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a b s t r a c t

In this note, we introduce a general model of dynamic n-player multi-battle Blotto contests in which
asymmetric resources and non-homogeneous battlefield prizes are possible. Each player’s probability
of winning the prize in a battlefield is governed by a ratio-form contest success function and players’
resource allocation on that battlefield. We show that there exists a pure subgame perfect equilibrium
in which players allocate their resources in proportion to the battlefield prizes for every history. We
also give a sufficient condition that if there are two players and the contest success function is of
Tullock type, then the subgame perfect equilibrium is unique.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many social, economic, and political interactions can be mod-
led as contests. Examples include rent-seeking, political cam-
aigns, sports competitions, litigation, lobbying, and wars. A
olonel Blotto game is a two-person static game in which each
layer allocates a limited resource over a number of identical
‘battlefields’’. The first contest model of the ‘‘Colonel Blotto’’
ame was introduced by Borel (1921). Fast forward to the present
ay; the literature on contests is now enormous, and a Blotto
ontest denotes any contest in which two or more players allocate
limited resource over a number of battlefields.
In this note, we extend Sela and Erez’s (2013) (henceforth

&E) model to a more general prize structure. S&E study two-
layer sequential multi-battle Blotto contests with heterogeneous
udgets, Tullock contest success functions (CSFs), and specific
rize structures. Suppose that the battlefield prizes are equal
cross the stages and that for each resource unit a player allocates
n a battlefield, the player’s budget decreases in proportion to
he budget allocation in that battlefield. S&E show the existence
f a subgame perfect equilibrium such that the players’ resource
llocations are weakly decreasing over the stages.
We extend S&E’s model in three notable ways: (i) the prizes

ary arbitrarily across battlefields, (ii) the number of players is
≥ 2, and (iii) the winner of the prize in a battlefield is deter-
ined by a generalized Tullock CSF satisfying the axioms (A1–A6)

∗ Corresponding author.
E-mail addresses: nejat.anbarci@durham.ac.uk (N. Anbarci),

utay.cingiz@wur.nl (K. Cingiz), mehmet.ismail@kcl.ac.uk (M.S. Ismail).
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of Skaperdas (1996). In our sequential multi-battle n-player Blotto
ame model, both asymmetric resources and distinct battlefield
rizes are possible. Each player’s probability of winning the prize
n a battlefield is governed by a CSF and players’ resource allo-
ation on that battlefield. Each player starts the dynamic contest
ith a limited budget and distributes this budget over a finite
umber of battlefields. Since the battles take place in sequential
rder, players can condition their strategies on the outcomes of
revious battles. At time t , players simultaneously choose their
llocation on battlefield t to win vt > 0, which is the battlefield
rize. The winner and the resulting resource allocations are re-
ealed to every player before the next battle. As in S&E, players
aximize the total expected prizes in this dynamic game.
Studying a static, simultaneous-move model of resource al-

ocation in U.S. presidential campaigns in a prominent paper,
rams and Davis (1974) highlighted the concepts of ‘population
f states’ and ‘population proportionality’ in campaign resource
llocation.1 Brams and Davis (1974, p.113) showed that populous
tates receive disproportionately more investments with regards
o their population. More specifically, the winner-take-all feature
f the Electoral College—i.e., that the popular-vote winner in each
attle wins all the electoral votes of that battle—induces candi-
ates to allocate campaign resources roughly in proportion to the
/2’s power of the electoral votes of each state. The question of

why some small states ‘‘punch above their weight’’—i.e., attract

1 As noted by Brams and Davis (1974), the population of a state need not
xactly reflect the proportion of the voting-age population who are registered
nd actually vote in a presidential election.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ttention and resources more than proportional to their weight—
n political campaigns has been puzzling researchers (for an anal-
sis in a non-Blotto setting, paying attention to ‘‘momentum’’,
ee, e.g., (Klumpp and Polborn, 2006)).
The proportional allocation of resources is generally consid-

red a benchmark in resource distribution games, and especially
n Blotto contests it is not only one of the prominent strategies
ut arguably the most salient heuristic. In a symmetric exper-
mental Blotto game, Arad and Rubinstein (2012) consider the
qual distribution of resources as level-0 behavior; it also seems
o be the first strategy that comes to mind because of the low
esponse time associated with it. (For level-k reasoning, see Stahl
1993) and Nagel (1995).) As we discuss next, we find that this
rominent heuristic is an equilibrium outcome in our setting.2
Our solution concept is subgame perfect equilibrium. We find

hat the strategy profile in which players allocate their resources
roportional to the battlefield prizes at every history is a sub-
ame perfect equilibrium (see Theorems 1 and 2). This overall
esult does not depend on the number of players, asymmetry
n the resources, the number or the battlefield prizes, or the
ype of contest success functions satisfying Skaperdas’s axioms.
e also show the uniqueness of the subgame perfect equilib-

ium in two-player dynamic Blotto games with Tullock CSFs
Proposition 1).

