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The Similarity Heuristic

Decision makers are often called on to make sndgnents using fast-and- frugal decision
rules called cognitive heuristics. Although eanlgsearch into cognitive heuristics
emphasized their limitations, more recent resedrah focused on their high level of
accuracy. In this paper we investigate the perdmee a subset of the representativeness
heuristic which we call the similarity heuristic. Decision makers who use it judge the
likelihood that an instance is a member of onegmaierather than another by the degree to
which it is similar to others in that category. \Weovide a mathematical model of the
heuristic and test it experimentally in a trinomgalvironment. The similarity heuristic turns
out to be a reliable and accurate choice rule atld thoice and response time data suggest it

is also how choices are made.

Keywords: heuristics and biases, fast-and-frugal heusssonilarity, representative design,

base-rate neglect, Bayesian inference



A heuristic is a decision rule that provides anragjmate solution to a problem that
either cannot be solved analytically or can onlysbésed at a great cost (Rozoff, 1964).
Cognitive heuristics are analogous ‘mental shostdor making choices and judgments. Two
familiar examples are the availability heuristiod@e an event frequency by the ease with
which instances of the event can be recalled; Kaameand Tversky, 1973), and the
recognition heuristic (if you recognize only onenit in a set, choose that one; Goldstein and
Gigerenzer, 2002). Cognitive heuristics work byame of what Kahneman and Frederick
(2002) call attribute substitution, by which a @iéfit or impossible judgment of one kind is
substituted with a related and easier judgmentother kind. The recognition heuristic, for
instance, substitutes the recognition of only alsiroption in a pair for the more costly
process of searching for, selecting and evaluatifagmation about both options. A central
feature of cognitive heuristics is that while trag efficient in terms of time and processing
resources, they achieve this at some cost in aogwragenerality. As an example, when
events are highly memorable for reasons unrelatdédbtjuency, the availability heuristic can
overestimate their probability.

Early research into cognitive heuristics emphasizaa they could produce systematic
biases (Kahneman, Slovic & Tversky, 1982). Indebdse biases were often the primary
evidence that the heuristic was being used. lLatsarch has emphasized the adaptive nature
of heuristics, emphasizing their capacity to quickdnd efficiently produce accurate
inferences and judgments (Gigerenzer & Todd andMB€ research group, 1999; Samuels,
Stich & Bishop, 2002). To use the term introdudgdGigerenzer and Goldstein (1996),
heuristics are ‘fast-and-frugal’: they allow acderalecisions to be made quickly using
relatively little information and processing caggci

As Gilovich and Griffin (2003) observe, howeveristmew emphasis has not been
applied to the ‘classic’ heuristics first describegl Kahneman and Tversky (1973). One
reason is that the two approaches to heuristicsecioom different research traditions that
have asked different questions, and adopted cameépgly different methods. The modal

question asked by the earliest researchers wasedple use heuristic X?’, while those in the



fast-and-frugal tradition started with ‘how goodhsuristic X?’. These two questions are
answered using different research strategies. fif$testrategy is a form of what Brunswik
(1955) called asystematicdesign, the second related to what he calle@presentative
design. In a systematic design the stimuli are eho® permit the efficient testing of
hypotheses; in the representative design the stamaliterally arepresentativesample, in the
statistical sense, drawn from the domain to whiwh results are to be generalized (Dhami,
Hertwig & Hoffrage, 2004).

If misinterpreted, the use of a systematic design exaggerate the importance of
atypical circumstances. The experimental conditidested are usually chosen so that
different judgment or choice rules predict diffearemtcomes, and since one of those rules is
usually the normatively optimal rule, and the pwpof the experiment is to show that a
different rule is in operation, the experiment in&hly reveals behavior that deviates from the
normative rule. For instance, studies of the abdlity heuristic are designed to show that,
whenever using the heuristic will lead to systematnder- or over-estimation of event
frequency, this is what occurs. Many early obserwoncluded that such findings showed
evidence of systematic and almost pathologioationality (e.g. Nisbett & Ross, 1980;
Piatelli-Palmarini, 1996; Plous, 1993; Sutherlad®92). The extent of the irrationality
observed, however, may have been the result afsbef a systematic design, combined with
an interpretation of the results from using thasigie as being typicallf the goal is to
measure how well a decision rule or heuristic penfy a more representative design should
be uset!

In this paper we investigate thepresentativeness heuristione of the classic
heuristics first described by Kahneman and Tve($Ry'2), who defined it as follows:

A person who follows this heuristic evaluates thabpbility of an uncertain event, or a
sample, by the degree to which it is: [i] similar @ssential properties to its parent
population; and [ii] reflects the salient featut#ghe process by which it is generated.

(Kahneman & Tversky, 1972 p. 431)



The heuristic has two parts, one based on theasitgilbetween sample and population, the
other based on beliefs about the sampling protesi§ {Joram & Read, 1996). The focus in
this paper is on one aspect of Part [i], which eferto as the similarity heuristicaccording

to which the judged similarity between an event guudsible populations of events is
substituted for its posterior probability. An exdmpf this substitution is found in responses
to the familiar “Linda” problem (Tversky & Kahnemat982). Because Linda is more similar
to a ‘feminist bank-teller’ than a mere ‘bank-telleshe is judged to be more likely to be a
feminist bank-teller (Shafir, Smith and Oshersd@9Q).

An important study, using a systematic design, batwwe call the similarity heuristic
was conducted by Bar-Hillel (1974). Her subjec@dm judgments about sets of three bar
charts like those in Figure 1, labeledM andR for left, middle and right. Th&imilarity
group judged whethévl was more similar th or R. TheLikelihood of populationgroup was
told thatM represented a sample that might have been draier éiom populatiori or R,
and judged which populatidl was more likely to come from, and thikelihood of samples
group was told thatl represented a population that might have genegither samplé. or
R, and judged which sample was more likely to beegated fromM. If the similarity
heuristic is used, all three judgments would calaci Bar-Hillel systematically designed the
materials so that this coincidence could easilplbgerved. All the triples had the following
properties:

1. Every bar inM was midway in height between the bars of the saotwr inL andR.

2. The rank-order of the bar heights Mh coincided with those in eithér or R, but not
both.

3. WhenM was interpreted as describing a population brahd R were interpreted as
samples, then the sample with same rank-ordbt ass the least probable.

4. Likewise, wherL andR were interpreted as populations aichs a sample, thevi was
less likely to be drawn from the population whoasekrorder it matched.

In other words, the stimuli were systematically igeed to ensure that, under both

interpretations of likelihood, the objective oddsdred the same chart, which was not the



chart with the same rank-order s In Figure 1, samplI® is more likely to be drawn from
populationR, and sampl® is more likely to be drawn from populatidvh although the rank-
order of the bar-heights i is the same as that bf Bar-Hillel correctly anticipated that

both similarity and likelihood judgments would leosgly influenced by rank-order.

—Figure 1 about here —

Although this study is very elegant, for our pugmst has two shortcomings, both
related to the fact that the stimuli were highlyusual. First, the stimuli all had the same
atypical pattern, which may have suggested theofigedgment rules that would not have
been used otherwise. For instance, the rule ‘@duos one with the same rank-order’ was
easy to derive from the stimuli, and could therapplied to every case — in other words, the
attribute ‘rank-order’ rather than ‘similarity’ ctib have been substituted for ‘likelihood.’
This possibility is enhanced by the presentationstinuli as bar charts rather than as
disaggregated samples, and the use of lines toecotine bars. Both features make rank-
order extremely salient.

