
WP : 112    ISSN : 1749-3641 (online)  

 
The Similarity Heuristic 

 
 
 
 
 
 
 
 
 

Daniel Read 
Durham Business School 

Mill Hill Lane, Durham DH1 3LB, United Kingdom 
daniel.Read2@durham.ac.uk 

Tel: +44 19 1334 5454 Fax: +44 19 1334 5201 
 
 
 
 
 
 
 

Yael Grushka-Cockayne 
London Business School 

Regent’s Park, London NW1 4SA, United Kingdom 
ygrushka.phd2003@london.edu 

Tel: +44 20 7000 8837 Fax: +44 20 7000 7001 



The Similarity Heuristic 
 
 
 
 
Decision makers are often called on to make snap judgments using fast-and- frugal decision 

rules called cognitive heuristics.  Although early research into cognitive heuristics 

emphasized their limitations, more recent research has focused on their high level of 

accuracy.  In this paper we investigate the performance a subset of the representativeness 

heuristic which we call the similarity heuristic.   Decision makers who use it judge the 

likelihood that an instance is a member of one category rather than another by the degree to 

which it is similar to others in that category.  We provide a mathematical model of the 

heuristic and test it experimentally in a trinomial environment.  The similarity heuristic turns 

out to be a reliable and accurate choice rule and both choice and response time data suggest it 

is also how choices are made. 

 
Keywords:   heuristics and biases, fast-and-frugal heuristics, similarity, representative design, 

base-rate neglect, Bayesian inference 



A heuristic is a decision rule that provides an approximate solution to a problem that 

either cannot be solved analytically or can only be solved at a great cost (Rozoff, 1964). 

Cognitive heuristics are analogous ‘mental shortcuts’ for making choices and judgments. Two 

familiar examples are the availability heuristic (judge an event frequency by the ease with 

which instances of the event can be recalled; Kahneman and Tversky, 1973), and the 

recognition heuristic (if you recognize only one item in a set, choose that one; Goldstein and 

Gigerenzer, 2002).  Cognitive heuristics work by means of what Kahneman and Frederick 

(2002) call attribute substitution, by which a difficult or impossible judgment of one kind is 

substituted with a related and easier judgment of another kind. The recognition heuristic, for 

instance, substitutes the recognition of only a single option in a pair for the more costly 

process of searching for, selecting and evaluating information about both options.  A central 

feature of cognitive heuristics is that while they are efficient in terms of time and processing 

resources, they achieve this at some cost in accuracy or generality.  As an example, when 

events are highly memorable for reasons unrelated to frequency, the availability heuristic can 

overestimate their probability. 

Early research into cognitive heuristics emphasized how they could produce systematic 

biases (Kahneman, Slovic & Tversky, 1982).  Indeed, these biases were often the primary 

evidence that the heuristic was being used.  Later research has emphasized the adaptive nature 

of heuristics, emphasizing their capacity to quickly and efficiently produce accurate 

inferences and judgments (Gigerenzer & Todd and the ABC research group, 1999; Samuels, 

Stich & Bishop, 2002).  To use the term introduced by Gigerenzer and Goldstein (1996), 

heuristics are ‘fast-and-frugal’: they allow accurate decisions to be made quickly using 

relatively little information and processing capacity.    

As Gilovich and Griffin (2003) observe, however, this new emphasis has not been 

applied to the ‘classic’ heuristics first described by Kahneman and Tversky (1973).  One 

reason is that the two approaches to heuristics come from different research traditions that 

have asked different questions, and adopted correspondingly different methods.  The modal 

question asked by the earliest researchers was ‘do people use heuristic X?’, while those in the 



fast-and-frugal tradition started with ‘how good is heuristic X?’.  These two questions are 

answered using different research strategies.  The first strategy is a form of what Brunswik 

(1955) called a systematic design, the second related to what he called a representative 

design. In a systematic design the stimuli are chosen to permit the efficient testing of 

hypotheses; in the representative design the stimuli are literally a representative sample, in the 

statistical sense, drawn from the domain to which the results are to be generalized (Dhami, 

Hertwig & Hoffrage, 2004). 

If misinterpreted, the use of a systematic design can exaggerate the importance of 

atypical circumstances.  The experimental conditions tested are usually chosen so that 

different judgment or choice rules predict different outcomes, and since one of those rules is 

usually the normatively optimal rule, and the purpose of the experiment is to show that a 

different rule is in operation, the experiment invariably reveals behavior that deviates from the 

normative rule.  For instance, studies of the availability heuristic are designed to show that, 

whenever using the heuristic will lead to systematic under- or over-estimation of event 

frequency, this is what occurs.  Many early observers concluded that such findings showed 

evidence of systematic and almost pathological irrationality (e.g. Nisbett & Ross, 1980; 

Piatelli-Palmarini, 1996; Plous, 1993; Sutherland, 1992). The extent of the irrationality 

observed, however, may have been the result of the use of a systematic design, combined with 

an interpretation of the results from using that design as being typicali. If the goal is to 

measure how well a decision rule or heuristic performs, a more representative design should 

be usedii.  

In this paper we investigate the representativeness heuristic, one of the classic 

heuristics first described by Kahneman and Tversky (1972), who defined it as follows:  

A person who follows this heuristic evaluates the probability of an uncertain event, or a 

sample, by the degree to which it is: [i] similar in essential properties to its parent 

population; and [ii] reflects the salient features of the process by which it is generated.  

(Kahneman & Tversky, 1972 p. 431) 



The heuristic has two parts, one based on the similarity between sample and population, the 

other based on beliefs about the sampling process itself (Joram & Read, 1996).  The focus in 

this paper is on one aspect of Part [i], which we refer to as the similarity heuristiciii , according 

to which the judged similarity between an event and possible populations of events is 

substituted for its posterior probability. An example of this substitution is found in responses 

to the familiar “Linda” problem (Tversky & Kahneman, 1982). Because Linda is more similar 

to a ‘feminist bank-teller’ than a mere ‘bank-teller,’ she is judged to be more likely to be a 

feminist bank-teller (Shafir, Smith and Osherson, 1990).   

An important study, using a systematic design, of what we call the similarity heuristic 

was conducted by Bar-Hillel (1974).  Her subjects made judgments about sets of three bar 

charts like those in Figure 1, labeled L, M and R for left, middle and right.  The Similarity 

group judged whether M was more similar to L or R. The Likelihood of populations group was 

told that M represented a sample that might have been drawn either from population L or R, 

and judged which population M was more likely to come from, and the Likelihood of samples 

group was told that M represented a population that might have generated either sample L or 

R, and judged which sample was more likely to be generated from M.  If the similarity 

heuristic is used, all three judgments would coincide.  Bar-Hillel systematically designed the 

materials so that this coincidence could easily be observed.  All the triples had the following 

properties: 

1. Every bar in M was midway in height between the bars of the same color in L and R.  

2. The rank-order of the bar heights in M coincided with those in either L or R, but not 

both.  

3. When M was interpreted as describing a population and L and R were interpreted as 

samples, then the sample with same rank-order as M was the least probable. 

4. Likewise, when L and R were interpreted as populations and M as a sample, then M was 

less likely to be drawn from the population whose rank-order it matched.  

In other words, the stimuli were systematically designed to ensure that, under both 

interpretations of likelihood, the objective odds favored the same chart, which was not the 



chart with the same rank-order as M.  In Figure 1, sample M is more likely to be drawn from 

population R, and sample R is more likely to be drawn from population M, although the rank-

order of the bar-heights in M is the same as that of L.  Bar-Hillel correctly anticipated that 

both similarity and likelihood judgments would be strongly influenced by rank-order. 