.1. Relevant literature

As mentioned above, our paper primarily extends S&E’s to
ore general prize structure, and it also contributes to the more
eneral literature on dynamic contests and campaign resource
llocation in sequential elections. This brief sub-section summa-
izes related work apart from the ones mentioned earlier.

Friedman (1958) first shows that proportional allocation is a
ash equilibrium in static 2-player Blotto contests with Tullock
SF (see Eq. (5) in Section 2.2). Osorio (2013) extends Friedman’s
esult to the case in which battlefield prizes are asymmetric.
uffy and Matros (2015) extend Friedman’s result to static n-
layer Blotto contests with Tullock CSF. Contributions to static
eneralized Blotto games with asymmetric and heterogeneous
attlefield prizes include Kim et al. (2018) who show the ex-
stence of Nash equilibrium, Kovenock and Arjona (2019) who
haracterize best-response functions, and more recently Li and
heng (2022a), who show the existence of pure Nash equilibrium
n these Blotto games and give a characterization of such an
quilibrium. Li and Zheng (2022a, p. 5) also study the conditions
or the proportionality of pure Nash equilibrium.

Duffy and Matros (2015) study static contests (stochastic
symmetric Blotto games) in up to four battlefields with two
layers having asymmetric yet similar budgets and generalizing
ake (1979)’s paper, which we discuss below.3 In a similar setting,
eck et al. (2017) study symmetric static contests with two
layers who do not have budget constraints. They identified the
ash equilibrium of the symmetric game (Electoral College).
In another static presidential campaign model, Lake (1979)

rgues that one would need to assume that the candidates maxi-
ize only their probability of winning the election, i.e., one would
imply try to receive a majority of electoral votes, instead of
omplying with Brams and Davis (1974) and Brams and Davis

2 In both the original Blotto game and the one considered by Arad and
ubinstein (2012), all battlefields have the same prize and the CSF is an all-
ay auction. In the heterogeneous battlefields we consider, equal distribution
f resources corresponds to a distribution of resources proportional to different
attlefield prizes.
3 For experimental results on Blotto games see, e.g., Deck and Sheremeta

2012), Montero et al. (2016) and Duffy and Matros (2017) and the references
herein.
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(1973) assumption that they maximize their expected electoral
vote. Nevertheless, Lake’s (1979) main result echoes Brams and
Davis (1974) impossibility of population proportionality result in
that in Lake’s model too it turns out that presidential candidates
find it optimal to spend a disproportionately large amount of their
funds in the larger states.4

In a recent closely related paper, Klumpp et al. (2019) consider
dynamic Blotto games where two players fight in odd number of
battlefields, which are identical.5 The player who wins the major-
ity of battles wins the game. Accordingly, they show that under
general contest success functions players allocate their resources
evenly (i.e., proportionally by default) across battlefields in all
subgame perfect equilibria, one of which is in pure strategies.6
A more recent follow-up paper by Li and Zheng (2021) study
Klumpp et al.’s even-split strategy in a more general setting.
More recently, Xie and Zheng (2022) study resource allocation in
two-player Blotto-type tug-of-war games with the win-by-n rule,
where n ≥ 2.

Acharya, Grillo, Sugaya, and Turkel’s (2022) recent paper builds
on Klumpp et al.’s (2019) by studying dynamic electoral cam-
paigns as dynamic contests with two players whose ‘relative
popularity’ changes over time. Acharya et al.’s contests are also of
Blotto type in the sense that the two players have fixed resources
to allocate. However, their model differs from Blotto contests in
that players’ investments affect the evolution of popularity via a
Brownian motion. In their setting, Acharya et al. also confirm the
even-split result of Klumpp et al. (2019).