Moreover, the use of a systematic design meansstildy does not indicate how
accurate the similarity heuristic is relative t@ tbptimal decision rule, even for bar charts
connected by lines. When the majority similariigigment is used to predict the majority
choice in thelikelihood of Populationgroup, the error rate w&9% But since only a tiny
proportion of cases actually meet the four condgicspecified above, this number is
practically unrelated to the overall accuracy @& Heuristic. Indeed, the fact that respondents
make errors in Bar-Hillel's study is highly depentlen the precise choice of stimuli. In the
illustrative stimuli of Figure 1, if the bar heighin L are slightly changed to those indicated
by the dashed lines (a 5% shift from yellow to gle¢hen the correct answer changes ftom

to R (the probability thaR is correct changes from .41 to .65).



One goal of the experiment described in this p@pép address the issues implied by
this analysis. First, we elicit choices and judgteeof similarity in an environment in which
the relationship between sample and populationesarandomly. Second, because we
examine a random sample of patterns in this enwient, we are able to assess the efficiency
of the similarity heuristic. Our method was deldtely designed to find a point of contact
between the two traditions of research in heusdsticthe early tradition exemplified by
Kahneman and Tversky’s work, and the later tradigdmemplified by the work of Gigerenzer
and Goldstein (1996). Our research shows thergisundamental divide between these

traditions. As a first step, we describe a preaisg testable model of the similarity heuristic.

A Model of the Similarity Heuristic

The similarity heuristic is a member of what ishmars the broadest class of decision
rules, those in which the decision to act on (ochoose, or to guess) one hypothesis rather
than another is based on the relative value of @isibm statistic computed for each
hypothesis. In the most basic version of this ¢las®e hypothesis is chosen because the
decision statistic favors that hypothesis more thay other and, if two or more hypotheses
share the same maximum decision statistic, onbdsem using a tie-breaking procedure. In
the context of such models, a wide range of detistatistics have been proposed. Some of
these are objective relationships between theatadahe hypotheses. Amongst these are the
likelihood, and the posterior probability compufeam Bayes’ rule. These decision statistics
are particularly important because they constitthe theoretical benchmark for the
performance of a decision rule.  Several otherjeéive” decision statistics are those
discussed recently by Nilsson, Olsson and JuslBO%® in the context of probability
judgment. Indeed, two of these are operationadimatof ‘similarity’ based on Medin and
Schaffer's (1978) context theory of learning, coisipg an adaptation of one interpretation of
the representativeness heuristic originating inrieahan and Frederick (2002), and the other

is their own exemplar-based model. The decisiatissic can also be — and indeed when



making choices typically is — a subjective relasioip between data and hypothesis.
Recognition is such a subjective relationship, whée recognition of an object can be used
as the basis for making a judgment such as 'thecbl large.” The feeling or judgment of

similarity between data and hypothesis is anotlbjestive relationship, and the one we
focus on.

We will illustrate with a simple decision problenimagine you are birdwatching in a
marshy area in South England, and hear a songnilgat belong to the redshank, a rare bird
whose song can be confused with that of a commeanghank. You must decide whether or
not to wade into the marsh in hope of seeing ahaatls In normative terms, your problem is
whether the expected utility of searchirg) for the redshank is greater than that of not

searching §):

p(r/d)u(¢ N+ p(dd U s 9> pfd A+ pOM@E/S) @
where p(r/d) is the probability it is a redshank given the da, the song)p(g/d) is the
probability it is a greenshank given the daiés/ r) is the utility of searching given that it is
a redshank, and so on. The probabilities are ateduwith Bayes’ rule, which draws on
likelihoods and the prior probability of each hypesis, p(r) and p(g). If we substitute

the multiplicationposterior = prior x likelihood into (1), and rearrange terms, the decision

rule is to search if

p(r)p(dr) Ju(s'g-Usg 2)
p(o) P(dg  s)- s}

If all the utilities are equal, this reduces torshang if p(r) p(d/r)>p(9g) p(d 9.
When using the similarity heuristic, the probalabt are replaced with similarity

judgments,s(d, r) and s(d, g) : respectively, the similarity of the song to teelshank’s and

the greenshank’s. According to the similarity hsticj you should search if

s(d,r)>9d g. ®3)



That is, search if the birdsong you have just hearthds (to you) more similar to that of the
redshank than that of the greenshank.

Within a given environment, the theoretical perfance of a decision rule can be
estimated by computing the proportion of timesiélds the correct answer, relative to the
same proportion for the optimal decision rule. S%iew how to estimate the performance of
the similarity heuristic against the Bayesian bemnailk.

The decision model begins with a vector of decisstatistics. For the similarity
heuristic, these statistics are judgments of shityldetween the sample or case (the data) and

the population from which it might have been drawRor each of tha possible hypotheses,

h, 1=1,..n,and the datad;, the decision maker generates a similarity judgnéluq, h).

The set ofh judgments form a similarity vectqr SICTHE T wheresj = s( q , h).

Given the similarity vector, the next step is takpout the maximum value from this

vector, which is done by assignirigif s; takes the maximum value withis;, and 0

otherwise, yielding thenaximum similarityector, with the same dimensionssas

ms; =[mg;, Mg,.... mg], where ms= 1 iTs = max(sj) (4)
0 otherwise

In the simplest decision rulé, is chosen if the maximum similarity vector contains
only a single value df in thei-th position. If there is more than one such valneaning that
more than one hypothesis ties for maximum decistatistic, each candidate hypothesis has
an equal chance of being chosen. The operatighi®fule is implemented in theecision

vector ds]- :

m
ds, =[ds;, ds;,..., dg ], where qszz—%m%, (5)

i=1,..n

The value ofls;, therefore, is the probability the choice rulel wélect hypothesils.



To calculate the probability that, for a given mieaf evidence, this choice rule will
select the correct option, we pre-multiply the diexi vector by the vector of corresponding

posterior probabilitiesil; ) computed using Bayes'’ rule:

p|} =[p|1j’ p|2j_.__p|nj 1, Whereplij = p(h/q ): Z E(h) p(q | h) ©)

Hence, given a set of hypothesds={h, i=1,...n} , a choice rules;, prior probabilitiesp,
and evidencel; , theaccuracyof the choice rule, meaning the probability of ingka correct

decision, is given by:

A(s,.H.p.d;) =pl; s =i_lZn Pl dg @)
Next, we determine the performance of the choite given this hypothesis set and all
possible evidence that might occur. The evidemetdcbe, for instance, every bird song that
might be heard. If the evidence is discrete (evg.might hear one of a finite numben, of

possible sounds) the corresponding mean accuracy is

n

A(SHp)=2 pd > pjds ., (8)
j=1 i=1

where S is the nxm matrix representing the similarity of each piedeswvidence to each

hypothesis, angd; denotes the probability of obtaining evidenice

Just as the evidence can vary, so can the pridmapilities associated with a given set
of hypotheses. For instance, you might be in aagdn where house sparrows are rare and
Spanish sparrows are common, or the reverse. Tanotite mean accuracy of the decision
rule we need to carry out the summation in Eq.or the entire space of possible prior

probability distributions:

A(S,H)=E(CorrectS, H=>" p§>. pd> gt gs, 9)
k=1 j=1 i=1
whereH is the hypothesis set. The superscki$ added to the probabilities of obtaining

evidenced;, and to the posterior probabilities, to indicdtatttheir values assume a specific

vector k of possible priors. The summation is carried outrothe discrete set of prior



probability vectors, while multiplying by the prdiiity of each prior probability vector,
denoted byp“. Note that while the operation of the similarityuhistic (although not its
performance) is independent of the distributiopabdr probabilities, other rules need not be.
To model Bayes'’ rule, for instanags; in Eq. (9) is replaced b[yli}‘ .

