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Deconfounding Causal Inference for Zero-shot
Action Recognition

Junyan Wang, Yiqi Jiang, Yang Long, Xiuyu Sun, Maurice Pagnucco, Yang Song

Abstract—Zero-shot action recognition (ZSAR) aims to rec-
ognize unseen action categories in the test set without corre-
sponding training examples. Most existing zero-shot methods
follow the feature generation framework to transfer knowledge
from seen action categories to model the feature distribution
of unseen categories. However, due to the complexity and
diversity of actions, it remains challenging to generate unseen
feature distribution, especially for the cross-dataset scenario when
there is potentially larger domain shift. This paper proposes a
Deconfounding Causal GAN (DeCalGAN) for generating unseen
action video features with the following technical contributions: 1)
Our model unifies compositional ZSAR with traditional visual-
semantic models to incorporate local object information with
global semantic information for feature generation. 2) A GAN-
based architecture is proposed for causal inference and unseen
distribution discovery. 3) A deconfounding module is proposed
to refine representations of local object and global semantic
information confounder in the training data. Action descriptions
and random object feature after causal inference are then used
to discover unseen distributions of novel actions in different
datasets. Our extensive experiments on Cross-Dataset Zero-
Shot Action Recognition (CD-ZSAR) demonstrate substantial im-
provement over the UCF101 and HMDB51 standard benchmarks
for this problem.

Index Terms—Zero-shot Learning, Action Recognition, Causal
Inference.

I. INTRODUCTION

ACTION recognition, also known as video recognition,
is a fundamental problem in video understanding. Over

the last decade, there has been increasing research attention
in video action recognition, with the emergence of high-
quality large-scale action recognition datasets. Recently, a
wide range of popular and successful model architectures have
been designed for action recognition tasks. However, these
methods require a large number of training data for each
action class, which requires costly and laborious annotations
of videos, and the trained model does not generalize to unseen
action categories. It is infeasible and extremely expensive to
annotate action videos with the ever-increasing need for new
categories. To solve this problem, zero-shot action recognition
has recently drawn considerable interest, with its ability to
identify unseen action categories without labeled examples.

Junyan Wang, Yang Song and Maurice Pagnucco are with School
of Computer Science and Engineering, University of New South Wales,
Australia. E-mail: junyan.wang@unsw.edu.au; yang.song1@unsw.edu.au;
morri@unsw.edu.au.

Yiqi Jiang and Xiuyu Sun are with DAMO Academy, Alibaba Group,
China. E-mail: yiqi.jyq@alibaba-inc.com; xiuyu.sxy@alibaba-inc.com.

Yang Long is with the Department of Computer Science, Durham Univer-
sity, UK. E-mail: yang.long@ieee.org.

Manuscript submitted 2022.

Y

X
Z

“Counting Money”

Training dataset actions

Test dataset actions

“Yoga” “Tai Chi”

S

O

With Causal 
Inference

W/O Causal 
Inference

“News anchoring”

Fig. 1: An illustration of cross-dataset zero-shot action recog-
nition and our proposed causal inference application. With
semantic information “S” and object information “O”, the
proposed DeCalGAN can generate unseen video representa-
tions by causal inference. Orange balls represent videos in
the training dataset and purple ones denote videos in the test
dataset.

Existing studies of ZSAR have mainly focused on inner-
dataset seen/unseen splits due to the requirement of human-
defined domain attributes [1], [2]. This setting is not very
practical since a new dataset could require re-training, as
different datasets might exhibit cross-domain issues. More-
over, regardless of the type of side information we adopt,
the generalization capability of these approaches could be
lacking, due to the higher degree of domain shift across
datasets. Recently, a more realistic cross-dataset zero-shot
action recognition (CD-ZSAR) task [3] was proposed, which
aims to make large-scale pretrained model transfer seamlessly
to unseen classes across new datasets, and thus our work
focuses on CD-ZSAR scenario.

One of the main challenges of CD-ZSAR is the weak
knowledge representation. Early research [4], [5] in zero-
shot learning focused on developing a compatibility model,
and most of these methods are attribute-based. In CD-ZSAR,
it is infeasible to design a universal attribute-space that is
applicable to every new task and dataset. Therefore, word
embedding is currently the most efficient side information
for CD-ZSAR. Also, videos are highly complex containing
both spatial and temporal information, and hence it is difficult
to apply an automatic word-embedding model to represent
the global semantic knowledge of a class. Recent studies
have investigated how object information [6], [7] or semantic
embedding [8] performs in action recognition, and these
studies have demonstrated successful outcomes, with object

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3318300

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Durham. Downloaded on October 24,2023 at 10:32:44 UTC from IEEE Xplore.  Restrictions apply. 



2

Tai chi: a form of exercise involving slow movements of 
body, originally done in china.

Skiing: travel over snow on skis ; take part in the 
sport or recreation of skiing .

Diving: plunge head first into water with one's arms 
raised over one's head.

Fencing: the sport of fighting with long, thin swords.

Yoga: plunge head first into water with one's arms 
raised over one's head.

Bowling: a game played inside , in which you roll a heavy 
ball down a track to try to knock down a group of pins

Fig. 2: Illustrations of Elaborative Description in “tai chi”, “fencing”, “diving”, “skiing”, “yoga” and “bowling” actions from
UCF101 dataset.

information and semantic embedding representing spatial and
temporal information, respectively. However, the basic video-
based backbone is ineffective in learning different domain
knowledge in the zero-shot setting. Another main challenge
is the unseen distribution. Recently, thanks to advances in
generative adversarial networks (GANs), many approaches
have been proposed to directly generate unseen samples in
zero-shot tasks [9]–[11]. However, although GAN is able to
generate data from the distribution of training dataset, it cannot
expand the original distribution without seeing novel samples.
As shown in Figure 1, part of the feature distribution of unseen
action videos is different from the training data, which means
the generated unseen action videos by a basic GAN model is
difficult to represent the unseen distribution.