Harris and Vickers (1985) construed a patent race as a multi-
battle contest, in which two players alternate in expending re-
sources in a sequence of single battles. These battles or sub-
contests serve as the components of the overall R&D contest.
Just like in a singles tennis match, the player who is first to
win a given number of battles wins the contest, by obtaining the
patent.7

Additional work on dynamic resource allocation contests is
as follows. Dziubiński et al. (2021) have recently studied multi-
battle dynamic contests on networks in which neighboring ‘king-
doms’ battle in a sequential order. Li and Zheng (2022b) study
resource allocation in Blotto games under general network struc-
ture. Hinnosaar (2023) characterizes the equilibria of sequen-
tial contests in which efforts are exerted sequentially to win a
(single-battle) contest. Ewerhart and Teichgräber (2019) study
multi-battle dynamic non-Blotto contests and show the exis-
tence of a unique symmetric Markov perfect equilibrium. In a
two-player and two-stage campaign resource allocation game,
Kovenock and Roberson (2009) characterize the unique subgame
perfect equilibrium.

In a two-player best-of-three multi-battle dynamic contest,
Konrad (2018) analyzes resource carryover effects between the
battles. Brams and Davis (1982) examined a model of resource
allocation in the U.S. presidential primaries to study the effects
of momentum transfer from one primary to another. As alluded
to before, Klumpp and Polborn (2006) also focused on momentum

4 Resource allocation frameworks are often used in modeling electoral com-
etition; see, e.g., Laslier and Picard (2002), Duggan (2007), Barelli et al. (2014),
homas (2017), and the references therein.
5 Among others, recent contributions to Blotto games include Roberson

2006), Kvasov (2007), and Rinott et al. (2012). There is also a huge literature
n non-Blotto contests initiated by Tullock (1967) and Tullock (1974), and see
lso, e.g., Krueger (1974) and more recently Konrad and Kovenock (2009). The
arly literature on non-Blotto contests is motivated by rent-seeking.
6 For a discussion of dynamics in contests, see Konrad (2009).
7 In the PGA Tour, which brings professional male golfers together to play

n a number of tournaments each year (LPGA does so for female golfers), each
ournament consists of multiple battles in that golfers attempt to minimize the
otal number of shots they take across 72 holes.
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ssues; they considered a two-player model in which an early
rimary victory increases the likelihood of victory for one player
nd creates an asymmetry in campaign spending, which in turn
agnifies the player’s advantage. This asymmetry of campaign
pending generates a momentum which can propel an early
inner to the overall victory. Strumpf (2002), on the other hand,
iscussed a countervailing force to momentum, which favors later
inners.

. The model and results

.1. Model

We consider dynamic Blotto contests where there are m het-
rogeneous battlefields with a predetermined sequential order,
ndexed by t = 1, 2, . . . ,m, and n players, indexed by i =

, 2, . . . , n. Players have possibly asymmetric (sunk) budgets:
ach player i has a budget Xi ≥ 0 that he or she can allocate
ver the battlefields. The prize of each battlefield t is denoted
y vt > 0. Each time period t , the battle at t takes place, and
ach player i simultaneously chooses a pure action (allocation)

denoted by xti which is smaller than or equal to the budget, Xi,
inus the already spent allocation by player i until battle t . Given

he chosen actions in battle t , xt := (xt1, . . . , x
t
n), the probability

of player i winning battle t is defined by a CSF, which has the
following form:

pti (x
t ) =

⎧⎨⎩
f (xti )∑
j f (x

t
j )

if
∑

j x
t
j > 0

1
n if

∑
j x

t
j = 0,

(1)

where f (·) satisfies Skaperdas’s (1996) axioms (A1–A6), which
characterize a wide range of contest success functions used in the
literature. More specifically, it is of the following form: f (xtj ) =

β(xtj )
α for some 0 < α < ∞ and 0 < β < ∞.8

To avoid trivial cases, we assume that for any t , vt <
∑

t ′ ̸=t v
t ′ ,

that is, there is no ‘‘dictatorial’’ battlefield. Let vt
i be the prize

player i wins at battle t , which is vt with probability pti (x
t ) or

0 with probability 1 − pti (x
t ).