The above analysis focuses on deterministic chaites. Although this is not the
place to develop theories of stochastic choice, dam be modeled by means of Monte Carlo
simulations ofA(SH) in which the vectors (e.g.s’, ms’, ds) are changed in the relevant
fashion. The role of error, for instance, can lmelebed by laying a noise distribution over the

similarity vector §), bias by systematically changing some valuehefsame vector, and a

trembling hand by random or even systematic chatugtree decision vectod§)".

We llustrate our analysis and some of its implaras with a simulation of the
likelihood heuristic, for which IikeIihoodsp(d/ h), rather than similarity judgments, are the
decision statistic. Likelihoods are often takenaagroxy for similarity (Villejoubert &
Mandel, 2002; Nilsson, Olsson & Juslin, 2005) dmel tepresentativeness heuristic has even
been interpreted as being equivalent to the likelthheuristic (Gigerenzer & Murray, 1987)
This analysis, therefore, can provide us with s@rpectations about when the similarity
heuristic is likely to perform well, and when itliyperform poorly.

We consider a simple “binomial balls in urns” eoviment, such as the one adopted by

Grether (1980, 1992) and Camerer (1987). Imaguteurns (the hypotheses), denotednd

B, each containing red and white balls in known prtpns, denotedR, andRg, that is,
H ={R,, R} . The decision maker obtains a random samplebafllS drawn from an unseen
urn, and must then bet on whether it was drawn ftomA or B. Corresponding to each

possible sample, e.g., d; ={RRWRV}’, and each hypothesis, there is a
likelihood,|; :p(dj/h), which can be computed from the binomial distidut The

decision statistic vector is the vector of likeltus I =[IAJ-,IBJ-]. Each such vector is



transformed, by means of Eg. (4) and (5), into aisien vector dli, equal to

[1 0 ifly>lg, [3 %] ifly=lg,and[0 1 ifl,<ly. The probability of a correct
choice is obtained by pre-multiplying this decisiwactor by the posterior (Bayesian)

probability vector, to givé\(lj,H,p,dj). The overall accuracy of the likelihood

heuristic,A(L, H,p), is obtained by computing the probability of catrehoices for each

sample, weighting each of these probabilities ®yghobability of obtaining the sample, and
then summing these weighted probabilities.

Table 1 shows the results of this analysis. Tpheaow shows hypothesis sets, chosen to

represent a wide range of differences between ptipok. WhenH :{.5,.5} the populations

have no distinguishing characteristics, while Wh‘énz{.9,.} they look very different. In

the identification of birds, a population of houggarrows and Spanish sparrows is close to

the first case, while house sparrows and sparravkéiare like the second. The first column

in the table gives the prior probabilities for eah, p' = p,, ps] . The final row in the table

presentsA(L, H ,p) , the average accuracy of the likelihood heurifsticeach hypothesis set.

Because the likelihood heuristic, like the simtkarheuristic, is not influenced by prior
probabilities this value is the same for all calists column. The values in the middle cells

show the incremental accuracy from using Baye< inktead of the likelihood heuristic,
given each vector of priors, i.&\(B, H,p) - A(L,H,p).

If the likelihood heuristic is a good proxy for tksémilarity heuristic, this analysis
indicates when the similarity heuristic is likely perform well relative to Bayes’ rule, and
when it will perform poorly. These conditions welescribed formally by Edwards, Lindman
& Savage (1963). Roughly, they are that (a) thkelihoods strongly favor some set of
hypotheses; (b) the prior probabilities of thespdiljeses are approximately equal; and (c)
the prior probabilities of other hypotheses nevarormously’ exceed the average value in

(b). In Table 1, condition (a) becomes incredgirapplicable when moving from left to



right, and condition (b) when moving from bottomtep”. If we replace ‘likelihood’ in (a)
with ‘similarity’, then these are also the conditsoin which the similarity heuristic is likely to
perform well. Likewise, when the conditions are neet, the similarity heuristic will do

poorly.

-- Table 1 about here —

The Experiment

We investigated how well the similarity heuristierfporms as a choice rule, and
whether people actually use it. In four experimaérbnditions, judgments or choices were

made about two populations and a single sampl@ardee groups assessed the similarity of
the sample to the populations (a single estimatespd, h)-  d f)), or chose the

population from which the sample was most likelyh&we been drawn.
The populations and samples were, like those inHBlikel's (1974) study, drawn from

a trinomial environment. Within this environmente \adopted a representative design. Two
populations (hypotheses) were generated using d@omansampling procedure. The
populations used were the first 240 drawn using pindocedure, which were randomly paired
with one another. A random sample was then drawimn replacement, from one of the
populations in the pair, and the first sample drdmm each pair was the one used in the
experiment. The populations and samples were stesvseparate elements arranged in
random order, as shown in Figure 2, and not ifdhm of summary statistics. We call each

set of populations and sample a triple.

-- Figure 2 about here --

We also considered the relationship between andithigarity heuristic and the use of

prior probability information. As discussed in 8ec 2 above, the similarity heuristic makes



the same choice as Bayes'’ rule whenever

sgis(d.h)-db)]=soh 6 ) bAH- pH (p/d].  Since the similarity

heuristic disregards prior probabilities, it canade to error when these are not
equa(p(h)i p( Q)) In the experiment we chose the population frohictv the sample

was chosen with a (virtual) throw of the dice, wttior probabilities of 1/6 and 5/6. One

choice group had knowledge of the prior probak#itiwhile another group did not.

Method

Subjects

We tested 160 participants, all members of the bandgchool of Economics
community. In return for their participation, resglents received a £2 ($4) voucher for
Starbucks.

Materials

The materials were based on 120 triples, each demgrtwo populations and one
sample of red, yellow and blue rectangles. Theufadjpn generating algorithm was as
follows. First, we chose a number between 0 an@ ft6m a uniform distribution and
specified this as the number of blue rectangledl (ta); next, we generated a number
between 0 and (100)- from a uniform distribution, and specified this the number of green
rectangles ). The number of yellow rectangles was therefgre00-b-g This yielded
populations with an average of 50 blue, 25 greah 2B1yellow rectangles. In this way we
generated populations that were, on average, cadpafsa large number of blue rectangles.
This is analogous to many natural populations, hictvthe modal member is of one type, but
in which alternative types are also relatively adtamt — such as the ethnic composition of
European and North American cities, or bird popaotet pretty well everywhere.