 
 

—Figure 1 about here –  

 

Although this study is very elegant, for our purposes it has two shortcomings, both 

related to the fact that the stimuli were highly unusualiv.  First, the stimuli all had the same 

atypical pattern, which may have suggested the use of judgment rules that would not have 

been used otherwise.  For instance, the rule ‘choose the one with the same rank-order’ was 

easy to derive from the stimuli, and could then be applied to every case – in other words, the 

attribute ‘rank-order’ rather than ‘similarity’ could have been substituted for ‘likelihood.’  

This possibility is enhanced by the presentation of stimuli as bar charts rather than as 

disaggregated samples, and the use of lines to connect the bars.  Both features make rank-

order extremely salient. 

Moreover, the use of a systematic design means the study does not indicate how 

accurate the similarity heuristic is relative to the optimal decision rule, even for bar charts 

connected by lines.  When the majority similarity judgment is used to predict the majority 

choice in the Likelihood of Populations group, the error rate was 90%. But since only a tiny 

proportion of cases actually meet the four conditions specified above, this number is 

practically unrelated to the overall accuracy of the heuristic. Indeed, the fact that respondents 

make errors in Bar-Hillel’s study is highly dependent on the precise choice of stimuli.   In the 

illustrative stimuli of Figure 1, if the bar heights in L are slightly changed to those indicated 

by the dashed lines (a 5% shift from yellow to green), then the correct answer changes from L 

to R (the probability that R is correct changes from .41 to .65).      



One goal of the experiment described in this paper is to address the issues implied by 

this analysis.  First, we elicit choices and judgments of similarity in an environment in which 

the relationship between sample and population varies randomly.  Second, because we 

examine a random sample of patterns in this environment, we are able to assess the efficiency 

of the similarity heuristic.  Our method was deliberately designed to find a point of contact 

between the two traditions of research in heuristics – the early tradition exemplified by 

Kahneman and Tversky’s work, and the later tradition exemplified by the work of Gigerenzer 

and Goldstein (1996).  Our research shows there is no fundamental divide between these 

traditions.  As a first step, we describe a precise and testable model of the similarity heuristic.    

 

A Model of the Similarity Heuristic 

The similarity heuristic is a member of what is perhaps the broadest class of decision 

rules, those in which the decision to act on (or to choose, or to guess) one hypothesis rather 

than another is based on the relative value of a decision statistic computed for each 

hypothesis. In the most basic version of this class, one hypothesis is chosen because the 

decision statistic favors that hypothesis more than any other and, if two or more hypotheses 

share the same maximum decision statistic, one is chosen using a tie-breaking procedure.  In 

the context of such models, a wide range of decision statistics have been proposed.   Some of 

these are objective relationships between the data and the hypotheses.  Amongst these are the 

likelihood, and the posterior probability computed from Bayes’ rule.  These decision statistics 

are particularly important because they constitute the theoretical benchmark for the 

performance of a decision rule.   Several other “objective” decision statistics are those 

discussed recently by Nilsson, Olsson and Juslin (2005) in the context of probability 

judgment.  Indeed, two of these are operationalizations of ‘similarity’ based on Medin and 

Schaffer’s (1978) context theory of learning, comprising an adaptation of one interpretation of 

the representativeness heuristic originating in Kahneman and Frederick (2002), and the other 

is their own exemplar-based model.  The decision statistic can also be – and indeed when 



making choices typically is – a subjective relationship between data and hypothesis.   

Recognition is such a subjective relationship, where the recognition of an object can be used 

as the basis for making a judgment such as ’the object is large.’  The feeling or judgment of 

similarity between data and hypothesis is another subjective relationship, and the one we 

focus on. 

We will illustrate with a simple decision problem.  Imagine you are birdwatching in a 

marshy area in South England, and hear a song that might belong to the redshank, a rare bird 

whose song can be confused with that of a common greenshank.  You must decide whether or 

not to wade into the marsh in hope of seeing a redshank.  In normative terms, your problem is 

whether the expected utility of searching (s) for the redshank is greater than that of not 

searching (s ): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p r d u s r p g d u s g p r d u s r p g d u s g+ > +  , (1) 

where ( )p r d  is the probability it is a redshank given the data (i.e., the song), ( )p g d  is the 

probability it is a greenshank given the data, ( )u s r  is the utility of searching given that it is 

a redshank, and so on.  The probabilities are evaluated with Bayes’ rule, which draws on 

likelihoods and the prior probability of each hypothesis, ( )p r  and ( )p g .  If we substitute 

the multiplication posterior = prior × likelihood into (1), and rearrange terms, the decision 

rule is to search if 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

p r p d r u s g u s g

p g p d g u s r u s r

−
>

−
  (2) 

If all the utilities are equal, this reduces to searching if ( ) ( ) ( ) ( ).p r p d r p g p d g>  

When using the similarity heuristic, the probabilities are replaced with similarity 

judgments, ( ),s d r  and ( ),s d g : respectively, the similarity of the song to the redshank’s and 

the greenshank’s. According to the similarity heuristic, you should search if  

( ) ( ), , .s d r s d g>  (3) 



That is, search if the birdsong you have just heard sounds (to you) more similar to that of the 

redshank than that of the greenshank.   

Within a given environment, the theoretical performance of a decision rule can be 

estimated by computing the proportion of times it yields the correct answer, relative to the 

same proportion for the optimal decision rule.  We show how to estimate the performance of 

the similarity heuristic against the Bayesian benchmark. 

The decision model begins with a vector of decision statistics.   For the similarity 

heuristic, these statistics are judgments of similarity between the sample or case (the data) and 

the population from which it might have been drawnv.  For each of the n possible hypotheses, 

,   1,..., ,ih i n=  and the data, ,jd  the decision maker generates a similarity judgment ( ), .j is d h  

The set of n judgments form a similarity vector 1 2[ , ,..., ]j j njs s s′ =js , where ( ) ,ij j is s d h= .    

Given the similarity vector, the next step is to pick out the maximum value from this 

vector, which is done by assigning 1 if ijs  takes the maximum value within js , and 0 

otherwise, yielding the maximum similarity vector, with the same dimensions as :js  

( )
1 2

1 max
[ , .... ],  where 

0

ij
j j nj ij

if s
ms ms ms ms

otherwise

 =′ = = 


j
j

s
ms  (4) 

In the simplest decision rule, hi is chosen if the maximum similarity vector contains 

only a single value of 1 in the i-th position.  If there is more than one such value, meaning that 

more than one hypothesis ties for maximum decision statistic, each candidate hypothesis has 

an equal chance of being chosen.  The operation of this rule is implemented in the decision 

vector :jds  

1 2

1,...,

[ , ,..., ],  where ij
j j nj ij

ij
i n

ms
ds ds ds ds

ms
=

′ = =
∑jds ,  (5) 

The value of dsij, therefore, is the probability the choice rule will select hypothesis hi.  



To calculate the probability that, for a given piece of evidence, this choice rule will 

select the correct option, we pre-multiply the decision vector by the vector of corresponding 

posterior probabilities ( ′jpl ) computed using Bayes’ rule: 

( ) ( ) ( )
( ) ( )1 2

1,...,

[ , .... ],  where  
i j i

j j nj ij i j

i j i
i n

p h p d h
pl pl pl pl p h d

p h p d h
=

′ = = =
∑

jpl  (6) 

Hence, given a set of hypotheses { },  1,..., ,iH h i n= =  a choice rule js , prior probabilities p, 

and evidence jd , the accuracy of the choice rule, meaning the probability of making a correct 

decision, is given by: 

( )
1,...,

, , , j ij ij
i n

A H d pl ds
=

= ⋅ = ∑j j js p pl ds  (7) 

Next, we determine the performance of the choice rule given this hypothesis set and all 

possible evidence that might occur.  The evidence could be, for instance, every bird song that 

might be heard. If the evidence is discrete (e.g., we might hear one of a finite number, m, of 

possible sounds) the corresponding mean accuracy is:  

( )
1 1

, ,
m n

j ij ij
j i

A H pd pl ds
= =

=∑ ∑S p , (8) 

where S  is the n m×  matrix representing the similarity of each piece of evidence to each 

hypothesis, and jpd  denotes the probability of obtaining evidence dj.  