The set of histories of length t is denoted by H t . A history of
length t ≥ 1 is a sequence

ht
:= (((x11, v

1
1), . . . , (x

1
n, v

1
n)), . . . , ((x

t
1, v

t
1), . . . , (x

t
n, v

t
n))) (2)

satisfying the following conditions

(i) For each 1 ≤ i ≤ n and for each 1 ≤ t ′ ≤ t , xt
′

i ∈

[0, Xi −
∑

j<t ′ x
j
i].

(ii) For each battle t ′ ≤ t , there exists a unique player i such
that vt ′

i = vt ′ and for all j ̸= i, vt ′
j = 0.

The first property states that each action at any given battle t is
bounded by the budget set which diminishes after each action
taken in previous battles. The second property states that each
battle has a winner-take-all structure.

The history H0 consists of only the empty sequence ø. Let
H = H0

∪ H1
∪ · · · ∪ Hm. Note that, the history ht−1 is presented

to all players at time t . There is a subset H t ⊂ H consisting of
istories of length t where the game comes to an end at battle t .
e call H t the set of terminal histories of length t . If the game

has not ended before battle m then the game ends at battle m.
e will specify terminal histories in detail later on.
The remaining budget of player i after history ht

∈ H is
defined as Bi(ht ) = Xi −

∑
j≤t x

j
i where for every j ≤ t , xji is

8 Note that we do not restrict α to, say, below 2 in part because we
assume Blotto-type fixed and ‘‘use-it or lose-it’’ budgets. For a discussion of
the restrictions on α in a non-Blotto model, see, e.g., Baye et al. (1994).
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a realized spending of history ht . The realized winning sched-
ule of a given history ht

∈ H , denoted by V (ht ), is the se-
uence of players that won the battles at battlefields 1, . . . , t .
hus V (ht ) ∈ {1, . . . , n}t . For example, if h3

= (((x11, v
1
1), (x

1
2, 0)),

(x21, 0), (x
2
2, v

2
2)), ((x

3
1, 0), (x

3
2, v

3
2))) in a two-player dynamic con-

test with m > 3 battlefields, then V (h3) = (1, 2, 2).
For player i, a pure strategy σi is a sequence of σ t

i ’s such that
or each t , σ t

i assigns, to every ht−1
∈ H t−1, allocation σ t

i (h
t−1) ∈

0, Bi(ht−1)]. A pure strategy profile is denoted by σ = (σi)i≤n. The
et of pure strategies of player i ≤ n is denoted by Σi and the set
f pure strategy profiles by Σ = ×i≤nΣi. For any σ ∈ Σ , let
σ |h) = ((σ1|h), . . . , (σn|h)) denote the strategy profile induced
y σ in the subgame starting from history h.
Players maximize the expected payoff which is defined as the

um of expected battlefield prizes. So, the terminal histories are
xactly the histories with length m. The set of terminal histories
s denoted by Hm, which is equal to Hm.

For any h̄m
∈ Hm, player i receives a payoff equal to

i(h̄m) =

∑
t≤m

vt
i , (3)

here h̄m
:= (((x11, v

1
1), . . . , (x

1
n, v

1
n)), . . . , ((x

m
1 , vm

1 ), . . . ,
xmn , vm

n ))).
The set of terminal histories induced by a strategy profile σ

onditional on reaching history h is denoted by ρ(σ |h), which is
subset of Hm. The expected payoff for player i ≤ n induced by

a pure strategy profile σ ∈ Σ at any ht
∈ H t is

i(σ |ht ) =

∑
h̄m∈ρ(σ |ht )

q(σ , h̄m
|ht )ui(h̄m). (4)

Our solution concept is subgame perfect equilibrium in pure
trategies.
ubgame perfect equilibrium: A pure strategy profile σ ∈ Σ is
subgame perfect equilibrium if for every battle t ≤ m, for every
istory h ∈ H t , for every player i ≤ n, and for every strategy
′

i ∈ Σi

i(σ |h) ≥ πi(σ−i, σ
′

i |h).

strategy profile σ ∈ Σ is a subgame perfect equilibrium if and
nly if for every h ∈ H , σ induces an equilibrium in the subgame
tarting with history h.

.2. Tullock contest success function

In this sub-section, we first define the well-known Tullock CSF
i.e. α = 1).

t
i (x

t ) =

⎧⎨⎩
xti∑
j x

t
j

if
∑

j x
t
j > 0

1
n if

∑
j x

t
j = 0.

(5)

A dynamic Tullock contest is a dynamic contest in which the
contest success functions are of the Tullock variety.