For each question, we randomly generated a papopfilations, one of which was
assigned a high prior of 5/6, the other a low padbrl/6. One population was chosen with

probability equal to its prior, and a sample of r@étangles was drawn (with replacement)



from this population. We used the first 120 stinselts generated, and they were presented in

the order generated.

Procedure

Each respondent made judgments or choices forif#@sr so the 120 triples comprised
four replications of the basic design. Within eaeplication, there were 10 participants in
each of four groups: Th8imilarity group were told nothing about the context, andpsim
rated which of the larger sets of rectangles thallsrset was more similar to; the
Similarity/Populationgroup made similarity judgments, this time with kihiowledge that the
sets represented two populations and one sam@&hhice/No priorgroup guessed which
population the sample came from without knowledde pdor probabilities; and the
Choice/Priorgroup made the same choice but with this knowledge

In all conditions, respondents first read an inticidry screen which told them they
would be asked questions about ‘sets of rectangledwere shown an unlabelled example of
such sets. The instructions then diverged, depgrati the experimental condition. Those in
the Similarity group readrou will see two large sets and one small setthkefollowingand
were shown a triple like that in Figure 2, with theee sets labeled, respectivelylasge Set
1, Small SetandLarge Set 2 For each subsequent triple, they indicated wldcpe set the
small set was more similar to, using a 9-pointes¢hat ranged fromMuch more similar to
LS 1to Much more similar to LS.2

The instructions for the remainimggoups included the following description of theka
context:

We want you to consider the following procedurest-iwe randomly generated two

populations of yellow, red and blue rectangles, olwthiwe call Population 1 and

Population 2. [Here the Choice/Prior group received information about prior

probabilities, as described later...]



Then we drew a sample of 25 rectangles from eiBwpulation 1 or Population 2.
[Here an example was shown, with the sets labetedapulation 1 Sample and
Population 2]
We drew the sample this way:
We randomly drew one rectangle and noted its color.
Then, we returned the rectangle to the populatiod drew another one, until we
had drawn 25 rectangles.
The sample could have been drawn from either Paipald or Population 2.
Those in theSimilarity/Population group then judged the similarity of the sample to
Population 1 or Population 2 using the 9-point escthis time with the endpoints labeled
Much more similar to Population dndMuch more similar to Population 2
For those in the two choice groups the task waidicate which population they
thought the sample came from. This was done lkiolj one of two radio keys. The
instructions for theChoice/Priorgroup included the following information:
First[... as above].
Second, we rolled a die. If any number from 1 wate up, we drew a sample of 25
rectangles from one population, while if the numbeame up, we drew a sample of 25
rectangles from the other population.
In the following example we drew a sample from Patmn 1 if the numbers 1 to 5
came up, and drew a sample from Population 2 inrtheber 6 came ugHere an
example was shown, with five dice faces above Radjaui 1, and one above Population
2.] In the following example we drew a sample from Patmn 2 if the numbers 1 to 5
came up, and drew a sample from Population 1 ifrithmber 6 came ugHere the
example had one face above Population 1 and fiseeaBopulation 2].
Once the population was chosen, we drew the sathigevay|... the standard
instructions followed, ending with ...The sample could have been drawn from

either Population 1 or Population 2, depending ba toll of the die.



For each triple in th€hoice/priorgroup five dice faces were above the high prigrypation
and one face above the low prior population. Theutation number of the high prior
population was randomized.

In all conditions we recorded the time taken tdena choice or similarity judgment.

Results

How reliable and consistent are judgments of sirtjla

For similarity to be a reliable and valid basis foaking probabilistic choices, there
must be some “common core” underlying the simyajitdgments made by different people
and in different contexts. We measured this cgrevaluating the inter-context and inter-
subject consistency of similarity judgments. Theasze four sets of 30 triples, each of which
received similarity judgments from 20 subjects, #ach from the Similarity and
Similarity/Populationgroups. For each set of triples, we computedntkan inter-subject
correlation, both within and between experimentalgs. These are shown in Table 2. As
can be seen, the mean inter-subject correlationhigdis(overall ranging from .71 to .79) and
there was no appreciable reduction in this valuemndittention was restricted to correlations

between subjects in different groups (ranging fr6éto .79).

-- Table 2 about here —

Given the high correlation between individual jodnts, it is not surprising that the
correlation between thaveragesimilarity judgments for the 120 questions wasaxely
high (.95). Moreover, even the mean similaritygoménts in the two groups were almost
identical (5.06 vs 5.05), indicating that in botinditions the scale was used in the same way.
Finally, to anticipate the next section, the prajpor of correct choices predicted by both
measures of similarity was almost identical. We dtarted two logistic regressions, using
similarity ratings to predict the optimal Bayesiamice (we will call thiBayesChoice The

percentage of correct predictions was 86% for b®immilarity groups, and these were



distributed almost identically across both Popalai 1 and 2. Because the two similarity
measures are statistically interchangeable, wellyswegport results from combining the two
measures.

Overall, these analyses show that the judgmenggrofarity in both contexts contained
a substantial common core. We conclude, therefbag similarity judgments are reliable. We

next turn to the question of their validity as aibdor probabilistic choice.

How accurate is the similarity heuristic?

We simulated the performance of the similarity I&ior in two ways. First, we
examined the correlation between the 9-point siitylaating and the option that would be
chosen by an optimal application of Bayes’ rulen@edBayesChoice Figure 3 shows the
proportion of timesBayesChoiceequals Population 2, for each level Similarity. This
proportion increases monotonically in &shaped pattern, with virtually nBopulation 2
options predicted whe8imilarity=1 and almost 100% whe8imilarity=9. The correlation

betweenndividual similarity judgments anBayesChoicés .76.

—Figure 3 about here --
We also compared the accuracy of the similarityriséo with that achieved using
Bayes’ rule and the likelihood heuristiBayesChoiceand LKChoicg. We simulated the

heuristic using the principles described previousifythe Similarity rating was less than 5
(i.e., implying s(d, h)> { d h)) then predict a choice of Population 1, if it guel to 5 then

predict either population with probability ob, otherwise predict Population 2 (we use
SimChoiceto denote these individual simulated choiceS)mchoicecorrectly predicted the
population from which the sample was drawn 86% h# time, compared to 94% for
LKChoiceand 97% foBayesChoice

Because similarity is a psychological judgmentsit unlike likelihoods and prior

probabilities, prone to error. To obtain a loweerjudgment of similarity, we took the mean



similarity judgment for each question and applied decision rule to this mean (i.e., if mean
Similarity < 5 choose Population 1, etc.). We denote thessceh Simchoice/A(for
aggregate). Relative t8imchoice usingSimchoice/Aincreased the correlation between the
similarity heuristic andBayesChoicdrom .76 to .85, and increased overall accuraomfr
86% to 92%.

In this context, therefore, the similarity heudstichieves a high level of accuracy when
making probabilistic choices. But this does not destrate that people actually take the

opportunity to use similarity when making choic&%is is what we evaluate next.

Do people use the similarity heuristic?

