fluxes, d£/dt or

SEach integral is over an area, thus the total calculation of time derivatives
involves integration over a 4D domain.
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Figure 5 Comparisons of the effect of the velocity smoothing window parameter VS various of the quantities calculated by the ARTop code. Panels (a) and (b)
are the total integrated winding L and helicity H, panels (c) and (d) the time-integrated metrics 6L and §H.
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Figure 6 Downsampling in ARTop. The grids for each integral (inner and
outer) are displayed. In each dimension, the resolution of the outer integral’s
grid (blue) is reduced by a factor D. The inner integral uses a grid (red) with
the full resolution.

dH /dt, which are always calculated on the full grid. For the outer
integral, the number of points at which this calculation is performed
is represented by the blue grid. In ARTop, selecting D > 1 results
in a reduction of the blue outer grid (magnetogram) resolution for
the outer integral by a factor of D in each dimension. Therefore,

although the number of points used to evaluate a particular flux is
reduced, the value of the field line winding at each point still uses the
full grid. In this way, important signatures of topological quantities
can be preserved whilst also performing much faster calculations.

As an example of the practical effects of downsampling, we display
how setting D = 1, 2, 3, 5, and 10 affects the behaviour of §H and
SL. These quantities are the time-integrated d(§H)/d¢ and d(5L)/dz,
respectively, and are an optional calculation in ARTop. The results
are shown in Fig. 7.

One striking feature of the time series in Fig. 7 is that the
morphologies of the curves for D = 1, 2, and 3 are almost identical
for the entire time span. The main difference is in the magnitude,
and this is expected since each calculation uses different data (i.e.
different pixels). A qualitative difference between the different time
series is only strongly noticeable in 6L for D = 5, 10. These large
values would not be used in practice, but here they indicate that they
can still produce accurate results for about 100 h of data representing
different phases of complex dynamics.

As mentioned before, the main purpose of downsampling is to
speed up calculations significantly without sacrificing important
features of the time series. With the implementation described here,
the theoretical speed-up should scale as O(D?). Normalizing with
respect to the D = 1 (full resolution) case, the comparison of
actual speed-ups to the theoretical values (for the cases shown in
Fig. 7) and the normalized differences are displayed in Fig. 8. These
results clearly show that significant speed-up can be achieved without
sacrificing key features in the data.
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ference in the magnitudes (in part due to different methods of ‘clean-
ing’ the magnetograms), the morphology of the curves from ARTop
and the code of Romano et al. (2014) were found to be very close.
To the best of our knowledge ARTop is currently the only publicly
available helicity/winding flux calculation code, so further systematic
benchmarking is not possible at this time. We hope that by publishing
this code that situation can be altered. We note that the net helicity
H(1) calculated here for AR11158 yields very similar values to that
of fig. 5(a) of Tziotziou et al. (2013), with magnitudes of the order

ARTop provides researchers with an effective tool for analysing
topological quantities in solar active regions. The code has been
tested in previous works and has proved to be very useful in
identifying the topology of emerging structures (MacTaggart et al.
2021). The analysis routines of ARTop allow researchers to produce
fast and detailed information about active region topology. In
this paper, we have demonstrated ARTop’s analysis routines on a
complex active region. We have discussed how parameters in the code
affect the output and have shown that a particular implementation of
downsampling can result in significant speed-ups without sacrificing

The topological quantities in ARTop provide distinct and impor-
tant information about magnetic field topology and, thus, about active
region evolution. To use them effectively in the analysis of an active
region, it is recommended that a researcher use them together and
not in isolation. Although magnetic winding flux can provide more
direct information about magnetic field topology, it is always useful
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Figure 8 Two representations of how the run time (per snapshot) depends on
D. Panel (a) shows a comparison of actual speed-ups (blue stars) compared
to theoretical speed-ups (red dots). Downsampling values D are indicated
beside each point. Subscripts 7 and A correspond to ‘theoretical” and ‘actual’,
respectively. Panel (b) shows the normalized difference with respectto D = 1.

5.4 Benchmarking/testing

The code has been checked against an existing IDL code (which is
not publicly available) in MacTaggart et al. (2021), for active region
AR11318, whose (braiding) helicity fluxes were calculated in Ro-
mano etal. (2014) using the IDL code. Although we found a small dif-
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to interpret its results together with helicity flux, in order to identify
which signatures are important dynamically. Further, topological
signatures, such as a steep rise in helicity/winding shortly before
a flare, should be cross-checked with other variables, like u, or S,
in order to provide a deeper spatiotemporal picture of what they are
conveying. This type of analysis can be performed simply in ARTop,
making it an effective tool for solar active region research.
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