The following theorem provides our first main result in which
we show that a subgame perfect equilibrium in ‘‘proportional
strategies’’ exists in every dynamic Tullock contest. Note that in
the following sub-section we generalize our model and extend
this result to more general contest success functions.

Theorem 1 (Existence and Characterization: Tullock Contests). For
any n-player dynamic Tullock contest, there exists a subgame per-
fect equilibrium, σ , which is given as follows. For any t, for any
nonterminal history ht−1

∈ H − H, and for any player i, let

σ t (ht−1) = Bi(ht−1)
vt

. (6)
i vt + · · · + vm
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roof. We show that the proportional strategy profile σ = (σi)i≤n
iven above is robust to one-shot deviations, which implies that
is a subgame perfect equilibrium. That is, any player i at any

onterminal history ht cannot improve his payoff by changing σ t
i ,

iven that all other players, j ̸= i, follow the proportional strategy.
f player i switches to a strategy σ̄i = (σ̄ t+1

i , σ t+2
i , . . . , σm

i ) after
istory ht such that σ̄ t+1

i (ht ) ̸= σ t+1
i (ht ), then the expected prize

that player i wins after battle t given the history ht is denoted as
πi,t+1(σ̄i, σ−i|ht ), which satisfies

πi,t+1(σ̄i, σ−i|ht ) =
vt+1σ̄ t+1

i (ht )

σ̄ t+1
i (ht ) +

∑
j̸=i σ

t+1
j (ht )

+ πi,t+2(σ |ht+1
dev ),

(7)

where ht+1
dev is a successor of ht with the property that at battle

t + 1 player i spent σ̄ t+1
i (ht ), and each player j ̸= i spent

proportionally. And the expected payoff of player i after history
ht if she follows σ ,

πi,t+1(σ |ht ) =
vt+1σ t+1

i (ht )∑
1≤j≤n σ t+1

j (ht )
+ πi,t+2(σ |ht+1), (8)

where ht+1 is a successor of ht with the property that at battle
t + 1, each player spent proportionally. For simplicity, we take

vt+1
+ · · · + vm

vt+1 = k,

i(ht ) = a,

j̸=i

Bj(ht ) = b,

¯
t+1
i (ht ) = σ t+1

i (ht ) + ∆ =
a
k

+ ∆.

here ∆ is a real number. We can rewrite player i’s probability
f winning battle t + 1 if he plays σ̄ t+1

i (ht ) as

σ̄ t+1
i (ht )

σ̄ t+1
i (ht ) +

∑
j̸=i σ

t+1
j (ht )

=

a
k + ∆

a
k + ∆ +

b
k

=
a + ∆k

a + ∆k + b
,

and player i’s probability of winning battle t + 1 if he plays
σ t+1
i (ht ) as

σ t+1
i (ht )∑

1≤j≤n σ t+1
j (ht )

=

a
k

a
k +

b
k

=
a

a + b
.

ince σ is a proportional strategy profile, for any t , for any ht , and
or successor of histories where ht+1 is a successor of ht , ht+2 is a
uccessor of ht+1, and so on up to and including hm is a successor
of hm−1, given that players follow proportional strategy profile,
we have

σ t+1
i (ht )∑

1≤j≤n σ t+1
j (ht )

=
σ t+2
i (ht+1)∑

1≤j≤n σ t+2
j (ht+1)

= · · · =
σm
i (hm−1)∑

1≤j≤n σm
j (hm−1)

=
a

a + b
,

hich means that player i wins each battle after ht with equal
robability if he/she follows σi. That is, if players follow the

proportional strategy profile, the proportions of the remaining
budgets stay constant throughout the battles. The same property
satisfies for the strategy profile (σ̄i, σ−i) after history ht+1

dev . Hence
for successor of histories where ht+2

dev is a successor of ht+1
dev , h

t+3
dev

is a successor of ht+2, and so on up to and including hm is a
dev dev a

97
successor of hm−1
dev , given that players follow proportional strategy

rofile after history ht+1
dev , we have

σ t+2
i (ht+1

dev )∑
1≤j≤n σ t+2

j (ht+1
dev )

=
σ t+3
i (ht+2

dev )∑
1≤j≤n σ t+3

j (ht+2
dev )

= · · · =
σm
i (hm−1

dev )∑
1≤j≤n σm

j (hm−1
dev )

.

ow we can simply calculate player i’s probability of winning any
attle after history ht+1

dev , if player i follows the strategy σ̄i

σ t+2
i (ht+1

dev )∑
1≤j≤n σ t+2

j (ht+1
dev )

=
a −

a
k − ∆

a −
a
k − ∆ + b −

b
k

.