The above challenges motivate us to design a new frame-
work for cross-dataset zero-shot learning action recognition
with two sub-tasks, i.e. compositional generation and distri-
bution inference. In general, video data distribution is more
complex than that of image-level data. Instead of directly
generating video data, our focus lies on generating lower-
dimensional features extracted by the conventional backbone.
Firstly, an action video contains both spatial and temporal
information, such as characters, movements and interaction.
Weak knowledge representations such as word embedding can
be compensated by compositional knowledge which consists
of local object information using pretrained detectors and
global semantic information using Elaborative Description
(ED) [12] as shown in Figure 2. The second task aims to gen-
erate unseen action representations that can effectively infer
the unseen distribution. We design a Deconfounding Causal
GAN (DeCalGAN) framework with the following insights:
1) We propose a novel approach for generating compositional
features from dual channels, i.e., Elaborative Descriptions
(ED) and object detection, based on causal inference. Causal
inference has been shown to be useful in compositional zero-
shot learning, as it can identify the true causal relationships
between variables [13]. Our approach builds a structured
causality-inspired generative model that captures the causal

relationships between features and actions. Specifically, we
use a conditional causal graph to infer action features based
on their corresponding semantic and object representations. 2)
One of the main challenges in representation learning from
videos is the presence of confounding factors that can arise
due to the diverse range of latent information. To address this
challenge, we propose a deconfounding module that can han-
dle the interference between global semantic and local object
features. This is particularly important since each class can
have an unlimited number of possible compositions of objects,
and distinguishing between confounded object feature dimen-
sions and semantic feature dimensions is critical. By ensuring
that each factor is kept independent, our generative model
can accurately infer unseen distributions. 3) Our proposed
approach achieves zero-shot recognition by generating unseen
action features based on random object information and EDs
of test actions. Our method outperforms existing approaches
on various benchmarks, demonstrating the effectiveness of
our causal inference-based generative model for compositional
feature generation. This work provides a promising direction
for addressing the challenge of zero-shot recognition in video
analysis. Our contributions are summarized as follows:

• To the best of our knowledge, we present the first causal
inference approach to address the unseen distribution
problem for cross-dataset zero-shot recognition (CD-
ZSAR), and we propose a GAN architecture as a new
paradigm for causal inference.

• The proposed Deconfounding Causal GAN (DeCalGAN)
consists of a reconstruction module and a deconfound-
ing module that can make confounding features learned
from the source domain better generalize to the unseen
distribution in the test domain.

• The proposed DeCalGAN is introduced to unify com-
positional and generative frameworks to tackle the chal-
lenging CD-ZSAR problem. Local object information and
global semantic descriptions can jointly generate missing
distributions across different datasets and achieve state-
of-the-art performance.
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Fig. 3: Architecture of our DeCalGAN enhanced ZSAR model. The bottom part shows our proposed DeCalGAN training process, which
incorporates global semantic information and local object information. The top-left part shows our proposed causal inference pipeline, and
the top-right represents the basic pipeline following the work of [22].

II. RELATED WORK

Action recognition has drawn a significant amount of at-
tention from the computer vision community in the past few
years [14]–[19]. Some attempts have been made to design an
efficient method by combining a lightweight temporal module
with a conventional 2D CNN-based backbone [16], [20]. For
example, Li et al. [16] proposed a Temporal Excitation and
Aggregation (TEA) block, including a motion excitation mod-
ule and a multiple temporal aggregation module, specifically
designed to capture both short- and long-range temporal evolu-
tion. Recent research shows that pure 3D CNNs outperform 2D
ones on large-scale benchmarks [21], as 3D CNNs can jointly
capture the spatio-temporal features in a unified framework.
However, most approaches rely on specific large-scale training
video datasets with annotated samples per action class. In this
work, we focus on zero-shot action recognition in which test
raw data is unavailable.

A. Zero-shot Action Recognition

Many zero-shot action recognition methods have been pro-
posed recently [1], [6], [8], [22], [23]. An initial work [1]
used a set of manually defined attributes to describe the spatio-
temporal evolution of actions in a video. Other early attempts
[8], [23] follow a standard strategy, which first extracts visual
features from videos and then trains a joint model that maps
the visual embedding to a semantic embedding space. The
work of [23] explores word vectors as a shared semantic space
to embed labels and videos for zero-shot action recognition.
[6] proposed a spatial-aware object embedding for zero-shot
action localization and classification. Besides, the work of [24]
devises a simple semantic transfer scheme that embeds seman-
tic relatedness information between seen and unseen classes to
composite unseen visual prototypes. However, previous studies
have typically focused on inner-dataset seen/unseen splits. A
recent work [22] proposed to train a 3D CNN to predict
word embedding of labels as end-to-end training for CD-
ZSAR. In this work, we also follow the cross-dataset protocol

of [22] and apply causal inference to generate unseen class
representations.

B. Causal Inference
Causality [25], [26] has inspired computer vision re-

searchers to design new methodologies for various tasks such
as image recognition [27] and domain adaption [28], [29]. The
work of [30] learns a conditional-GAN model jointly with a
causal model of label distribution. In contrast, our proposed
DeCalGAN jointly learns semantic and object components by
causal inference. In addition, [13] formalizes causal inference
as a problem of finding the most likely intervention, while an-
other method [31] explicitly promotes the dependency between
all primitives and their compositions in the learned graph
embedding. Recently, [32] developed a Deconfounded Cross-
modal Matching (DCM) method to remove the confounding
effects of moment location in the video moment retrieval task.
In this work, our proposed method incorporates adversarial
training for deconfounding compositional confounders to bet-
ter generalize to the unseen distribution.