Just as the evidence can vary, so can the prior probabilities associated with a given set 

of hypotheses. For instance, you might be in a situation where house sparrows are rare and 

Spanish sparrows are common, or the reverse. To obtain the mean accuracy of the decision 

rule we need to carry out the summation in Eq. (8) over the entire space of possible prior 

probability distributions: 

( ) ( )
1 1 1

, | ,
r m n

k k k
j ij ij

k j i

A H E Correct H pp pd pl ds
= = =

= =∑ ∑ ∑S S , (9) 

where H is the hypothesis set.  The superscript k is added to the probabilities of obtaining 

evidence dj, and to the posterior probabilities, to indicate that their values assume a specific 

vector k of possible priors. The summation is carried out over the discrete set of prior 



probability vectors, while multiplying by the probability of each prior probability vector, 

denoted by .kpp  Note that while the operation of the similarity heuristic (although not its 

performance) is independent of the distribution of prior probabilities, other rules need not be.  

To model Bayes’ rule, for instance, dsij in Eq. (9) is replaced by k
ijpl . 

The above analysis focuses on deterministic choice rules.  Although this is not the 

place to develop theories of stochastic choice, they can be modeled by means of Monte Carlo 

simulations of A(S,H) in which the vectors (e.g.,  s΄, ms΄, ds) are changed in the relevant 

fashion.  The role of error, for instance, can be modeled by laying a noise distribution over the 

similarity vector (s΄), bias by systematically changing some values of the same vector, and a 

trembling hand by random or even systematic changes to the decision vector (ds)vi.   

 We illustrate our analysis and some of its implications with a simulation of the 

likelihood heuristic, for which  likelihoods,( )ip d h , rather than similarity judgments, are the 

decision statistic.  Likelihoods are often taken as a proxy for similarity (Villejoubert & 

Mandel, 2002; Nilsson, Olsson & Juslin, 2005) and the representativeness heuristic has even 

been interpreted as being equivalent to the likelihood heuristic (Gigerenzer & Murray, 1987)  

This analysis, therefore, can provide us with some expectations about when the similarity 

heuristic is likely to perform well, and when it will perform poorly.   

We consider a simple “binomial balls in urns” environment, such as the one adopted by 

Grether (1980, 1992) and Camerer (1987).  Imagine two urns (the hypotheses), denoted A and 

B, each containing red and white balls in known proportions, denoted RA and RB, that is, 

{ },A BH R R= .  The decision maker obtains a random sample of 5 balls drawn from an unseen 

urn, and must then bet on whether it was drawn from urn A or B. Corresponding to each 

possible sample, e.g., { }jd RRWRW= , and each hypothesis, there is a 

likelihood, ( )ij j il p d h= , which can be computed from the binomial distribution.  The 

decision statistic vector is the vector of likelihoods ,Aj Bjl l′  =  jl .  Each such vector is 



transformed, by means of Eq. (4) and (5), into a decision vector ′jdl , equal to 

[ ]1 0    if Aj Bjl l> , 1 1
2 2    if Aj Bjl l=   , and [ ]0 1    if Aj Bjl l< .  The probability of a correct 

choice is obtained by pre-multiplying this decision vector by the posterior (Bayesian) 

probability vector, to give ( ), , , jA H djl p .  The overall accuracy of the likelihood 

heuristic, ( ), ,L pA H , is obtained by computing the probability of correct choices for each 

sample, weighting each of these probabilities by the probability of obtaining the sample, and 

then summing these weighted probabilities. 

Table 1 shows the results of this analysis.  The top row shows hypothesis sets, chosen to 

represent a wide range of differences between populations. When { }.5,.5H = the populations 

have no distinguishing characteristics, while when { }.9,.1H =  they look very different.  In 

the identification of birds, a population of house sparrows and Spanish sparrows is close to 

the first case, while house sparrows and sparrow hawks are like the second.  The first column 

in the table gives the prior probabilities for each urn, [ ],A Bp p′ =p . The final row in the table 

presents ( ), ,A HL p , the average accuracy of the likelihood heuristic for each hypothesis set.  

Because the likelihood heuristic, like the similarity heuristic, is not influenced by prior 

probabilities this value is the same for all cells in its column.  The values in the middle cells 

show the incremental accuracy from using Bayes’ rule instead of the likelihood heuristic, 

given each vector of priors, i.e. ( ) ( ), , , ,A H A H−B p L p .  

If the likelihood heuristic is a good proxy for the similarity heuristic, this analysis 

indicates when the similarity heuristic is likely to perform well relative to Bayes’ rule, and 

when it will perform poorly.  These conditions were described formally by Edwards, Lindman 

& Savage (1963).  Roughly, they are that (a) the likelihoods strongly favor some set of 

hypotheses; (b) the prior probabilities of these hypotheses are approximately equal; and (c) 

the prior probabilities of other hypotheses never ‘enormously’ exceed the average value in 

(b).   In Table 1, condition (a) becomes increasingly applicable when moving from left to 



right, and condition (b) when moving from bottom to topvii.  If we replace ‘likelihood’ in (a) 

with ‘similarity’, then these are also the conditions in which the similarity heuristic is likely to 

perform well.  Likewise, when the conditions are not met, the similarity heuristic will do 

poorly. 

 

-- Table 1 about here – 

 

The Experiment 

We investigated how well the similarity heuristic performs as a choice rule, and 

whether people actually use it.  In four experimental conditions, judgments or choices were 

made about two populations and a single sample.  Separate groups assessed the similarity of 

the sample to the populations (a single estimate of ( ) ( )2 1, ,s d h s d h− ), or chose the 

population from which the sample was most likely to have been drawn.  

The populations and samples were, like those in Bar-Hillel’s (1974) study, drawn from 

a trinomial environment. Within this environment, we adopted a representative design. Two 

populations (hypotheses) were generated using a random sampling procedure.  The 

populations used were the first 240 drawn using this procedure, which were randomly paired 

with one another.  A random sample was then drawn, with replacement, from one of the 

populations in the pair, and the first sample drawn from each pair was the one used in the 

experiment.  The populations and samples were shown as separate elements arranged in 

random order, as shown in Figure 2, and not in the form of summary statistics.  We call each 

set of populations and sample a triple. 

 

-- Figure 2 about here -- 

 

We also considered the relationship between and the similarity heuristic and the use of 

prior probability information.  As discussed in section 2 above, the similarity heuristic makes 



the same choice as Bayes’ rule whenever 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2sgn , , sgns d h s d h p h p d h p h p d h −  =  −     .  Since the similarity 

heuristic disregards prior probabilities, it can lead to error when these are not 

equal ( ) ( )( )1 2p h p h≠ .  In the experiment we chose the population from which the sample 

was chosen with a (virtual) throw of the dice, with prior probabilities of 1/6 and 5/6.   One 

choice group had knowledge of the prior probabilities, while another group did not. 

 

 Method 

Subjects  

We tested 160 participants, all members of the London School of Economics 

community.  In return for their participation, respondents received a £2 ($4) voucher for 

Starbucks.  