Therefore we can rewrite Eq. (7) as

πi,t+1(σ̄i, σ−i|ht ) = vt+1 a + ∆k
a + ∆k + b

+
a −

a
k − ∆

a −
a
k − ∆ + b −

b
k

(vt+2
+ · · · + vm),

nd we can rewrite Eq. (8) as

i,t+1(σ |ht ) =
a

a + b
(vt+1

+ · · · + vm).

e show that πi(σ |ht ) − πi(σ̄i, σ−i|ht ) ≥ 0; in other words, we
how that

t+1(
a

a + b
−

a + ∆k
a + ∆k + b

)

+ (vt+2
+ · · · + vm)(

a
a + b

−
a −

a
k − ∆

a −
a
k − ∆ + b −

b
k

) ≥ 0. (9)

ince k− 1 = (vt+2
+ · · · + vm)/(vt+1), we can rewrite inequality

9) as

a
a + b

−
a + ∆k

a + ∆k + b
)+ (k−1)(

a
a + b

−
a −

a
k − ∆

a −
a
k − ∆ + b −

b
k

) ≥ 0.

(10)

We can simplify inequality (10) as

b∆2k3

(a + b)(a(k − 1) + b(k − 1) − ∆k)(a + b + ∆k)
≥ 0. (11)

Inequality (11) satisfies because we have the following condi-
ions

≥
a
k

+ ∆,

b(k − 1) ≥ 0,

a
k

+ ∆ ≥ 0.

hus, for any ∆ we have πi(σ |ht ) − πi(σ̄i, σ−i|ht ) ≥ 0. □

.3. More general contest success functions

In this sub-section, we provide an extension of our main result
o a more general setting with any CSF satisfying Skaperdas’s
1996) axioms A1–A6.

We now state our second main result, which extends Theo-
em 1 to the case with more general contest success functions.

heorem 2 (General Existence and Characterization). For any
-player dynamic contest with CSF satisfying Skaperdas’s (1996)
xioms A1–A6, the following proportional strategy profile, σ , is a
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ubgame perfect equilibrium. For any t, for any nonterminal history
t−1

∈ H − H, and for any player i,

σ t
i (h

t−1) = Bi(ht−1)
vt

vt + · · · + vm . (12)

roof. First, we show that a proportional strategy profile σ ∗
∈ Σ

in the dynamic contest is a Nash equilibrium by proving that for
any player i a strategy σi ∈ Σi is a best response to σ ∗

−i whenever
σi = σ ∗

i . Let x be the spending sequence associated with (σi, σ
∗

−i)
and x−i = (xt

−i)t≤m denote the spending sequence excluding
player i, where for all t , xt

−i = (xt1, . . . , x
t
i−1, x

t
i+1, . . . , x

t
n).

9 We
show that

σi ∈ argmax
σ ′
i

πi(σ ∗

−i, σ
′

i |ø), (13)

that is, player i’s best response to σ ∗

−i associated with x−i is σi
associated with xi. Given that all players but i follow the spending
sequence x−i, player i’s expected prize from a 1-prize battle t1 for
any xt1i , which we treat as a variable, is given by

β(xt1i )α

(β(xt1i )α + β
∑

j̸=i(x
t1
j )α)

. (14)

Differentiating (14) with respect to xt1i gives

α(xt1i )α−1 ∑
j̸=i(x

t1
j )α

((xt1i )α +
∑

j̸=i(x
t1
j )α)2

, (15)

hich is player i’s marginal gain from the battle t1. We next
onsider a k-prize battle tk for some k ∈ {1, . . . ,m}. By our
upposition each player except player i spends in proportion to
he prize of the battle, i.e., for each j ̸= i, xtkj = kxt1j . We next show
hat player i’s best response to proportional allocation is also to
spend in proportion to the prize at battle tk, i.e., x

tk
i = kxt1i . In this

case, player i’s expected prize for any xtki from k-prize battle tk is

kβ(xtki )
α

(β(xtki )α + β
∑

j̸=i x
tk
j )