III. METHODOLOGY

In cross-dataset zero-shot action recognition (CD-ZSAR),
let D = {(x1, y1), . . . , (xN , yN)} ⊆ X × Y denote the
training dataset that consists of pairs of action videos x
and their class labels y, where N is the number of videos.
y ∈ {1, . . . , C} contains C discrete labels of training classes.
Given a target dataset Dt, where Dt does not overlap with
D (Y ∩ Y t = ∅), we first train a classification model on D
and then test on Dt. To achieve this, we follow the evaluation
protocol in [22], using nearest-neighbor search in a semantic
class embedding space. However, it is still difficult for zero
shot learning classifier to generate representative embedding
for the unseen test classes, due to the weak knowledge
representation and unseen distribution challenges. Thus, we
propose the Deconfounding Causal GAN (DeCalGAN) for
unseen action generation to enhance the classifier, details of
which are introduced below, and the overall framework is
shown in Figure 3.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3318300

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Durham. Downloaded on October 24,2023 at 10:32:44 UTC from IEEE Xplore.  Restrictions apply. 



4

A. Revisiting Causality

We first give a brief introduction of causality, on which
our proposed DeCalGAN is based. In this work, we apply
structural causal models (SCMs) [25], which contain structural
equations and directed acyclic graphs.

Definition 1: A structural causal model is a triple M =

(V ,U ,F), where U is a set of exogenous variables, V
denotes a set of endogenous variables and F is a group of
deterministic functions.

Concretely, exogenous variables exist outside the model
that we do not care about their causes, and each endogenous
variable in the model is the child of at least one exogenous
variable. Also, exogenous variables cannot be children of
other variables, especially endogenous variables. If we know
the value of each exogenous variable, we can completely
determine the value of each endogenous variable by using the
function in F .
Causal Graph. A causal model M has a corresponding causal
graph G. Nodes in the graph represent V and U in the SCM,
and edges in the graph represent the functions F . This means
if a variable X is the child node of Y , then Y is a direct cause
for X . And if X is a parent node of Y , then X is the potential
cause of Y .
Confounding. The common cause in a pseudo-correlation
is known as confounder, also called a bias. The pseudo-
correlation caused by confounders is mixed with the real
causal effect, which is the case of confounding. One of the
goals of causal inference is to try to eliminate the bias caused
by confounding, and find the true causal relationship.
Do-operator. Taking variables as conditions change our view
of the variable, while intervention changes the variable itself.
In a causal model M, intervention do(X = x) is performed by
replacing the original function X = fx(Px,Ux) with X = x,
where fx represents a deterministic function, Px ⊆ V /Vi

and X ∈ V , that the intervention operation will delete all
edges pointing to the variable. Thus, the intervention operation
changes the distribution of the original data, but does not
change the distribution of the original data under the condition
of variables.

B. Deconfounding Causal GAN

Although there has been significant research investigating
zero-shot learning, learning visual-semantic embedding still
remains a challenging issue in video-based tasks. In the CD-
ZSAR scenario, a key challenge is to represent the unseen
actions that do not exist in the training dataset. We consider
that action information is composed of semantic and object
features, where semantic information can be used to describe
the action progress itself, and object information plays a
crucial role in identifying explicit action categories, such as
sports and makeup. Since we have action videos and their class
labels from the training dataset, we can extract semantic and
object information through existing recognition and detection
methods. Compared to existing methods that directly learn
from seen actions or indirectly learn object/semantic infor-
mation to recognize unseen actions, our proposed generative
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Fig. 4: Details of DeCalGAN architecture, which consists of
causal generator and causal discriminator. The causal generator
detail is shown in the top and the network detail of the
discriminator is shown at the bottom.

model learns the compositional semantic and object represen-
tation. To achieve effective learning of such compositional
information, we apply causal inference into our adversarial
learning methods.

In our method, we approach the action recognition problem
as modeling video features caused by real-word entities, and
we consider two “elementary factors” which are “Semantic”
s ∈ S and “Object” o ∈ O that are independent in the training
data. Thus, our model is designed to estimate p(h∣s, o), the
likelihood of the feature vector h of a video, conditioned
on a tuple (s, o) of semantic-object features. Although we
consider the combination of semantic and object information
capable of inferring the action class, a video contains much
more information than just images, which makes it difficult
to learn a comprehensive video representation. For example,
action information is also characterized by speed difference,
action interaction, trajectory and so on. Therefore, we propose
to apply the adversarial training mechanism, for realistic and
diverse generation of video representations. In this work, we
define our idea as a simple causal graph O → X ← S.
Based on the observation [30]: In the GAN training framework,
generator neural network connections can be arranged to
reflect the causal graph structure. The generative model can
be denoted as O = fO(EO), S = fS(ES) and X =

fZ(O,S, EZ), where fO, fS , fZ represent the correspond-
ing generative methods, and EO, ES , EZ are independent
variables. Therefore, the essential parts of the DeCalGAN are
divided into two components: compositional generation and
deconfounding module.
Compositional Generation. For seen compositional learning
in the training dataset, we apply the Elaborative Description
[12] on each action label yed for semantic information ex-
traction by a language model as s = Fsem(yed) and object
detection for obtaining Top-k object information from the
action video x as o = Fobj(x). Following WGAN with
gradient penalty [33], the adversarial objective function of
generated video feature hx̂ = G(s, o,Nx) can be defined as:

Lg
adv = −Ex̂∼pX̂

[D(hx̂)],
Ld
adv = −Ex∼pX

[D(hx)] + Ex̂∼pX̂
[D(hx̂)]

+ λw Ex̄∼pX̄
[(∥D(hx̄)∥2 − 1)2] ,

(1)
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where Nx denotes the noise sampled from Gaussian distribu-
tion N (0,1), G and D represent the video feature generator and
discriminator, respectively. hx̂ is sampled along straight lines
between real feature hx and generated feature hx̂. In the video
feature generator G, the latent object and semantic features hs

and ho are extracted by two feed-forward networks Es and
Eo. The generative network can then be used to represent the
causal models with graph O → X ← S. The detailed architec-
ture is presented in Figure 4. As discussed in previous work,
object information and semantic embedding can effectively
capture spatial and temporal information. To extract these
information, we employ Faster R-CNN [34] for object feature
extraction and BERT [35] for semantic feature extraction.
Both Es and Eo are implemented as three layers of a multi-
layer perceptron (MLP) with 512 dimensions. Additionally, we
randomly sample noise from a Gaussian distribution N (0,1)
represented as 768 dimensions. The generated video feature
hx̂ is then discriminated by the video feature extracted by
ResNet(2+1)D 18 [36]. To achieve this, we utilize a fully
connected layer-based discriminator.

As our model is designed to estimate p(hx∣s, o), this
generative model has two representation distribution spaces:
semantic space Φs ∈ Rds and object space Φo ∈ Rdo ,
which might be confounded to estimate the video distribution.
Therefore, the above structure only constructs the causal cor-
relation, i.e., “conditioning on” operation, but does not solve
the confounder problem. Conventionally defined confounder
only considered statistical implications, and the actual causal
structure is not considered, while confounder is a concept
related to real causal structure. To this end, we propose a
deconfounding module that overrides the joint distribution to
enforce s and o to specific values and propagate them through
the causal graph.
Deconfounding Module. With deconfounding, the interven-
tion changes the joint distribution of nodes in the proposed
causal graph G. Inspired by [13], we then reconstruct the latent
semantic and object features as hŝ and hô from the generated
video representation hx̂ by two feed-forward networks Eŝ

and Eô as hŝ = Eŝ(hx̂) and hô = Eô(hx̂). We expect that
the reconstructed features hŝ and hô maintain approximately
the same independence relations, and belong to the same
independence space as the original features. To this end, with
video feature generator G, the factors s and o are inferred by
minimizing the reconstruction loss Lrec as:

Lrec = ∥hŝ − hs∥2
+ ∥hô − ho∥2

+ ∥hx −G(s, o,Nx)∥2
,

(2)

where hx denotes the video feature extracted from action
recognition networks of the given video.

In this causal graph, Φs and Φo are parent nodes of video
feature hx. The reconstructed distribution Φŝ and Φô are esti-
mated from hx and thus are child nodes of hx, which as shown
in Figure 5. Therefore, they do not immediately follow the
conditional relations that Φs and Φo obey. Since semantic and
object representations hs and ho are latent and unobserved,
they may confound true signals in the generative process.
Even though the semantic and object representations are not

De
Es

Eo
MLB

Φo

Φs

Hx

S O
XHs

Ho

Fig. 5: The causal graph and illustration of deconfounding
procedure. The top-right graph represents our designed causal
graph and the scissors denote the decondounding operation.
Green and blue distributions represent semantic space Φs and
object space Φo, respectively.

obviously independent of each other in the representation view,
we can also make causal inference if we can find the factors
that jointly affect the semantic and object representations and
exclude it by some method.

To address the challenge of confounding factors between
semantic and object representations, we propose a decon-
founding module, denoted as De, which compares the original
semantic and object feature distribution with the reconstructed
distribution. To measure the distance between these two dis-
tributions, we employ Multimodel Low-rank Bilinear pooling
(MLB) [37] as the distribution score, which has been shown
to be effective in multi-modality tasks. The MLB score with
given two features (h1 and h2) is defined as follows:

d(h1, h2) = σ(tanh(UT
h1)⊙ tanh(V T

h2)), (3)

where σ is a linear function, producing values as a one-
dimensional score, ⊙ is the Hadamard product, and both U
and V are learnable parameters. Unlike concatenating features,
we compare the object and semantic modalities and learn
to adaptively weigh them. Our objective is to minimize the
distance between similar distributions and increase the distance
between dissimilar ones. We achieve this by defining the loss
function Lde of the deconfounding module as follows:

Lo
de = −d(ho, hô) + d(ho, hŝ),

Ls
de = −d(hs, hŝ) + d(hs, hô),

Lde = Lo
de + Ls

de,

(4)

where minimizing the loss can make the deconfounding mod-
ule obtain a higher score of the same distribution and a lower
score of the different distributions. Thus the following property
of causality is encouraged as:

p
do(S=s)(hŝ) ≈ p

do(S=s,O=o)(hŝ),
p
do(O=o)(hô) ≈ p

do(S=s,O=o)(hô).
(5)

As confounding factors between training semantic and ob-
ject sources are latent and unobserved, we assume the notion
that the distance between two different distribution spaces
can quantify the degree of confounding. We suggest that
the closer the distance between the semantic space Φs and
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the object space Φo, the higher the correlation probability
between the distributions, indicating a higher probability of
confounding. Thus, we model the relationship between Φs and
Φo as follows:

Φs ⫫ Φo ∣ S = s,

Φs ⫫ Φo ∣ O = o.
(6)

To this end, the designed deconfounding module is expected
to have the ability to maximize the distance, and the experi-
mental results help validate our hypothesis.
Zero-shot Recognition. For the unseen compositional gen-
eration, we utilize the above causal inference for generat-
ing unseen action representations for zero-shot recognition.
According to the proposed deconfounding assumption, we
can then apply the “Do-intervention” that overrides the joint
distribution to enforce s, o to specific values and propagate
them through the causal graph. With this propagation, an
intervention can change the joint distribution of nodes in
the causal graph, and thus an unseen action representation is
generated according to a new joint distribution.