Materials 

The materials were based on 120 triples, each comprising two populations and one 

sample of red, yellow and blue rectangles.  The population generating algorithm was as 

follows.  First, we chose a number between 0 and 100 from a uniform distribution and 

specified this as the number of blue rectangles (call it b); next, we generated a number 

between 0 and (100-b) from a uniform distribution, and specified this as the number of green 

rectangles (g). The number of yellow rectangles was therefore y=100-b-g. This yielded 

populations with an average of 50 blue, 25 green and 25 yellow rectangles. In this way we 

generated populations that were, on average, composed of a large number of blue rectangles.  

This is analogous to many natural populations, in which the modal member is of one type, but 

in which alternative types are also relatively abundant – such as the ethnic composition of 

European and North American cities, or bird populations pretty well everywhere.   

For each question, we randomly generated a pair of populations, one of which was 

assigned a high prior of 5/6, the other a low prior of 1/6. One population was chosen with 

probability equal to its prior, and a sample of 25 rectangles was drawn (with replacement) 



from this population.  We used the first 120 stimuli sets generated, and they were presented in 

the order generated.    

 

Procedure 

Each respondent made judgments or choices for 30 triples, so the 120 triples comprised 

four replications of the basic design.  Within each replication, there were 10 participants in 

each of four groups: The Similarity group were told nothing about the context, and simply 

rated which of the larger sets of rectangles the small set was more similar to; the 

Similarity/Population group made similarity judgments, this time with full knowledge that the 

sets represented two populations and one sample; the Choice/No prior group guessed which 

population the sample came from without knowledge of prior probabilities; and the 

Choice/Prior group made the same choice but with this knowledge.   

In all conditions, respondents first read an introductory screen which told them they 

would be asked questions about ‘sets of rectangles’ and were shown an unlabelled example of 

such sets.  The instructions then diverged, depending on the experimental condition. Those in 

the Similarity group read You will see two large sets and one small set like the following and 

were shown a triple like that in Figure 2, with the three sets labeled, respectively, as Large Set 

1, Small Set and Large Set 2.  For each subsequent triple, they indicated which large set the 

small set was more similar to, using a 9-point scale that ranged from  Much more similar to 

LS 1 to Much more similar to LS 2. 

The instructions for the remaining groups included the following description of the task 

context:    

We want you to consider the following procedure. First, we randomly generated two 

populations of yellow, red and blue rectangles, which we call Population 1 and 

Population 2.  [Here the Choice/Prior group received information about prior 

probabilities, as described later…] 



Then we drew a sample of 25 rectangles from either Population 1 or Population 2.  

[Here an example was shown, with the sets labeled as Population 1, Sample, and 

Population 2.]  

We drew the sample this way:  

We randomly drew one rectangle and noted its color.  

Then, we returned the rectangle to the population and drew another one, until we 

had drawn 25 rectangles.  

The sample could have been drawn from either Population 1 or Population 2.   

Those in the Similarity/Population group then judged the similarity of the sample to 

Population 1 or Population 2 using the 9-point scale, this time with the endpoints labeled 

Much more similar to Population 1 and Much more similar to Population 2. 

For those in the two choice groups the task was to indicate which population they 

thought the sample came from.  This was done by clicking one of two radio keys. The 

instructions for the Choice/Prior group included the following information:    

First [… as above].   

Second, we rolled a die. If any number from 1 to 5 came up, we drew a sample of 25 

rectangles from one population, while if the number 6 came up, we drew a sample of 25 

rectangles from the other population.  

In the following example we drew a sample from Population 1 if the numbers 1 to 5 

came up, and drew a sample from Population 2 in the number 6 came up. [Here an 

example was shown, with five dice faces above Population 1, and one above Population 

2.] In the following example we drew a sample from Population 2 if the numbers 1 to 5 

came up, and drew a sample from Population 1 if the number 6 came up. [Here the 

example had one face above Population 1 and five above Population 2]. 

Once the population was chosen, we drew the sample this way [… the standard 

instructions followed, ending with …] The sample could have been drawn from 

either Population 1 or Population 2, depending on the roll of the die.  



For each triple in the Choice/prior group five dice faces were above the high prior population 

and one face above the low prior population. The population number of the high prior 

population was randomized.   

 In all conditions we recorded the time taken to make a choice or similarity judgment. 

 

Results 

How reliable and consistent are judgments of similarity? 

For similarity to be a reliable and valid basis for making probabilistic choices, there 

must be some “common core” underlying the similarity judgments made by different people 

and in different contexts.  We measured this core by evaluating the inter-context and inter-

subject consistency of similarity judgments.  There were four sets of 30 triples, each of which 

received similarity judgments from 20 subjects, 10 each from the Similarity and 

Similarity/Population groups.  For each set of triples, we computed the mean inter-subject 

correlation, both within and between experimental groups.   These are shown in Table 2.  As 

can be seen, the mean inter-subject correlation was high (overall ranging from .71 to .79) and 

there was no appreciable reduction in this value when attention was restricted to correlations 

between subjects in different groups (ranging from .68 to .79). 

 

-- Table 2 about here – 

 

 Given the high correlation between individual judgments, it is not surprising that the 

correlation between the average similarity judgments for the 120 questions was extremely 

high (.95).  Moreover, even the mean similarity judgments in the two groups were almost 

identical (5.06 vs 5.05), indicating that in both conditions the scale was used in the same way.   

Finally, to anticipate the next section, the proportion of correct choices predicted by both 

measures of similarity was almost identical. We conducted two logistic regressions, using 

similarity ratings to predict the optimal Bayesian choice (we will call this BayesChoice).  The 

percentage of correct predictions was 86% for both Similarity groups, and these were 



distributed almost identically across both Populations 1 and 2. Because the two similarity 

measures are statistically interchangeable, we usually report results from combining the two 

measures.   

Overall, these analyses show that the judgments of similarity in both contexts contained 

a substantial common core. We conclude, therefore, that similarity judgments are reliable. We 

next turn to the question of their validity as a basis for probabilistic choice. 

 

How accurate is the similarity heuristic?   

We simulated the performance of the similarity heuristic in two ways.  First, we 

examined the correlation between the 9-point similarity rating and the option that would be 

chosen by an optimal application of Bayes’ rule (denoted BayesChoice).  Figure 3 shows the 

proportion of times BayesChoice equals Population 2, for each level of Similarity.  This 

proportion increases monotonically in an S-shaped pattern, with virtually no Population 2 

options predicted when Similarity=1 and almost 100% when Similarity=9.  The correlation 

between individual similarity judgments and BayesChoice is .76.  

 

—Figure 3 about here -- 

We also compared the accuracy of the similarity heuristic with that achieved using 

Bayes’ rule and the likelihood heuristic (BayesChoice and LKChoice).  We simulated the 

heuristic using the principles described previously:  if the Similarity rating was less than 5 

(i.e., implying ( ) ( )1 2, ,s d h s d h> ) then predict a choice of Population 1, if it is equal to 5 then 

predict either population with probability of .5, otherwise predict Population 2 (we use 

SimChoice to denote these individual simulated choices).  Simchoice correctly predicted the 

population from which the sample was drawn 86% of the time, compared to 94% for 

LKChoice and 97% for BayesChoice.   

Because similarity is a psychological judgment it is, unlike likelihoods and prior 

probabilities, prone to error.  To obtain a low-error judgment of similarity, we took the mean 



similarity judgment for each question and applied our decision rule to this mean (i.e., if mean 

Similarity < 5 choose Population 1, etc.). We denote these choices Simchoice/A (for 

aggregate).  Relative to Simchoice, using Simchoice/A increased the correlation between the 

similarity heuristic and BayesChoice from .76 to .85, and increased overall accuracy from 

86% to 92%.    

In this context, therefore, the similarity heuristic achieves a high level of accuracy when 

making probabilistic choices. But this does not demonstrate that people actually take the 

opportunity to use similarity when making choices.  This is what we evaluate next.  