=
k(xtki )

α

((xtki )α + kα
∑

j̸=i(x
t1
j )α)

. (16)

Differentiating (16) with respect to xtki gives

αkα+1(xtki )
α−1 ∑

j̸=i(x
t1
j )α

((xtki )α + kα
∑

j̸=i(x
t1
j )α)2

, (17)

hich is player i’s marginal gain from the k-prize battle tk. Next,
e show that for xtki = kxt1i , Expression (17) equals Expres-
ion (15). First, Expression (17) equals

αkα+1(xtki )
α−1 ∑

j̸=i(x
t1
j )α

((xtki )α + kα
∑

j̸=i(x
t1
j )α)2

=
αkα+1(kxt1i )α−1 ∑

j̸=i(x
t1
j )α

((kxt1i )α + kα
∑

j̸=i(x
t1
j )α)2

. (18)

Cancelling out k’s leads to

α(xt1i )α−1 ∑
j̸=i(x

t1
j )α

((xt1i )α +
∑

j̸=i(x
t1
j )α)2

, (19)

hich is Expression (15). We showed that if player i allocates
roportionally to k-prize battle, then his marginal gain from that
attle is equal to his marginal gain from 1-prize battle provided
hat others allocate proportionally. Thus, there is no incentive

9 To be sure, one may condition his strategy on the winners of the previous
attles and also on the previous battle spendings. However, without loss of
enerality, we can confine attention to the spending sequence, x, that is

associated with the given strategy profile, because the payoff received from
the previous battles does not affect the payoff that can be received from the
remaining ones as the payoff function is additive.
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for player i to deviate from proportional allocation when others
allocate proportionally. Hence, the proportional strategy profile σ
is a Nash equilibrium of the dynamic contest.

Now we show that σ ∗ is a subgame perfect equilibrium. In
ther words, for every h ∈ H , σ ∗ induces an equilibrium in
he subgame starting with history h. By definition, the subgame
tarting with history h is a game (i.e., dynamic contest) and (σ ∗

|h)
s a proportional strategy profile. Thus, by an analogous argument
sed in the first part of the proof, (σ ∗

|h) is a Nash equilibrium in
he subgame starting with history h.10 That is, we obtain for every
and every h

σ ∗

i |h) ∈ argmax
σ ′
i

πi(σ ∗

−i, σ
′

i |h), (20)

herefore, σ ∗ is a subgame perfect equilibrium, so the dynamic
ontest satisfies proportionality. □

.4. Uniqueness of subgame perfect equilibrium

In addition to existence and characterization, the third natural
uestion regarding the properties of subgame perfect equilibrium
s whether and under what conditions it is unique. The next
roposition gives a sufficient condition in two-player dynamic
ontests.

roposition 1 (Uniqueness of equilibrium). In every two-player
ynamic Blotto contest with Tullock CSF, the subgame perfect equi-
ibrium shown in Theorem 1 is unique.

roof. Let σ ∗ be a ‘‘proportional’’ subgame perfect equilibrium
s shown in Theorem 1. The proof strategy is to show that for
very player i ̸= j in a two-player dynamic Tullock contest the
est response of player i against σ ∗

−i is unique. This will conclude
he proof of Proposition 1 because in two-player zero-sum games
very equilibrium strategy must be a best response against every
quilibrium strategy of the opponent by von Neumann (1928)
inimax theorem. Thus, if for every player i, σ ∗

i is the unique
est response to σ ∗

−i, then the subgame perfect equilibrium σ ∗

ust be unique.
In a two-player contest with Tullock CSF (i.e. α = 1), (14) in

he proof of Theorem 2 reduces to

xt1i
xt1i + xt1j

,

and (15) to

xt1j
(xt1i + xt1j )2

, (21)

hich is player i’s marginal gain from the 1-prize battle t1.
imilarly, (16) simplifies to

kxtki
xtki + xtkj

,

and (17) to

k2xt1j
(xtki + kxt1j )2

, (22)

hich is player i’s marginal gain from the k-prize battle tk. Then,
21) equals (22) if and only if

1

(xt1i + xt1j )2
=

k2

(xtki + kxt1j )2
. (23)