In the action recognition task, we observe that objects in
action recognition tasks are similar, e.g., human. Meanwhile,
we cannot obtain the object details from the target dataset
in the CD-ZSAR setting, and the label distributions between
training and target datasets are different as they have “non-
overlapping classed”. Thus, to achieve the distribution shift,
we randomly iterate over all combinations of object variables
from training data and ED of test actions to generate the
unseen action video features, as follows:

hx̃ = G(s̃, õ,N), (7)

where hx̃ denotes the generated unseen video features. s̃ and õ
represent the ED of a test action and a random object variable,
respectively. With the proposed deconfounding module, we
consider the generated video feature belongs to the given
test action class. Finally, after obtaining the unseen video
features, we utilize the generated video representation hx̃ and
a classifier network R to obtain the test class embedding.

C. Causal Training Strategy
In this work, we aim to train an effective classifier R that has

the ability to classify unseen test action classes. The overall
training and inference of CD-ZSAR can be described by two
pipelines:
Basic Pipeline. Following the work of [22], we use nearest-
neighbor search in the semantic class embedding space to
obtain zero-shot classification. Given a training set D =

(x1, y1), (x2, y2) . . . (xN , yN) consisting of pairs of video x
and its class label y, zero-shot learning classifiers need to
generalize to unseen test classes, and we apply the common
way [22] to achieve this that uses the nearest-neighbor search
in a semantic class embedding space. To do this, we first
apply a backbone action recognition network for extracting
the video feature hx, and then use the classifier R to infer
the corresponding semantic embedding. The final recognition
model M(⋅) classifies x as the nearest neighbor in the set of
embeddings of the classes:

M(x) = argmin cos(R(hx),FW2V (y)), (8)

where cos is the cosine distance and the semantic embedding
is computed using the Word2Vec function FW2V . Given a
video-class pair (x, y) from training dataset, the classifier R
is optimized by minimizing the classifier loss Lcls:

Lcls = ∑∥FW2V (y) −R(hx)∥2
. (9)

where Lcls denotes the overall loss and hx is generated by the
proposed DeCalGAN.
Causal Inference. To improve the feature representation ca-
pability of unseen action distributions, we extend the basic
pipeline by incorporating DeCalGAN. In the proposed DeCal-
GAN, semantic and object features hs and ho are extracted
using Eh and Eo, from the video-class pair (x, y) in the
training dataset respectively. As we utilize adversarial training,
the generator G network is used to obtain the generated
video feature x̂ and discriminator D network to discriminate
real and fake video features. Therefore, by incorporating the
deconfounding operation with the proposed deconfounding
loss and reconstruction loss, the overall generator training loss
is:

Ltrain = λ1Lrec + λ2Lde + λ3Ladv, (10)

where λ1, λ2, and λ3 are hyperparameters that control weights
of each loss. Recalling the bias problem in ZSL with gen-
erative models, the synthesized unseen samples could be
unexpectedly too close to the real seen ones. This would sig-
nificantly decrease the classification performance for unseen
classes. Thus, we infer the unseen video features according
to the unseen semantic feature hs̃ extracted by ED of unseen
action labels and randomly selected object features ho from
the seen dataset after training the causal generator. Note that
ED is only applied for extracting semantic information.

IV. EXPERIMENTS

In this section, we present our experimental results on two
public datasets: UCF101 [38] and HMDB51 [39]. We compare
our approach with other state-of-the-art methods and an in-
depth ablation analysis is provided to better understand our
method. We also discuss the limitations and potential future
work in this task.

A. Experimental Setup

Datasets. We employ Kinetics-700 [40] as the source dataset
for compositional generation and basic pipeline training, which
is the most widely adopted benchmark, covering a wide range
of human activities. Kinetics 700 is released in 2019, which
has 700 classes with over 500K videos sourced from YouTube.
For target datasets to test the zero-shot classifier, there are two
commonly used public datasets in zero-shot action recognition:
1) UCF101 is composed of real action videos focused on
sports from YouTube, containing 13320 video clips distributed
among 101 classes; and, 2) HMDB51 contains 6766 videos
divided into 51 human action categories focused around sports
and daily activities from commercial videos.
Training Protocol. We first make sure that Dtrain and Dtest

have “non-overlapping classes”. The simple solution which
just removes the same class names does not work, because
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Dataset Class Name Elaborative Description (ED)

Kinetics 700

Counting money
Determine the total number of (a collection of items). A current medium of exchange
in the form of coins and banknotes; coins and banknotes collectively.

Eating chips
Put (food) into the mouth and chew and swallow it. A long rectangular piece of
deep-fried potato.

Moon walking
A dance with a gliding motion, in which the dancer appears to be moving forward
but in fact is moving backwards.

UCF101

Clean and jerk
A two-movement weightlifting exercise in which a weight is raised above the head
following an initial lift to shoulder level.

Long Jump
An athletic event in which competitors jump as far as possible along the ground
in one leap.