 

 
Do people use the similarity heuristic? 

Similarity/Choice agreement.  For each respondent in the two choice groups, we 

compared the choices they made to the predictions of Simchoice/A.  Figure 4 shows, for each 

respondent in the Choice/No prior and Choice/Prior groups, the proportion of correct 

predictions.  There was an extremely good fit between actual and predicted choices:  an 

average of 89% predictions in the No prior group (Median 92%), and 86% in the Prior group 

(Median 90%).  

 

—Figure 4 about here -- 
   
 
 This is not an irrefutable demonstration that people use the similarity heuristic, since 

both choice and similarity judgments are also highly correlated with BayesChoice, leaving 

open the possibility that the similarity/choice relationship might not be causal (i.e., similarity 

determines choice), but merely due to the use of another choice rule (or rules) that is 

correlated with both similarity and Bayes rule.  We therefore conducted two additional 

analyses to consider whether the similarity heuristic predicts choice beyond that predicted by 

BayesChoice.  First, we conducted a logistic regression in which individual choices (in both 

the Choice/No prior and Choice/Prior conditions) was regressed on the mean Similarity 



rating, the normalized likelihood ratio (NLKR) defined as 
( )

( )
2

21

p d h

p d h+
,  and the prior 

probability of Population 2.   The model was chosen using a forward selection procedure 

(probability for entry = .10., for removal = .15).  In both analyses, mean Similarity was the 

most significant predictor in the final model.  The logits (log odds) for the final models were: 

Choice/No-prior: 4.03 – 0.63 Similarity – 2.32 NLKR 

Choice/Prior: 5.51 – 0.89 Similarity – 2.10 Prior 

All coefficients were highly significant (p-value for Wald statistic < .0001), and classification 

accuracy was 88% for the No prior group and 87% for the Prior group.  This is strong 

evidence that the similarity heuristic was being used by both groups. Separate regressions 

including only Similarity as an explanatory variable supported this view – classification 

accuracy was reduced by less than 1% in both groups. 

Finally, to provide the strongest possible test we conduct a further analysis relating 

individual similarity judgments to individual choices.  Because we did not collect similarity 

judgments and choices from the same respondents, we created “quasi-subjects,” simply by 

placing the individual responses in all four conditions into four columns of our data file, and 

then analyzing the relationships between conditions as if they had been collected from the 

same respondent.  We lined up, for instance, the response from the first respondent who made 

a similarity judgment to one item, with the first respondent who made a choice to that item, 

and so forth.  Our reasoning was that if the similarity heuristic is robust to being tested under 

these unpromising circumstances, it will surely be robust to tests when both choices and 

similarity judgments come from the same respondent. 

 

-- Table 3 about here -- 

 



 We conducted two correlational analyses of these data, as shown in Table 3.  First, we 

looked at the first order correlation between Simchoice, Simchoice/Pop, Choice/Prior and 

Choice/No prior.  These were, as can be seen in Table 3, moderately high (≅ .6) and 

overwhelmingly significant.  This indicates that the relationship found with the aggregate 

similarity judgments does not vanish when they are disaggregated.  We then conducted the 

same analysis, but this time partialling out three alternate choice predictors:  LKChoice, 

BayesChoice, and the Prior – these predictors are all highly intercorrelated but we included 

them to squeeze out the maximum predictive power. The partial correlations were reduced, 

but all remained positive and significant.  Thus, individual similarity judgments made by one 

respondent were able to robustly predict the individual choices made by another respondentviii . 

Response times.  A further line of evidence that choice is based on the similarity 

heuristic comes from the pattern of response times (RTs), which suggest that both choices and 

similarity judgments are driven by the same psychological process.  Figure 5 is a boxplot 

showing the distribution of median RTs for each triple, for all four conditions.  This shows the 

average RT and its distribution and its distribution, is approximately the same for all 

conditions, an observation supported by a non-significant ANOVA 

( (3,  357) 1.7,  .15F p= > ).  

 

—Figure 5 about here – 
 

 



 Table 4 shows correlations between median RTs for all triples.  All the relationships 

are highly significant ( .0001,  120p n< = ) and, more importantly, correlations within 

response categories (Similarity with Similarity/Population, and Choice/No prior with 

Choice/Prior, Mean r = .70) are close to those between categories (Similarity with Choice, 

Mean r=.65).  This occurs despite an undoubted level of method variance due to the different 

response formats in the two categories (a choice between two radio keys versus rating on a 9-

point scale). 

 
-- Table 4 about here – 

 
Moreover, choice response times show a relationship that should be expected if 

similarity judgments are the basis for choice.  When the sample is equally similar to the two 

populations (i.e., similarity judgments are close to the scale midpoint) it also takes longer to 

choose which population it came from. Figure 6 plots the median response time for all 120 

questions against the average Similarity judgment for each question, along with the best 

fitting quadratic function.  In both cases this function revealed the expected significant 

inverted-U functionix.   

 

-- Figure 6 about here -- 

 
 

Overall, therefore, analysis of the responses made and the time taken to make them 

closely fit what we would expect if choices are based on the similarity heuristic.  

 

How is prior probability information used? 

Consistent with much earlier research (e.g., Gigerenzer, Hell & Blank, 1988; Fischhoff, 

Slovic & Lichtenstein, 1979), we found that prior probabilities influenced choice in the right 

direction but were underweighted.  Respondents in the Choice/Prior condition were 

significantly more likely to choose the high prior item than were those in the Choice/No Prior 



condition (76% versus 71%; 2(1,  119) 20.4,  .146,  .001F pε= = < ), although they still chose 

it at a lower rate than the actual prior probability (83%, or 5/6).  Our design enabled us to go 

further and determine whether knowledge of prior probabilities improved choice, and more 

generally whether the knowledge was used strategically. 

Knowledge of priors did not increase accuracy, which was 86.3% in the Choice/Prior 

condition and 86.1% in the Choice/No prior condition ( (1,  119) 1F < ). This suggests that 

knowledge about prior probabilities was used inefficiently.  This is illustrated in Figure 7, 

which shows, for both choice groups, the proportion of times the correct choice was made 

when the sample was drawn from high prior population versus when it was drawn from the 

low prior population (we will say, when the prior is consistent and inconsistent). When the 

prior was consistent, the Choice/Prior group was a little more accurate than the Choice/No 

prior group (90% versus 87%), but when it was inconsistent, they were much less accurate 

(74% versus 82%).  This was reliable result: an ANOVA with the group as a within-triple 

factor, and consistency of priors as a between-triple factor, revealed a highly significant 

interaction, 2(1,  118) 17.7,  .131,  .001F pε= = < . Since the prior was consistent 83% of the 

time, the small benefit it gave when consistent was counterbalanced by the larger cost when it 

was inconsistent. 

 

-- Figure 7 about here -- 

 
 
A strategic way to combine knowledge of prior probabilities with similarity data is to 

go with the high prior option when the sample is equally similar to both populations, but to go 

with similarity when it is highly similar to only one population.  This can be seen by referring 

to Table 1:  knowledge of priors is less useful when the environment is represented by the 

columns to the right, when the two hypotheses are highly distinguishable, than when it is 

represented by the columns to the left.  We investigated to what degree respondents were 

strategically putting more weight on priors when they found themselves in situations like the 



left rather than the right columns.   The fact that performance was not improved by 

knowledge of priors suggests they were not using the information strategically, and we 

confirmed this by examining the difference between the proportion of time the high prior item 

was chosen in the Choice/Prior versus Choice/No prior groups, as a function of similarity 

judgments. We define PrEqHi and NoPrEqHi as, respectively, the proportion of times the 

Choice/Prior and Choice/No prior groups chose the high prior option for each triple, and then 

computed a proportional shift statistic (PSS) for each triple, which was an index of the 

increase in choices of the high prior item in response to having that information.   