10 Note that in the first part, we showed that a proportional strategy profile
is a Nash equilibrium in any dynamic contest.
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ecause all values in Eq. (23) must be strictly positive in any
quilibrium (allocating zero resources is never a best response),
23) holds if and only if
2(xt1i + xt1j )2 − (xtki + kxt1j )2 = 0,

if and only if

(kxt1i + kxt1j − xtki − kxt1j )(kxt1i + kxt1j + xtki + kxt1j ) = 0,

if and only if xtki = kxt1i . Thus, player i’s ‘‘proportional’’ sub-
game perfect equilibrium strategy σ ∗

i is the unique best response
to player j’s subgame perfect equilibrium strategy. Therefore,
the subgame perfect equilibrium must be unique, because the
dynamic Tullock contest is a two-person zero-sum game. □

Note that the proof strategy used in Proposition 1 does not
immediately extend to two-player dynamic contests with non-
Tullock contest success functions because if α ̸= 1, then ‘‘xtki =

kxt1i ’’ need not be the unique solution when we set (15) and
(17) equal.11 This implies that a player may have multiple best
responses to opponent’s equilibrium strategy. Proposition 1 does
not extend to n-player dynamic contests either because we can-
not use the minimax theorem to prove the uniqueness of the
equilibrium in n-player games. While we did not assume sym-
metric budgets in Proposition 1, making this assumption would
not resolve the aforementioned difficulties in proving the unique-
ness of equilibrium. For these reasons, we leave the uniqueness
of subgame perfect equilibrium in n-player dynamic contests as
an open problem.

3. Discussion and concluding remarks

In this paper, we provide an extension of S&E’s two-player
multi-battle sequential Blotto model to n-player multi-battle se-
quential Blotto games with arbitrary prize structures and more
general CSFs. Players’ budgets and battlefield prizes may be asym-
metric, and there are no restrictions on the number of players or
the number of battlefields (e.g., odd or even). In this context, we
study the proportional allocation of resources and the equilibrium
behavior. We show that the strategy profile in which players
proportionally allocate their resources at every history is a sub-
game perfect equilibrium. Moreover, the results do not depend
on the specific CSF used in the competition as long as it satisfies
Skaperdas’s (1996) axioms. An open question for future research
is whether or not the proportional strategy profile is the unique
subgame perfect equilibrium in n-player dynamic contests.

Blotto games can be applied to a variety of economic and
political situations, as Borel (1921) himself envisioned. As an
example, consider sequential elections as an n-player dynamic
multi-battle contest where political candidates choose how to
distribute their limited resources over multiple ‘‘battlefields’’ or
states, as in the U.S. presidential primaries. In this context, our
results imply that proportionality is immediately rectified once
one has candidates who maximize their electoral vote instead
of simply maximizing their probability of winning, despite the
presence of the winner-take-all feature.

To achieve proportionality, at least in the U.S. presidential
primaries, which operate on a winner-take-all system, a viable
policy suggestion could be providing additional incentives to
induce players to win as many delegates as possible in all of the
presidential primaries overall. For instance, the electoral system
could provide players with additional funding in the ensuing
presidential race, where these incentives are positively linked to

11 Klumpp et al. (2019) use a similar proof strategy of using the minimax
heorem to prove the uniqueness of their equilibrium in two-player zero-sum
ames.
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the number of delegates won by the presidential player in the
primaries. Such incentives can be very effective at the margin.
However, even in the absence of any such additional pecuniary
incentives, players themselves seem to already exhibit the behav-
ioral trait of maximizing their expected number of delegates and
do not appear to want to stop pumping campaign funding into the
remaining primaries, even when they have already guaranteed
winning the majority of the delegates.

The main reason players may try to win additional dele-
gates beyond those they need to guarantee their presidential
candidacy (i.e., the main reason they might continue investing
in the remaining primaries even though they know that it will
not affect their chances of winning further delegates) could be
that they care about entering the U.S. presidential race with an
impressive momentum gained in the presidential primaries. This
is reminiscent of the strategy Hillary Clinton tried to employ
against Bernie Sanders’ late surge in the 2016 U.S. Democratic
primaries, even though she had already accumulated more than
enough delegates to win her party’s presidential candidacy up to
that point. Nevertheless, to ensure proportionality, the parties or
the electoral system might consider boosting players’ tendency to
maximize their expected delegates via some additional pecuniary
incentives, which may help at the margin, at least for the players
who may simply try to maximize their probability of winning in
their U.S. presidential primaries.
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