Similarity/Choice agreement For each respondent in the two choice groups, we
compared the choices they made to the predictib&snachoice/A Figure 4 shows, for each
respondent in theChoice/No prior and Choice/Prior groups, the proportion of correct
predictions. There was an extremely good fit betwactual and predicted choices: an
average of 89% predictions in thi® prior group (Median 92%), and 86% in tReior group

(Median 90%).

—Figure 4 about here --

This is not an irrefutable demonstration that peae the similarity heuristic, since
both choice and similarity judgments are also higtdrrelated withBayesChoiceleaving
open the possibility that the similarity/choiceatgénship might not be causal (i.e., similarity
determines choice), but merely due to the use ofth&n choice rule (or rules) that is
correlated with both similarity and Bayes rule. Werefore conducted two additional
analyses to consider whether the similarity helgrigtedicts choice beyond that predicted by
BayesChoice First, we conducted a logistic regression inclhindividual choices (in both

the Choice/No priorand Choice/Prior conditions) was regressed on the mé&imilarity



p(d/h)

rating, the normalized likelihood raticNLKR) defined as—————="~, and the prior

1+p(d/h)’
probability of Population 2. The model was chossing a forward selection procedure
(probability for entry = .10., for removal = .15)n both analyses, medimilarity was the
most significant predictor in the final model. Tlbgits (log odds) for the final models were:
Choice/No-prior 4.03 — 0.63 Similarity — 2.32 NLKR
Choice/Prior  5.51 — 0.89 Similarity — 2.10 Prior

All coefficients were highly significant (p-valuerfWald statistic < .0001), and classification
accuracy was 88% for thido prior group and 87% for th@rior group. This is strong
evidence that the similarity heuristic was beingduby both groups. Separate regressions
including only Similarity as an explanatory variable supported this view asgification
accuracy was reduced by less than 1% in both groups

Finally, to provide the strongest possible testomaduct a further analysis relating
individual similarity judgmentgo individual choices. Because we did not collect similarity
judgments and choices from the same respondentgreated “quasi-subjects,” simply by
placing the individual responses in all four coiagis into four columns of our data file, and
then analyzing the relationships between condit@ssf they had been collected from the
same respondent. We lined up, for instance, thgorese from the first respondent who made
a similarity judgment to one item, with the firgspondent who made a choice to that item,
and so forth. Our reasoning was that if the sintyldneuristic is robust to being tested under
these unpromising circumstances, it will surelyrbbust to tests when both choices and

similarity judgments come from the same respondent.

-- Table 3 about here --



We conducted two correlational analyses of these, s shown in Table 3. First, we
looked at the first order correlation betweBimchoice Simchoice/PopChoice/Prior and
Choice/No prior These were, as can be seen in Table 3, moderaigh (O .6) and
overwhelmingly significant. This indicates thaethelationship found with the aggregate
similarity judgments does not vanish when they disaggregated. We then conducted the
same analysis, but this time partialling out thedeernate choice predictorsL. KChoice
BayesChoiceand thePrior — these predictors are all highly intercorrelated Wwe included
them to squeeze out the maximum predictive powke partial correlations were reduced,
but all remained positive and significant. Thuslividual similarity judgments made by one
respondent were able to robustly predict the imtial choices made by another respontient

Response times A further line of evidence that choice is based the similarity
heuristic comes from the pattern of response tifRds), which suggest that both choices and
similarity judgments are driven by the same psyohichl process. Figure 5 is a boxplot
showing the distribution of medidRiTsfor each triple, for all four conditions. Thisasis the
averageRT and its distribution and its distribution, is apximately the same for all
conditions, an observation supported by a nonfogmt  ANOVA

(F(3, 357)= 1.7p> .1).

—TFigure 5 about here —



Table 4 shows correlations between medRda for all triples. All the relationships

are highly significant <.0001,n= 12() and, more importantly, correlations within

response categoriesSitnilarity with Similarity/Population and Choice/No prior with
Choice/Prior,Meanr = .70) are close to those between categoBasilarity with Choice
Meanr=.65). This occurs despite an undoubted level ethimd variance due to the different
response formats in the two categories (a choitedas two radio keys versus rating on a 9-

point scale).

-- Table 4 about here —

Moreover, choice response times show a relationtegp should be expected if
similarity judgments are the basis for choice. Whkiee sample is equally similar to the two
populations (i.e., similarity judgments are clogétte scale midpoint) it also takes longer to
choose which population it came from. Figure 6 plitte median response time for all 120
questions against the average Similarity judgmentefach question, along with the best
fitting quadratic function. In both cases this dtion revealed the expected significant

inverted-U functiof.

-- Figure 6 about here --

Overall, therefore, analysis of the responses nzadethe time taken to make them

closely fit what we would expect if choices aredzhen the similarity heuristic.

How is prior probability information used?

Consistent with much earlier research (e.g., Gigage Hell & Blank, 1988; Fischhoff,
Slovic & Lichtenstein, 1979), we found that priaopabilities influenced choice in the right
direction but were underweighted. Respondents ha Ghoice/Prior condition were

significantly more likely to choose the high pritem than were those in tl@&hoice/No Prior



condition (76% versus 71%F (1, 119)= 20.4.e? = .146p< .0(), although they still chose

it at a lower rate than the actual prior probapiiR3%, or 5/6). Our design enabled us to go
further and determine whether knowledge of priababilities improved choice, and more
generally whether the knowledge was used stratibgica

Knowledge of priors did not increase accuracy, Whi@s 86.3% in th€hoice/Prior

condition and 86.1% in th€hoice/No priorcondition (F(1, 119)< 1). This suggests that

knowledge about prior probabilities was used iwgdffitly. This is illustrated in Figure 7,
which shows, for both choice groups, the proportiériimes the correct choice was made
when the sample was drawn from high prior popufatiersus when it was drawn from the
low prior population (we will say, when the priar gonsistentandinconsistent When the
prior was consistent, th€hoice/Prior group was a little more accurate than @teice/No
prior group (90% versus 87%), but when it was inconsistiaey were much less accurate
(74% versus 82%). This was reliable result: an AMQwith the group as a within-triple

factor, and consistency of priors as a betweetetripctor, revealed a highly significant
interaction, F(1, 118)= 17.7,£? = .13Ip< .0(. Since the prior was consistent 83% of the

time, the small benefit it gave when consistent e@mterbalanced by the larger cost when it

was inconsistent.

-- Figure 7 about here --

A strategic way to combine knowledge of prior probtes with similarity data is to
go with the high prior option when the sample igaly similar to both populations, but to go
with similarity when it is highly similar to onlyr@ population. This can be seen by referring
to Table 1. knowledge of priors is less useful wiiee environment is represented by the
columns to the right, when the two hypotheses &gkhh distinguishable, than when it is
represented by the columns to the left. We ingastid to what degree respondents were

strategically putting more weight on priors whenyttiound themselves in situations like the



left rather than the right columns.  The fact tipmrformance was not improved by
knowledge of priors suggests they were not usirgy itiormation strategically, and we
confirmed this by examining the difference betw#enproportion of time the high prior item
was chosen in th€hoice/Prior versusChoice/No priorgroups, as a function of similarity
judgments. We defin®rEqHi and NoPrEgHi as, respectively, the proportion of times the
Choice/PriorandChoice/No priorgroups chose the high prior option for each tripted then
computed aproportional shift statistic(PSS for each triple, which was an index of the

increase in choices of the high prior item in res@oto having that information.