HMDB51

Draw sword
Extract (an object) from a container or receptacle. A weapon with a long metal blade
and a hilt with a hand guard, used for thrusting or striking and now typically worn
as part of ceremonial dress.

Climb Stairs
Go or come up a staircase. A set of steps leading from one floor of a building to another,
typically inside the building.

TABLE I: Examples of Elaborative Descriptions (ED) for action classes in Kinetics-700, UCF101, and HMDB51 datasets. The
resource of Elaborate Description is collected from Wikipedia, Dictionary, and Modification [12].

Fig. 6: An example of using object region features as inputs for the “play basketball” class in the Kinetics-700 dataset.

two classes with slightly different names can easily refer to the
same concept. Thus, a distance between class names is needed.
Equipped with such a metric, we can make sure training and
test classes are not too similar. Following the work of [22],
we apply the cosine distance as our non-overlapping metric
and the distance is defined as:

min d(ytrain, ytest) > τ, (11)

d(ytrain, ytest) = cos(FW2V (ytrain),FW2V (ytest)), (12)

where τ ∈ R denotes a similarity threshold and cos indicates
cosine distance. This is consistent with the use of cosine
distance in the zero-shot learning setting as we do in Eq. 8.
In order for training and test datasets to contain disjoint video
sources, we remove classes from Kinetics-700 whose cosine
distance to any class in UCF101 and HMDB51 in the word
embedding space is smaller than 0.05. These results in a subset
of 663 classes as the training set to train our models.
Evaluation Protocol. We test our framework using two eval-
uation protocols. The first one is compatible with previous
work and the second one emulates a true ZSL setting. Both
evaluation protocols apply the same model to both UCF101
and HMDB51 datasets. 1) To be fair with previous work,
we randomly choose half of the classes of test datasets for
evaluation, which are 50 for UCF101 and 25 for HMDB51,
and average the results for each test dataset after repeating ten
times. 2) Top-1 and Top-5 accuracies (%) are used to evaluate
the classifier on all 101 UCF classes and 51 HMDB classes,
which is more restrictive than the evaluation protocol of the
previous methods [8], [41].

B. Implementation Details

In our experiments, we first utilize R(2+1)D 18 pretrained
on Kinetics-400 [42] as our base model. Then we use the
classifier R to infer the corresponding semantic embedding of
dimension 16 × 300, where 16 denotes the batch size. Each
frame’s shortest side is reshaped to 128 pixels, and we crop a
random 112 × 112 patch during training and the center patch
during inference. The video clips are 16 frames long and we
choose them following the standard protocol established by
Wang et al. [14]. The feature size of all MLP blocks is 512
and the classifier R is a linear regression model with 512×300
nodes. According to the standard protocol [22], we average
multi-word class names by Word2Vec (Python implementation
in gensim [43]) into dimension 300. To minimize all losses,
we applied the Adam optimizer with ascent learning rates from
1 × 10−3 to 1 × 10−4 for the classifier, and 1 × 10−4 to 1 ×
10−5 for the generator and discriminator. All experiments are
performed on 8 × Nvidia Tesla P100 GPUs.
Object Detection & Word Embedding. Following the work
of [6], we apply Faster R-CNN [34], pretrained on the MS-
COCO dataset [44], for detection of local objects, which
consist of the person class and 79 objects, such as snowboard,
human and horse. We obtain roughly 50 detections for each
object per frame, and extract top 8 objects with a controlled
experiment to select the best number of Top-k. In Figure 6,
we present an example of using object detection models to
extract object features. Here, we select person and basketball
as object information. We also follow the standard protocol
in computing semantic embedding of action names by using
a pretrained Word2Vec model. In rare cases of words not
available in the pretrained W2V model (for example, ‘rubiks’
or ‘photobombing’) we manually change the words following
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the work of [22]. The pre-trained model produces a 300-
dimensional representation for each word. If an action class
name contains multiple words c = [c1, . . . , cN], we averaged
the embedding as c = ∑N

i=1 FW2V (ci) ∈ R300.
Elaborative Description. Examples of Elaborative Descrip-
tions (ED) in Kinetics-700 [42], UCF101 [38] and HMDB51
[39] are shown in Table I. Chen et al. [12] collected ED
for action classes by firstly automatically crawling candidate
sentences to describe action classes from the Internet; then
manually selecting or modifying a minimum set of candidate
sentences as the EDs. In the first crawling step, they utilized
Wikipedia and online dictionaries. In the second cleaning
step, they presented candidate sentences and a video ex-
emplar in a webpage to annotators. As the BERT model
has demonstrated excellent capability in implicitly encoding
commonsense knowledge, we apply BERT representation as
our semantic information source. In this work, denote d =

{w1, . . . , wNd} as the ED for action y, where wi is the
composed work. The goal of the pre-trained BERT model is
to extract semantic features s ∈ RK with dimension of K.
Denote si ∈ R768 as the hidden state from the last layer of
BERT for word wi. We apply average pooling to obtain a
sentence-level information s:

s =
1

Nd

Nd

∑
i=1

si . (13)

We then use an MLP model as semantic encoder E to translate
s into the joint semantic feature space.