 

1

1

i

PrEqHi NoPrEqHi
    if  PrEqHi NoPrEqHi

NoPrEqHi
PSS       

PrEqHi NoPrEqHi
   if  PrEqHi NoPrEqHi

PrEqHi

− > −=  − ≤
 −

 

 
 
The subscript i indexes the triple.  PSS ranges from -1 to 1, the difference between the 

proportion of choices of the high prior option in the two choice conditions, divided by the 

maximum possible proportion of such choices.  For example, if for one triple 90% of the 

Choice/Prior group chose the high prior item, as opposed to 80% of the Choice/No prior 

group, then PSSi would be 
.9 .8

.5
1.0 .8

− =
−

. On the other hand, if 90% in the Choice/No prior 

group chose the high prior item while only 80% in the Choice/Prior  group did, then PSSi =(-

.5).  Because PSS cannot be computed if both PrEqHi and NoPrEqHi are equal to 1, which 

occurred in 33 cases, we obtained 87 usable values of PSS, with a mean value of .13 

(SD=.62).   The fact that the number is positive indicates respondents were more likely to 

choose the high prior item when they knew which one it was, and the specific value obtained 

can be interpreted as follows:  for the average triple, if the high prior item was chosen by a 

proportion p of those in the Choice/No prior group, then it was chosen by ( ).13 1p p+ −  of 

those in the Choice/Prior group.   



Figure 8 shows the 87 values of PSS as a function of the mean similarity rating for each 

triple, along with the best fitting quadratic function.  If knowledge of prior probabilities was 

being used strategically, this best-fitting function would have an inverse-U shape, indicating 

that prior probabilities had their greatest influence when the sample was equally similar to 

both populations.  In fact, the quadratic function has the opposite shape to this hypothesized 

inverse-U, although it accounts for relatively little of the variance in PSS (R2=.021).  That is, 

while knowledge of population prior probability did increase the tendency to choose the high 

prior item, it did so indiscriminately – respondents in the Choice/Prior condition put equal 

weight on the prior when similarity was undiagnostic (when knowledge of the prior would be 

useful) than when it was diagnostic (and the knowledge was relatively useless).   

 

—Figure 8 about here – 
 
 
 
 

Discussion 

 Willard Quine famously described the problem of induction as being a question about 

the use of what we call the similarity heuristic:    

For me, then, the problem of induction is a problem about the world: a problem of how 

we, as we now are (by our present scientific lights), in a world we never made, should 

stand better than random or coin-tossing chances of coming out right, when we predict 

by inductions which are based on our innate, scientifically unjustified similarity 

standard.  (Quine, 1969, p. 127). 

Our research can be viewed as an investigation into just how much better than ‘random’ are 

these predictions, and our findings are that they are, at least in one context, very much better.  

In the environment in which our respondents found themselves, individual similarity 

judgments were able to come out right 86% of the time, compared to coin-tossing chances of 

50%.  Moreover, we also found strong evidence that people were using a shared, if not 



necessarily innate, similarity standard to make their choices – the similarity judgments made 

by one group proved to be an excellent predictor of both the similarity judgments and the 

choices made by other groups. 

As we noted earlier, although the similarity heuristic is a subset of the 

representativeness heuristic first described by Kahneman and Tversky (1972), we modeled 

our approach on the program of a different school of researchers.  This program, well-

summarized in Goldstein and Gigerenzer’s (2002) seminal article on the recognition heuristic, 

is to: 

design and test computational models of [cognitive] heuristics that are (a) ecologically 

rational (i.e., they exploit structures of information in the environment), (b) founded in 

evolved psychological capacities such as memory and the perceptual system, (c) fast, 

frugal and simple [and accurate] enough to operate effectively when time, knowledge 

and computational might are limited, (d) precise enough to be modeled 

computationally, and (e) powerful enough to model both good and poor reasoning.  

(p.75) 

In the rest of this discussion we comment on the relationship between this program and our 

own investigations.  

 

Ecological rationality  

The concept of ecological rationality is best described by the means of the lens model 

of Brunswik (1952, 1955; c.f. Dhami et. al, 2004), a familiar modernized version of which is 

shown in Figure 9 (e.g., Hammond, 1996).  The judge or decision maker seeks to evaluate an 

unobservable criterion, such as a magnitude or probability.  While she cannot observe the 

criterion directly, she can observe one or more fallible cues or indicators (denoted I in the 

figure) that are correlated with the criterion.  Judgments are based on the observable 

indicators, and the accuracy (or ‘ecological rationality’) of those judgments is indexed by 

their correlation with the unobservable variable.  For the recognition heuristic, the judgment is 

recognition (“I have seen this before”), which is a valid predictor of many otherwise 



unobservable criteria (e.g., size of cities, company earnings), because it is itself causally 

linked to numerous indicators of those criteria (e.g., appearance in newspapers or on TV).   

 

-- Figure 9 about here – 
 

 

The ecological rationality of the similarity heuristic arises for similar reasons. Although 

researchers do not yet have a complete understanding of how similarity judgments are made, 

we do know that the similarity between a case x and another case or class A or B is a function 

of shared and distinctive features and characteristics (see Goldstone & Son, 2005, for a 

review).  Likewise, the probability that x is a sample from a given population is closely 

related to the characteristics that x shares and does not share with other members of that 

population.   It is perhaps not surprising, therefore, that similarity turns out to be such a 

reliable and valid index of class membership. 

 
Evolved psychological capacities   

Both the recognition and similarity heuristics work through a process of attribute 

substitution (recognition substituted for knowledge of magnitude, similarity substituted for 

knowledge of posterior probabilities), and are effective because of the strong correlation 

between the attribute being substituted for and its substitution.  The reason for this high 

correlation is because both the capacity to recognize and the capacity to detect similarity are 

both products of natural selection. 

 The ability to assess the similarity between two objects, or between one object and 

the members of a class of objects, is central to any act of generalization (e.g., Attneave, 1950; 

Goldstone & Son, 2005).  As Quine (1969) observed, to acquire even the simplest concept 

(such as ‘yellow’) requires ’a fully functioning sense of similarity, and relative similarity at 

that: a is more similar to b than to c’ (p. 122).  Some such ‘sense of similarity’ is undoubtedly 

innate.  Children are observed making similarity judgments as early as it is possible to make 

the observations (e.g., Smith, 1989), and it is one of the ‘automatic’ cognitive processes that 



remain when capacity is limited by time pressure or divided attention (Smith & Kemler-

Nelson, 1984; Ward, 1983).  Like recognition and recall, therefore, the ability to judge 

similarity is a skill we are born with and can deploy at minimal cognitive cost whenever it can 

serve our purposes. The similarity heuristic, like other fast-and-frugal heuristics, operates by 

‘piggy-backing’ on this innate ability when probability judgments are to be made. 

Although we have spoken blithely about ‘similarity judgments’ we recognize that these 

judgments are embedded in specific contexts.  For instance, if asked to judge the similarity 

between a celery stick, a rhubarb stalk and an apple, the judgment s(apple, rhubarb) will be 

greater than s(celery, rhubarb) if the criterion is ‘dessert’ than if it is ‘shape.’  Indeed, the 

concept of similarity has been widely criticized because of this. Medin, Goldstone and 

Gentner (1993) give a concise summary of this critique: 

The only way to make similarity nonarbitrary is to constrain the predicates that apply or 

enter into the computation of similarity. It is these constraints and not some abstract 

principle of similarity that should enter one's accounts of induction, categorization, and 

problem solving. To gloss over the need to identify these constraints by appealing to 

similarity is to ignore the central issue. (p. 255). 