PreEgHi — NoPrEqHi
1- NoPrEqHi
PreEgHi — NoPrEqHi
1- PrEqgHi

if PrEqHi> NoPrEqHi

PSS=

if PrEqHi< NoPreEqHi

The subscript indexes the triple. PSSranges from -1 to 1, the difference between the
proportion of choices of the high prior option mettwo choice conditions, divided by the
maximum possible proportion of such choices. Banple, if for one triple 90% of the
Choice/Prior group chose the high prior item, as opposed to 8%he Choice/No prior

8

group, thenPS$ would be =.5. On the other hand, if 90% in tl&hoice/No prior

group chose the high prior item while only 80%hie €hoice/Prior group did, thelPS$S=(-

.5). Becaus®SScannot be computed if bofrEqHi andNoPrEqgHiare equal to 1, which
occurred in 33 cases, we obtained 87 usable vatiddSS with a mean value of .13
(SD=.62. The fact that the number is positive indicatespondents were more likely to

choose the high prior item when they knew which ibivéas, and the specific value obtained

can be interpreted as follows: for the averag#eyiif the high prior item was chosen by a
proportionp of those in theChoice/No priorgroup, then it was chosen by+.13(1— p) of

those in theChoice/Priorgroup.



Figure 8 shows the 87 valuesRbSas a function of the mean similarity rating foclea
triple, along with the best fitting quadratic fuiact. If knowledge of prior probabilities was
being used strategically, this best-fitting funotiwould have an inverse-U shape, indicating
that prior probabilities had their greatest infloerwhen the sample was equally similar to
both populations. In fact, the quadratic functi@s the opposite shape to this hypothesized
inverse-U, although it accounts for relativelylditof the variance iPSS(RP=.021). That is,
while knowledge of population prior probability didcrease the tendency to choose the high
prior item, it did so indiscriminately — respondeim the Choice/Prior condition put equal
weight on the prior when similarity was undiagnogtihen knowledge of the prior would be

useful) than when it was diagnostic (and the kndg#ewas relatively useless).

—TFigure 8 about here —

Discussion

Willard Quine famously described the problem afuiation as being a question about
the use of what we call the similarity heuristic:
For me, then, the problem of induction is a probout the world: a problem of how
we, as we now are (by our present scientific lightsa world we never made, should
stand better than random or coin-tossing chancesrafng out right, when we predict
by inductions which are based on our innate, sifiesmty unjustified similarity
standard. (Quine, 1969, p. 127).
Our research can be viewed as an investigationjiistonow much better than ‘random’ are
these predictions, and our findings are that threy @& least in one context, very much better.
In the environment in which our respondents fouheéniselves, individual similarity
judgments were able to come out right 86% of theeticompared to coin-tossing chances of

50%. Moreover, we also found strong evidence fieiple were using ahared if not



necessarily innate, similarity standard to makaer ttieoices — the similarity judgments made
by one group proved to be an excellent predictobath the similarity judgments and the
choices made by other groups.

As we noted earlier, although the similarity heticisis a subset of the
representativeness heuristic first described bynéatan and Tversky (1972), we modeled
our approach on the program of a different schdotesearchers. This program, well-
summarized in Goldstein and Gigerenzer's (2002)irs&inarticle on the recognition heuristic,
is to:

design and test computational models of [cognithelristics that are (a) ecologically

rational (i.e., they exploit structures of informeat in the environment), (b) founded in

evolved psychological capacities such as memorythederceptual system, (c) fast,
frugal and simple [andccuraté enough to operate effectively when time, knowkedg
and computational might are limited, (d) preciseowgh to be modeled

computationally, and (e) powerful enough to modethbgood and poor reasoning.

(p.75)

In the rest of this discussion we comment on thaticeship between this program and our

own investigations.

Ecological rationality

The concept of ecological rationality is best dieat by the means of the lens model
of Brunswik (1952, 1955; c.f. Dhami et. al, 2004 )iamiliar modernized version of which is
shown in Figure 9 (e.g., Hammond, 1996). The junlgdecision maker seeks to evaluate an
unobservable criterion, such as a magnitude orgitity. While she cannot observe the
criterion directly, she can observe one or mortibfal cues or indicators (denotédn the
figure) that are correlated with the criterion. dgments are based on the observable
indicators, and the accuracy (or ‘ecological radidy’) of those judgments is indexed by
their correlation with the unobservable varialdi@r the recognition heuristic, the judgment is

recognition (“I have seen this before”), which isvalid predictor of many otherwise



unobservable criteria (e.g., size of cities, comypaarnings), because it is itself causally

linked to numerous indicators of those criterig(eappearance in newspapers or on TV).

-- Figure 9 about here —

The ecological rationality of the similarity heuitsarises for similar reasons. Although
researchers do not yet have a complete understan@linow similarity judgments are made,
we do know that the similarity between a casad another case or clas®r B is a function
of shared and distinctive features and charadesigsee Goldstone & Son, 2005, for a
review). Likewise, the probability that is a sample from a given population is closely
related to the characteristics thashares and does not share with other membersabf th
population. It is perhaps not surprising, therefahat similarity turns out to be such a

reliable and valid index of class membership.

Evolved psychological capacities

Both the recognition and similarity heuristics watkrough a process of attribute
substitution (recognition substituted for knowledgfemagnitude, similarity substituted for
knowledge of posterior probabilities), and are @ffee because of the strong correlation
between the attribute being substituted for andsitgstitution. The reason for this high
correlation is because both the capacity to re@egaind the capacity to detect similarity are
both products of natural selection.

The ability to assess the similarity between tigects, or between one object and

the members of a class of objects, is central yoaah of generalization (e.g., Attneave, 1950;
Goldstone & Son, 2005). As Quine (1969) obsertedicquire even the simplest concept
(such as ‘yellow’) requires ’a fully functioning rsse of similarity, and relative similarity at
that:a is more similar td than toc’ (p. 122). Some such ‘sense of similarity’ is onttedly
innate. Children are observed making similaritygonents as early as it is possible to make

the observations (e.g., Smith, 1989), and it is @hlhe ‘automatic’ cognitive processes that



remain when capacity is limited by time pressuredivided attention (Smith & Kemler-
Nelson, 1984; Ward, 1983). Like recognition andaik therefore, the ability to judge
similarity is a skill we are born with and can dipht minimal cognitive cost whenever it can
serve our purposes. The similarity heuristic, likker fast-and-frugal heuristics, operates by
‘piggy-backing’ on this innate ability when probktyi judgments are to be made.