C. Comparison with State-of-the-art

We compare our model with both inner-dataset methods
and cross-dataset inductive zero-shot learning methods, results
as shown in Table II. Inner-dataset methods utilize different
training and test class in the same dataset, but cross-dataset
methods apply training and test class from different dataset.
Inner-dataset Methods. We can observe from Table II that the
performance of our DeCalGAN gains large improvement over
inner-dataset methods. Even though our method is applied in
the cross dataset setting which is more difficult, the results
indicate that the essential features can be more effectively
obtained by recent state-of-the-art backbones and a large-scale
dataset. Compared with O2A [8], TS-GCN [8] and TARN [41],
we can observe that incorporating global semantic information
and local object information can perform better in actions,
and our DeCalGAN enhanced model can effectively infer key
cross-domain information from spatio-temporal features. Note
that for class labels, our approach follows the conventional
training protocol using word embeddings of class names in
the final recognition, which contains less semantic information
than ED [12], but the work of [12] apply applies ED for both
feature learning and zero-shot recognition. Therefore, even
though our method utilizes ED for semantic feature learning,
our setting is more challenging compared to ED. Moreover,
our training and test datasets are different, which will lead
to cross-domian issue, yet our model still can obtain close
performance on the UCF101 dataset and highest performance
on the HMDB51 dataset.

Method Video Class UCF HMDB

IAP [45] FV A 16.7 -
HAA [46] FV A 14.9 -
SJE [47] FV WN 9.9 13.3
MTE [48] FV WN 15.8 19.7
GA [49] C3D∗ WN 22.7 -
O2A [8] Obj† WN 30.3 15.6
CEWGAN [50] I3D A 38.3 -
TS-GCN [8] Obj† WN 34.2 23.2
TARN [41] C3D∗ WN 19.0 28.9
PS-GNN [51] Obj WN 36.1 29.5
DASZL [52] TSM A 48.9 -
ED [12] (ST+Obj)† ED 51.8 35.3

URL [3] R200 WN 42.5 28.9
E2E [22] R(2+1) 18∗ WN 46.1 33.1

Ours (R(2+1) 18+Obj)∗ WN 51.4 36.1

TABLE II: The average top-1 accuracy (%) of state-of-the-
art zero-shot learning methods on the UCF and HMDB
benchmarks. We evaluate on half test classes following evalu-
ation protocol (1). Visual: Fisher vector (FV), object (Obj),
spatio-temporal feature (ST), ResNet200 feature (R200),
R(2+1)D 18 feature (R(2+1) 18), ∗(trained on video dataset)
and †(trained on ImageNet dataset); Class: attribute (A), word
embedding of class names (WN ) and elaborative description
of class names (ED).
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Fig. 7: Per-category performance comparison of DeCalGAN
against the baseline E2E on the UCF101 dataset (randomly
selected 30 classes).

Cross-dataset Methods. We compare our proposed methods
with cross-dataset methods using the same protocol. As shown
in Table II, results indicate that E2E and our proposed method
outperform the universal-based method URL. This finding
suggests that a video-based backbone, such as R(2+1)D, is
more effective than an image-based backbone, such as ResNet,
in video-level zero-shot learning tasks. We attribute this to the
fact that a video-based backbone can more effectively capture
motion information compared to an image-based backbone.
Our proposed DeCalGAN approach outperforms the E2E
method, indicating that a generative model that incorporates
both global semantic and local object factors can enable the
classifier to learn more action information. Furthermore, the
improved performance demonstrates the effectiveness of using
causal inference conditioned on joint semantic and object
information to generate unseen action representations.
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Per-category Improvement Analysis. As shown in Figure
7, the per-category analysis reveals an average improvement
of 5.1%. Most of these categories exhibit a wide range of
actions and substantial variations, making their improvement
highly dependent on semantic reasoning over the global spatial
context. For instance, the “Skiing” action is characterized
by a long duration and is highly related to object priors
and semantic reasoning. Overall, the improvements over the
baseline are mainly attributed to the inclusion of both global
semantic information and local object information in the causal
generation process.

D. Ablation Study

The success of our DeCalGAN can be attributed to both the
framework design and technical improvement in each compo-
nent. To analyze the effect of each component in DeCalGAN,
we construct ablation study models including: 1) the basic E2E
model without DeCalGAN; 2) “w/o semantic” model without
the semantic factor; 3) “w/o object” model without the object
factor; 4) “w/o intervention” model without the reconstruction
operation and deconfounding loss; 5) “w/o deconfounding”
model without deconfounding loss; 6) “Word2Vec” model
denotes using Word2Vec embedding in place of BERT model
for extracting semantic information of ED; 7) “BERT” model
denotes using pretrained BERT model for extracting semantic
information of ED; and, 8) “CLIP” model denotes using CLIP
pretrained model in place the of BERT model for extracting
semantic information of ED. All the ablation studies below
are carried out using the second evaluation protocol.

DeCalGAN Type UCF101 HMDB51

Top1 Top5 Top1 Top5

E2E 36.8 61.7 24.1 45.5
w/o semantic 36.9 61.6 24.0 45.7
w/o object 38.0 62.5 25.1 47.2
w/o intervention 38.2 62.8 25.2 47.5
w/o deconfounding loss 38.4 63.2 25.5 47.6

Full model 39.0 64.1 27.0 50.9

TABLE III: Ablation study of different module model on
UCF101 and HMDB51, following evaluation protocol (2).