This criticism is related to the question of whether the concept of similarity can be fully 

defined is a context free manner.   It is likely that it cannot.  The criticism does not, however, 

bear on the question of whether people make similarity judgments, nor whether those 

judgments are reliable.  It is clear that people do and the judgments are.  In our study, the 

correlation between average similarity judgments in different contexts was extremely high 

(.95), but this is not an isolated result – even in studies designed to distinguish between 

theories of similarity, similarity judgments are highly correlated across conditions.  For 

instance, in a study using a systematic design to demonstrate asymmetry in similarity 

judgments, Medin et. al. (1993) obtained the expected asymmetries, yet the correlation 

between the average similarity judgments for the same pairs in different contexts was .91 (see 

their Table 1 for data; studies reported in Tversky and Gati, 1978, all yield the same 

conclusions).  It appears that however people make their judgments of similarity these 



judgments are (a) highly consistent across contexts and across people, (b) good predictors of 

the likelihood that a sample comes from a population, and (c) actually used to make these 

judgments of likelihood.  

  

Fast, frugal, simple and accurate   

These criteria concern the relative performance of heuristics.  We can readily suggest 

ideal benchmarks for each criterion, but the standard that must be reached for us to say that 

the heuristic is frugal or fast or accurate is a matter for judgment and context. We will give an 

account of the performance of the similarity heuristic on some measures of these criteria, 

along with an indication of our own opinion about whether the heuristic reaches one standard 

or another.  

 When measuring the speed of a decision process, the optimum time is always 0 

seconds.  No actual process can achieve this, but the time taken to make a judgment of 

similarity was typically about 6 seconds (as shown in Figure 5).  Although we cannot 

benchmark this time against other tasks, we suggest it is very little time given that it involved 

two similarity judgments, a comparison between them, and a physical response on a 9-point 

scale.    

We can assess simplicity and frugality by comparing the similarity heuristic to the 

process of making judgments by means of Bayes’ rule.  A quantitative estimate can be 

derived by drawing on the concept of Elementary Information Process (EIP), introduced by 

Payne, Bettmann and Johnson (1993), to measure the effort required to perform a cognitive 

task.  An EIP is a basic cognitive transformation or operation, such as making comparisons or 

adding numbers.  Consider the simple case, as in our experiment, of a choice between two 

hypotheses given one piece of data.  The similarity heuristic, as described in Eq. (3), requires 

three EIPs:  two judgments of similarity, and one comparison between them.  To apply Bayes’ 

rule, in contrast, requires seven EIPs, as in the reduced form of Eq. (2): four calculations (two 

priors and two likelihoods), two products (multiplication of priors by likelihoods) and one 

comparison (between the products).  Using this measure, Bayes’ rule is more than twice as 



costly as the similarity heuristicx.  Moreover, not all EIPs are equal: if it is harder to multiply 

probabilities and likelihoods than to make ordinal comparisons, and harder to estimate 

likelihoods than to make judgments of similarity, then the advantage of the similarity heuristic 

grows. Clearly, the similarity heuristic is frugal relative to the Bayesian decision rule.   

The similarity heuristic also performed much better than chance and proved to be a 

reliable choice rule.  It is worth observing here that the location of one source of disagreement 

between researchers in the two heuristics ‘traditions’ is exemplified by the contrast between 

the accuracy achieved in our study, and that achieved by the earlier study of Bar-Hillel.  Bar-

Hillel (1974) observed accuracy of 10%, based on group data, while the corresponding value 

in our study is 92% (for group data, 86% for individual judgments).  Moreover, this value of 

92% is achieved despite the complicating factor of a prior probability not known to those 

making similarity judgments, and to a less transparent way of presenting information (as 

disaggregated populations and samples rather than graphs).  The difference in studies is found 

in the choice of design.  We drew on the ideals of the representative design described by 

Brunswik (1955), and argued for by Gigerenzer and Goldstein (1996).  Once we established a 

random sampling procedure, we did not further constrain our samples to have any specific 

properties.  Bar-Hillel (1974), on the other hand, deliberately chose items for which the 

theorized decision-rule and Bayes’ rule would yield different choices.   If we took Bar-

Hillel’s study as providing a test of the accuracy of the similarity heuristic, we would 

conclude that it was highly inaccurate. This would obviously be an illegitimate conclusion 

(and one that Bar-Hillel did not draw).   

There is an additional methodological lesson to be drawn from a comparison between 

Bar-Hillel’s (1974) study and ours.  Although the normative performance of the similarity 

heuristic differed greatly between studies, the degree to which the heuristic predicted choice 

did not.  Bar-Hillel reported her data in the form of a cross-tabulation between choices based 

on the average similarity judgment for each triple (in her case a two-point scale) and the 

majority choice for triples.  In Table 5 we show her original data and compare it to the same 

analysis conducted for our data.  The patterns of results are readily comparable, and lead to 



the same conclusions not just about whether the similarity heuristic predicts choice, but even 

about the approximate strength of the relationship between choice and judgment. 

 

-- Table 5 about here – 

 

Precise enough to be modeled computationally  

The similarity heuristic is also precise enough to be modeled computationally. In an 

earlier section we provided a general mathematical model of the similarity heuristic. It was 

not the only possible model; in fact, it was the simplest one.  However, it turned out to be a 

very good model in the context of our experiment.   When similarity judgments made by one 

group are used to predict the choices of another group, they predict those choices remarkably 

well. 

 

Powerful enough to model both good and poor reasoning  

All heuristics have a domain in which their application is appropriate, and when they 

step outside that domain they can go wrong.  We have already considered the performance of 

the likelihood heuristic as a proxy for the similarity heuristic, and suggested the similarity 

heuristic will be most accurate when the likelihood heuristic is, and inaccurate when it is not. 

Specifically, and as shown formally by Edwards et al. (1963), the similarity heuristic can go 

wrong when some hypotheses have exceedingly low priors, and when the similarity 

judgments s(d,h) do not strongly differentiate between hypotheses.   

 A fascinating recent case in which the ideal conditions are not met, and the similarity 

heuristic (probably coupled with some wishful thinking) leads to some unlikely judgments is 

found in the scientific debate surrounding the identification of some observed woodpeckers, 

which might be of the ivory-billed or pileated species (White, 2006; Fitzpatrick et al, 2005).  

The two birds are very similar.  Careful scrutiny can distinguish them, although to the 

untutored eye they would be practically identical. The prior probabilities of the two 

hypotheses, however, are not even remotely close to equal. The pileated woodpecker is 



relatively common, but the last definite sighting of the ivory billed woodpecker was in 1944, 

and there is every reason to believe it is extinct (i.e., prior ≈ 0).   It is interesting to observe, 

however, that the debate over whether some reported sightings of the ivory-billed woodpecker 

are genuine involves a ‘scientific’ application of the similarity heuristic (focusing on issues 

like the size of the bird and wing patterns), with little explicit reference to prior probabilities, 

even by skepticsxi.  

 The ivory-billed woodpecker case is, however, uncharacteristic and understates the 

power of the similarity heuristic even when priors are extremely low.  In the case of the ivory 

billed woodpecker, prior probabilities should play such a large role because of a conjunction 

of two factors: similarity is practically undiagnostic (only very enthusiastic observers can 

claim that the poor quality video evidence looks a lot more like an ivory-billed than pileated 

woodpecker), and the least-likely hypothesis has a very low prior probability.  The situation is 

therefore like that in the bottom left-hand cell of Table 1.   