Although we have spoken blithely about ‘similafjitglgments’ we recognize that these
judgments are embedded in specific contexts. Rstance, if asked to judge the similarity
between a celery stick, a rhubarb stalk and aneapipé judgmens(apple, rhubarbwill be
greater thars(celery, rhubarb)f the criterion is ‘dessert’ than if it is ‘shapelndeed, the
concept of similarity has been widely criticizedchase of this. Medin, Goldstone and
Gentner (1993) give a concise summary of thisoeréi

The only way to make similarity nonarbitrary isaonstrain the predicates that apply or

enter into the computation of similarity. It is #geconstraints and not some abstract

principle of similarity that should enter one's @aets of induction, categorization, and
problem solving. To gloss over the need to ideriifgse constraints by appealing to

similarity is to ignore the central issue. (p. 255)

This criticism is related to the question of whethige concept of similarity can be fully

defined is a context free manner. It is likelgttit cannot. The criticism does not, however,
bear on the question aoffhether people make similarity judgments, nor whether ¢hos
judgments are reliable. It is clear that peopleadd the judgments are. In our study, the
correlation between average similarity judgmentglififerent contexts was extremely high

(.95), but this is not an isolated result — everstindies designed to distinguish between
theories of similarity, similarity judgments areghly correlated across conditions. For
instance, in a study using a systematic design @motistrate asymmetry in similarity

judgments, Medin et. al. (1993) obtained the exgmcsymmetries, yet the correlation
between the average similarity judgments for theespairs in different contexts was .91 (see
their Table 1 for data; studies reported in Tverskyd Gati, 1978, all yield the same

conclusions). It appears that however people nmhké judgments of similarity these



judgments are (a) highly consistent across contaxtisacross people, (b) good predictors of
the likelihood that a sample comes from a popuhatand (c) actually used to make these

judgments of likelihood.

Fast, frugal, simple and accurate

These criteria concern thelative performance of heuristics. We can readily suggest
ideal benchmarks for each criterion, but the stethétaat must be reached for us to say that
the heuristic is frugal or fast or accurate is dtendor judgment and context. We will give an
account of the performance of the similarity hdigi®sn some measures of these criteria,
along with an indication of our own opinion aboutather the heuristic reaches one standard
or another.

When measuring the speed of a decision processppiimum time is always O
seconds. No actual process can achieve this,heutine taken to make a judgment of
similarity was typically about 6 seconds (as shawnFigure 5). Although we cannot
benchmark this time against other tasks, we suggisstery little time given that it involved
two similarity judgments, a comparison between thema, @ physical response on a 9-point
scale.

We can assess simplicity and frugality by compatimg similarity heuristic to the
process of making judgments by means of Bayes'. rude quantitative estimate can be
derived by drawing on the concept of Elementarpimiation Process (EIP), introduced by
Payne, Bettmann and Johnson (1993), to measureffidnt required to perform a cognitive
task. An EIP is a basic cognitive transformatiomperation, such as making comparisons or
adding numbers. Consider the simple case, asrirexperiment, of a choice between two
hypotheses given one piece of data. The similagtyristic, as described in Eq. (3), requires
three EIPs: two judgments of similarity, and opnenparison between them. To apply Bayes’
rule, in contrast, requires seven EIPs, as ingdecged form of Eq. (2): four calculations (two
priors and two likelihoods), two products (multgation of priors by likelihoods) and one

comparison (between the products). Using this areaBBayes’ rule is more than twice as



costly as the similarity heuristic Moreover, not all EIPs are equal: if it is hartie multiply
probabilities and likelihoods than to make ordimamparisons, and harder to estimate
likelihoods than to make judgments of similarityen the advantage of the similarity heuristic
grows. Clearly, the similarity heuristic is frugalative to the Bayesian decision rule.

The similarity heuristic also performed much bettgain chance and proved to be a
reliable choice rule. It is worth observing hdrattthe location of one source of disagreement
between researchers in the two heuristics ‘tratitiocs exemplified by the contrast between
the accuracy achieved in our study, and that aediéy the earlier study of Bar-Hillel. Bar-
Hillel (1974) observed accuracy of 10%, based @mugrdata, while the corresponding value
in our study is 92% (for group data, 86% for indival judgments). Moreover, this value of
92% is achieved despite the complicating factom qfrior probability not known to those
making similarity judgments, and to a less transpaiway of presenting information (as
disaggregated populations and samples rather tiaghg). The difference in studies is found
in the choice of design. We drew on the idealshef representative design described by
Brunswik (1955), and argued for by Gigerenzer antti§&ein (1996). Once we established a
random sampling procedure, we did not further camnstour samples to have any specific
properties. Bar-Hillel (1974), on the other hadéiberately chose items for which the
theorized decision-rule and Bayes’ rule would vyieliferent choices. If we took Bar-
Hillel's study as providing a test of the accuraafy the similarity heuristic, we would
conclude that it was highly inaccurate. This woali/iously be an illegitimate conclusion
(and one that Bar-Hillel didot draw).

There is an additional methodological lesson tat@vn from a comparison between
Bar-Hillel's (1974) study and ours. Although thermative performance of the similarity
heuristic differed greatly between studies, theréedo which the heuristic predicted choice
did not. Bar-Hillel reported her data in the foafna cross-tabulation between choices based
on the average similarity judgment for each trifite her case a two-point scale) and the
majority choice for triples. In Table 5 we showr logiginal data and compare it to the same

analysis conducted for our data. The patternesilts are readily comparable, and lead to



the same conclusions not just about whether thasity heuristic predicts choice, but even

about the approximate strength of the relationbkigveen choice and judgment.

-- Table 5 about here —

Precise enough to be modeled computationally

The similarity heuristic is also precise enoughbtomodeled computationally. In an
earlier section we provided a general mathematiwadel of the similarity heuristic. It was
not the only possible model; in fact, it was gimplestone. However, it turned out to be a
very good model in the context of our experimem/hen similarity judgments made by one
group are used to predict the choices of anotrmrgyrthey predict those choices remarkably

well.

Powerful enough to model both good and poor reaspni

All heuristics have a domain in which their applioa is appropriate, and when they
step outside that domain they can go wrong. We ladready considered the performance of
the likelihood heuristic as a proxy for the simitharheuristic, and suggested the similarity
heuristic will be most accurate when the likelihdwristic is, and inaccurate when it is not.
Specifically, and as shown formally by Edwardsle{#63), the similarity heuristic can go
wrong when some hypotheses have exceedingly lowrgpriand when the similarity
judgmentss(d,h)do not strongly differentiate between hypotheses.

A fascinating recent case in which the ideal ctioiis arenot met, and the similarity
heuristic (probably coupled with some wishful thitdg leads to some unlikely judgments is
found in the scientific debate surrounding the tiieation of some observed woodpeckers,
which might be of the ivory-billed or pileated spc(White, 2006; Fitzpatrick et al, 2005).
The two birds arevery similar. Careful scrutiny can distinguish thentthaugh to the
untutored eye they would be practically identicihe prior probabilities of the two

hypotheses, however, are not even remotely closeqt@l. The pileated woodpecker is



relatively common, but the last definite sightirfgilee ivory billed woodpecker was in 1944,
and there is every reason to believe it is extfnet, prior~ 0). It is interesting to observe,
however, that the debate over whether some repsigétings of the ivory-billed woodpecker
are genuine involves a ‘scientific’ applicationtoe similarity heuristic (focusing on issues
like the size of the bird and wing patterns), wittle explicit reference to prior probabilities,
even by skepti¢s

The ivory-billed woodpecker case is, however, @amahbteristic and understates the
power of the similarity heuristic even when priare extremely low. In the case of the ivory
billed woodpecker, prior probabilities should pkych a large role because of a conjunction
of two factors: similarity is practically undiagriizs (only very enthusiastic observers can
claim that the poor quality video evidence looKstamore like an ivory-billed than pileated
woodpecker), and the least-likely hypothesis hasrg low prior probability. The situation is
therefore like that in the bottom left-hand celllable 1.