Factor Effects. Comparing the results of “w/o semantic”
and “w/o object”, we can see that the model with semantic
information gains better performance, which indicates that the
semantic description contains more action information than
only applying object embedding. Meanwhile, comparing the
results of E2E and “w/o object”, there is no obvious change in
performance, which indicates that if the generative model only
applies object features without any additional side information,
it would not help the classifier infer unseen distribution. Com-
paring the results of the full model and both “w/o semantic”
and “w/o object”, we observe a notable performance increase
on both datasets. We believe that both information is important
for unknown actions, and causal inference may not work if a
single factor is used.
Deconfounding Effects. Comparing the “full model” with
“w/o intervention”, we observe that the performance shows

(a) (b)

Fig. 8: Comparison results among (a) different number of se-
lected objects (b) different feature weight selection on UCF101
and HMDB51 datasets. Both follow evaluation protocol (2).

a large increase. We think it indicates there exists some
latent information in object-semantic joint distribution con-
tains confounders that will confound true signals of generat-
ing unseen action representations, and verifies our proposed
deconfounding module has the ability of removing some
confounders. Moreover, “w/o deconfounding loss” performs
better than “w/o intervention”, which also proves our proposed
deconfounding loss can deconfound confounders in our causal
inference setting, whereas reconstruction loss alone cannot
remove confounder affect effectively.

Semantic UCF101 HMDB51

Top1 Top5 Top1 Top5

Word2Vec 38.7 64.0 27.1 50.8
BERT 39.0 64.1 27.0 50.9
CLIP 41.2 65.8 28.5 53.1

TABLE IV: Semantic representation selection on UCF101 and
HMDB51 datasets, following evaluation protocol (2).

Semantic Representation. We also evaluated different meth-
ods for extracting semantic information from Event Descrip-
tions (ED). Recent works on open-vocabulary learning have
started using multi-modality pretrained models such as CLIP
[53] for the extraction of semantic features. In this ablation
analysis, we also apply the pretrained CLIP model as another
semantic feature extractor, employing ‘a video of {category}’
as the text prompt. The results, as shown in Table IV,
demonstrate that the selection of the semantic representation
methodology does not much influence the overall performance
of our proposed framework when using text-only embedding
techniques. However, with CLIP, a substantial performance
improvement is observed. However, using multi-modality pre-
trained models could lead to unfair comparisons with other
zero-shot learning approaches, since the text embedding in-
tegrates visual information into the semantic representation.
Therefore, we selected BERT as our semantic representation
learning approach, which has shown to be effective in captur-
ing semantic information.
Top-k objects. We conducted experiments to investigate the
impact of the number of Top-k objects on the quality of
generated unseen action features. Results show that the best
performance occurs when k = 3 for the UCF101 dataset and
k = 2 for the HMDB51 dataset. Our findings suggest that
inferring actions in UCF101 requires more object information
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compared to HMDB51. Additionally, our results indicate that
including too many object features can make it more chal-
lenging for our deconfounding module to remove confounding
effects effectively, thus highlighting the importance of select-
ing an optimal number of objects for optimal performance in
compositional zero-shot learning.
Feature Channel Selection. To explore the best representation
of semantic and object information, we conduct ablation study
of different feature dimensions as shown in Figure 8. We can
observe that feature dimension of 512 can achieve the highest
performance. It indicates that small channel networks lack in
learning semantic and object information effectively, which
might lose the important factor information for action fea-
ture generation. Meanwhile, large channels might learn more
confounding information which is difficult for our proposed
deconfounding module to remove latent confounders.

Ratio UCF101 HMDB51

Top1 Top5 Top1 Top5

1:1.0:1.0 37.2 61.9 24.2 46.3
1:0.6:0.6 38.6 63.6 25.7 48.7
1:0.6:0.3 37.5 61.6 25.1 47.2
1:0.3:0.6 39.0 64.1 27.0 50.9
1:0.3:0.3 38.1 62.7 25.3 47.5
1:0.1:0.1 38.5 63.2 25.9 48.2

TABLE V: Ablation study of loss weight selection on UCF101
and HMDB51 datasets, following evaluation protocol (2). The
different ratio models denotes models utilize different loss
weight training.

Loss Weight Selection. When training the causal generator,
we try to obtain optimal performance by tuning the training
loss weight hyperparameters λ1, λ2 and λ3 according to Eq.
10. According to Table V, we observe that when the ratio
is 1:0.3:0.6, the performance is the best. It indicates that the
deconfounding module can be more effective when the gener-
ator is well trained. Also, when deconfounding loss becomes
relatively small, the performance drops, which implies that our
deconfounding module is important and necessary.

E. Qualitative Evaluation via t-SNE Visualization

We employ t-SNE visualization to compare the performance
of E2E and our proposed DeCalGAN approach. We randomly
select 20 samples from eight actions and use the extracted 300-
dimensional features to visualize t-SNE, as shown in Figure
9. Our visualization reveals that the distribution using the
E2E is sparser compared to DeCalGAN, and all samples are
closer to the center when applying our proposed approach.
This observation suggests that leveraging both local object in-
formation and global semantic descriptions can jointly benefit
causal inference, and the deconfounding module can enable
confounding features learned from the source domain to better
generalize the unseen distribution in the test domain. How-
ever, the basic video-based backbone struggles to distinguish
complex actions, such as “rope climbing”, which may mislead
our proposed causal generator. In future work, we will explore
methods to enhance the video representations to better capture
the complexity of human actions.

(a) E2E (b) Ours

Fig. 9: t-SNE visualization of video representation extracted
by E2E baseline and our DeCalGAN in eight video actions
from the UCF101 dataset.

V. CONCLUSION

This paper proposed a DeCalGAN model to address the
problems of weak knowledge representation and unseen dis-
tribution in CD-ZSAR. Class word embedding is enhanced
by local object information that unifies the compositional
and traditional visual-semantic frameworks. A deconfounding
module is proposed to refine global semantic and local object
features by reconstruction and deconfounding constraints. The
proposed method is able to transfer the large-scale pretrained
model on Kinectcs-700 to two ZSAR benchmark datasets,
UCF101 and HMDB51. Extensive results validate that De-
CalGAN can successfully infer novel samples with unseen
distributions in new datasets.
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