But suppose the situation were different, and while the prior probability is very close to 

zero, similarity is very diagnostic.  You are out strolling one day in a dry area a long way 

from water, an area in which you know there are no swans, which only live on or very near 

water.  Yet you stumble across a bird that is very similar to a mute swan: It is a huge white 

bird with a black forehead and a long gracefully curved neck; its feet are webbed, it does not 

fly when you approach but raises its wings in a characteristic ‘sail pattern’ revealing a 

wingspan of about 1.5 meters.  Even though the prior probability of seeing a swan in this 

location is roughly 0 (i.e., this is what you would say if someone asked you the probability 

that the next bird you saw would be a swan), you will not even momentarily entertain the 

possibility that this is one of the candidates having a very high prior (such as a crow, if you 

are in the English countryside).  We suggest that most everyday cases are like the swan rather 

the woodpecker – similarity is overwhelmingly diagnostic, and is an excellent guide to choice 

and decision even in the face of most unpromising priors.  This is why, to return to Quine, we 

can do so well using our ‘innate, scientifically unjustified similarity standard.’  
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Table 1: Accuracy from using the likelihood heuristic and incremental 
accuracy from using Bayes’ rule 

 

p′: Prior 
Probability 

H: Hypothesis set 

{.5,.5} {.6,.4} {.7,.3} {.8,.2} {.9,.1} 

[.5,.5] .00 .00 .00 .00 .00 

[.6,.4] .10 .00 .00 .00 .00 

[.7,.3] .20 .06 .00 .00 .00 

[.8,.2] .30 .13 .04 .00 .00 

[.9,.1] .40 .23 .09 .03 .00 

[.95,.05] .45 .27 .12 .04 .00 

( ), ,A HL p  .50 .68 .84 .94 .99 

To obtain Bayesian accuracy for each cell, add the incremental 
accuracy to ( ), ,A HL p . For instance, when { }.6,.4H = , and 

[ ].8,.2′ =p , the accuracy of the likelihood heuristic is .68 and the 

accuracy of Bayes’ rule  is ( ), , .68 .13 .81A H = + =B p . 

 



 

Table 2: Mean inter-subject correlation between similarity judgments, 
both intra- and inter-context 
 

Set Similarity 
Similarity/ 
Population 

Inter-
context Overall 

1 .79 .69 .68 .71 
2 .67 .76 .72 .72 
3 .85 .73 .79 .79 
4 .76 .69 .72 .72 

 



 

Table 3: Correlations between individual choices by “quasi-subjects” in the four 
conditions (N=1200). P<.001 except *p<.01. 
 

  Similarity/ 
Population 

Choice/No 
Prior 

Choice/ 
Prior  

First-order 
correlations 

Similarity 0.67 0.66 0.61 

Similarity/Population -- 0.61 0.59 

Choice/No Prior  -- 0.61 

LKChoice, 
PrChoice and 
BayesChoice 
partialled out 

Similarity 0.26 0.21 0.11 

Similarity/Population -- 0.12 *0.07 

Choice/No Prior  -- 0.12 

 

 



 

Table 4: Correlations between median RTs in the four conditions 
  

 Similarity/ 
Population 

Choice/No 
Prior 

Choice/ 
Prior 

Similarity 0.66 0.51 0.68 

Similarity/Population -- 0.63 0.76 

Choice/No Prior  -- 0.74 

 



 
 
Table 5: A cross-tabulation between choices based on the average similarity 
judgment and the majority choice for triples, in Bar Hillel’s 1974 study and in ours 
 

Bar-Hillel (1974)  Our data 
  Choice    Choice 
  Pop L Pop R    Pop 1 Pop 2 

Similarity 
Pop L 11 0  

Similarity 
Pop 1 54 3 

Pop R 4 13  Pop 2 3 60 
  φ = .75     φ = .90  

 



Figure captions 
 
Figure 1:  Typical stimuli used by Bar-Hillel (1974).  The dashed line in Panel L is 
not in the original. 
 
Figure 2:  Stimuli consisting of two populations of 100 rectangles and a sample of 25 
rectangles. 
 
Figure 3:  The proportion of times that Population 2 would be chosen by Bayes’ rule, 
as a function of the 9-point similarity scale. 
 
Figure 4:  The proportion of correct choice predictions for each respondent in the two 
choice groups. 
 
Figure 5:  Boxplots of median RT in the four conditions. 
 
Figure 6:  Median response time plotted against average Similarity judgment for both 
choice conditions. 
 
Figure 7:  Accuracy (BayesChoice) as a function of consistency between prior 
probability and correct choice. 
 
Figure 8: Proportional shift statistic (PSS) as a function of the mean similarity rating 
for individual questions. 
 
Figure 9:  Lens model adapted from Brunswik. 
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FIG 3 
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FIG 6 

  

 

 
 
 
 

FIG 7 



 50

 
 

FIG 8 



 51

8642

Similarity

0.9

0.6

0.3

0.0

-0.3

-0.6

-0.9

P
S

S

 

R Sq Quadratic =0.021

 



 52

FIG 9 
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Endnotes 

 
i  This is a further demonstration of the availability heuristic in action.  If the only probability judgments we can 
remember are the ‘Linda’ or ‘Taxicab’ problem, then we might well overestimate the frequency with which such 
erroneous judgments are made.   
ii Gilovich & Griffin (2003, p.8) observe that  ‘studies in this [heuristics and biases] tradition have paid scant 
attention to assessing the overall ecological validity of heuristic processes…assessing the ecological validity of the 
representativeness heuristic would involve identifying a universe of relevant objects and then correlating the 
outcome value for each object with the value of the cue variable for each object… . This Herculean task has not 
attracted researchers in the heuristics and biases tradition; the focus has been on identifying the cues that people use, 
not on evaluating the overall value of those cues.’ 
iii  The term has been used before. Medin, Goldstone and Gentner (1993) use it to refer to the use of similarity as a 
guide to making ‘educated guesses’ in the face of uncertainty, a view which closely reflects our own.   Kahneman 
and Frederick (2002) used the term as an alternative label for the representativeness heuristic itself.   
iv In a simulation study, we found only 0.3% of possible stimuli have all four properties of Bar-Hillel’s samples.   
v Similarity is a complex judgment and in this paper we do not consider how it is assessed.   For recent candidate 
models of similarity judgment see Kemp, Bernstein and Tenenbaum, 2005, and Navarro and Lee, 2004.   
vi The damping parameter adopted by Nilsson et al. (2005; see their Eq. (2)) can be incorporated by introducing a 
further stage in the model, between the similarity vector and maximum similarity vector.   
vii Condition (c) is always applicable to our analysis, since the prior probability of all hypotheses other than Urn A or 
Urn B is 0. 
viii  This analysis cannot be interpreted as showing how much the similarity heuristic is contributing to choice.  
Rather, similarity judgments work because they are highly correlated with the statistical basis for choice and 
therefore when we partial out LKChoice and BayesChoice, we are also partialling out the factors that make it a good 
decision rule.  The analysis is rather a decisive demonstration that we cannot say respondents are “merely” 
computing Bayesian posterior probabilities and responding accordingly.   
ix The linear function accounted for none of the variance in median RT, and a cubic function yielded identical fit to 
the quadratic.   
x This is a general result.  If there are n hypotheses to be tested, the similarity heuristic calls on 2n-1 EIPs (n 
calculations and n-1 comparisons), while the normative rule calls on 4n-1 EIPs (2n calculations, n products, and n-1 
comparisons).   
xi Much of the debate revolves around a fuzzy film in which a woodpecker is seen in the distance for 4 seconds (e.g. 
Fitzpatrick et al., 2005).  Given the extremely low prior probability that any ivory-billed woodpecker is alive, it 
could be argued that even under its best interpretation this evidence could never warrant concluding that the 
posterior probability is appreciably greater than zero.  
 