But suppose the situation were different, and wii&prior probability is very close to
zero, similarity is very diagnostic. You are otroing one day in a dry area a long way
from water, an area in which ydunowthere are no swans, which only live on or veryrnea
water. Yet you stumble across a bird that is \s&imyilar to a mute swan: It is a huge white
bird with a black forehead and a long gracefullyed neck; its feet are webbed, it does not
fly when you approach but raises its wings in aratizristic ‘sail pattern’ revealing a
wingspan of about 1.5 meters. Even though ther gmiobability of seeing a swan in this
location is roughly O (i.e., this is what you wouddy if someone asked you the probability
that the next bird you saw would be a swan), yoll ngt even momentarily entertain the
possibility that this is one of the candidates hgwa very high prior (such as a crow, if you
are in the English countryside). We suggest ttagtraveryday cases are like the swan rather
the woodpecker — similarity is overwhelmingly diagtic, and is an excellent guide to choice
and decision even in the face of most unpromisimgyyg§ This is why, to return to Quine, we

can do so well using our ‘innate, scientificalhjustified similarity standard.’
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Table 1. Accuracy from using the likelihood heuristic andremental
accuracy from using Bayes’ rule

p’: Prior H: Hypothesis set
Probability {55} {6,4} {7.3} {8,.2} {9.1}

[.5,.5] .00 .00 .00 .00 .00
[.6,.4] .10 .00 .00 .00 .00
[.7,.3] .20 .06 .00 .00 .00
[.8,.2] .30 13 .04 .00 .00
[.9,.1] 40 23 .09 .03 .00

[.95,.05] 45 27 12 .04 .00

A(L,H.p) .50 .68 .84 .94 .99

To obtain Bayesian accuracy for each cell, addiniceemental
accuracy tA(L,H,p). For instance, when={6,.4, and

p'=[.8,.9, the accuracy of the likelihood heuristic is .6& ahe
accuracy of Bayes'’ rule i8(B,H,p)=.68+.13= .8.



Table 2: Mean inter-subject correlation between similariiggments,
both intra- and inter-context

Set Similarity  Smilarity/ - Inter- Overall
Population context

1 79 .69 .68 71

2 .67 .76 72 72

3 .85 .73 79 .79

4 .76 .69 72 72




Table 3: Correlations between individual choices by “quadijects” in the four
conditions (N=1200). P<.001 except *p<.01.

Similarity/  Choice/No  Choice/

Population Prior Prior

_ Similarity 0.67 0.66 0.61

First-order Similarity/Population . 0.61 0.59

correlations

Choice/No Prior -- 0.61

LKChoice, Similarity 0.26 0.21 0.11
PrChoice and Lo )

- A2 *Q.
BayesChoice S|m|Iar|t¥/PopuIat|-on 0 0.07
Choice/No Prior -- 0.12

partialled out




Table4: Correlations between median RTs in the four coonddi

Similarity/  Choice/No  Choice/

Population Prior Prior
Similarity 0.66 0.51 0.68
Similarity/Population -- 0.63 0.76

Choice/No Prior -- 0.74




Table 5: A cross-tabulation between choices based on thageeimilarity
judgment and the majority choice for triples, inrBtllel’'s 1974 study and in ours

Bar-Hillel (1974) Our data
Choice Choice
PopL PopR Popl Pop?2
Similarity ﬁgg I|:_a 11 1% Similarity ngplz 543 20

¢=.75 ¢ =.90



Figure captions

Figure 1. Typical stimuli used by Bar-Hillel (1974The dashed line in Panel L is
not in the original.

Figure 2: Stimuli consisting of two populationsldfO rectangles and a sample of 25
rectangles.

Figure 3: The proportion of times that Populattowould be chosen by Bayes’ rule,
as a function of the 9-point similarity scale.

Figure 4: The proportion of correct choice pradits for each respondent in the two
choice groups.

Figure 5. Boxplots of median RT in the four coralhs.

Figure 6: Median response time plotted againstameeSimilarity judgment for both
choice conditions.

Figure 7: Accuracy (BayesChoice) as a functionarsfsistency between prior
probability and correct choice.

Figure 8: Proportional shift statistic (PSS) asiraction of the mean similarity rating
for individual questions.

Figure 9: Lens model adapted from Brunswik.
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Endnotes

' This is a further demonstration of the availabiliguristic in action. If the only probability judignts we can
remember are the ‘Linda’ or ‘Taxicab’ problem, thee might well overestimate the frequency with whétich
erroneous judgments are made.

" Gilovich & Griffin (2003, p.8) observe that ‘stied in this [heuristics and biases] tradition hpaél scant
attention to assessing the overall ecological itgliof heuristic processes...assessing the ecologalality of the
representativeness heuristic would involve ideirtiya universe of relevant objects and then cdirgjahe
outcome value for each object with the value ofdhe variable for each object... . This Herculeak tess not
attracted researchers in the heuristics and biesdition; the focus has been on identifying thescthat people use,
not on evaluating the overall value of those cues.’

" The term has been used before. Medin, GoldstodeGamtner (1993) use it to refer to the use oflsiity as a
guide to making ‘educated guesses’ in the facencedainty, a view which closely reflects our owrKahneman
and Frederick (2002) used the term as an altem&dhbel for the representativeness heuristic itself

¥ In a simulation study, we found only 0.3% of pbisistimuli have all four properties of Bar-Hillslsamples.

¥ Similarity is a complex judgment and in this paperdo not considerowit is assessed.For recent candidate
models of similarity judgment see Kemp, Bernsteid @aenenbaum, 2005, and Navarro and Lee, 2004.

"' The damping parameter adopted by Nilsson et @052see their Eq. (2)) can be incorporated byihicing a
further stage in the model, between the similaréigtor and maximum similarity vector.

V! Condition (c) is always applicable to our analysiace the prior probability of all hypotheseseastthan UrrA or
UrnBis 0.

Vil This analysis cannot be interpreted as showing moweh the similarity heuristic is contributing toaice.
Rather, similarity judgments wobkecausehey are highly correlated with the statisticasibgor choice and
therefore when we partial ouKChoiceandBayesChoicewe are also partialling out the factors that mialkkegood
decision rule. The analysis is rather a decisemahstration that we cannot say respondents areelytie
computing Bayesian posterior probabilities and oesiing accordingly.

" The linear function accounted for none of theasmce in median RT, and a cubic function yieldediidal fit to
the quadratic.

¥ This is a general result. If there arbypotheses to be tested, the similarity heuristlts on2n-1EIPs @
calculations and-1 comparisons), while the normative rule calls4orl EIPs @n calculationsp products, ana-1
comparisons).

¥ Much of the debate revolves around a fuzzy filmvitich a woodpecker is seen in the distance farctisds (e.g.
Fitzpatrick et al., 2005). Given the extremely |lpwor probability that any ivory-billed woodpecker alive, it
could be argued that even under its best interwatahis evidence coulshever warrant concluding that the
posterior probability is appreciably greater thenoz
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