
Page 1 of 10

Using Web Service Technologies to create an Information
Broker

Mark Turnera, Fujun Zhub, Ioannis Kotsiopoulosc, Michelle Russelld, David Budgena,
Keith Bennettb, Pearl Breretona, John Keanec, Paul Layzellc and Michael Rigbyd

aDepartment of Computer Science, Keele University, Staffordshire, ST5 5BG
bDepartment of Computer Science, University of Durham, Durham DH1 3LE

cDepartment of Computation, UMIST, Manchester M60 1QD
dCentre for Health Planning & Management, Keele University, Staffordshire ST5 5BG

m.turner@cs.keele.ac.uk

Abstract

This paper reports on our experiences with using the
emerging web service technologies and tools to create a
demonstration information broker system as part of our
research into information management in a distributed
environment. To provide a realistic context we chose to
study the use of information in the healthcare domain,
and this context sets some challenging parameters and
constraints for our research and for the demonstration
system. In this paper we both report on the extent to
which existing web service technologies have proved to
be mature enough to meet these requirements, and also
assess their current limitations.

1. Introduction

Web services in various forms are widely seen as an
important emerging technology that is still undergoing
change and has yet to mature [22]. Within the Pennine
Group1 we have been exploring a longer-term vision over
a number of years of how the service concept might be
applied to software. Our aim is to use the concept we
term Software as a Service (SaaS) as the means of
overcoming many of the problems that occur with
developing, updating and evolving software systems [5,
6, 7, 9]. In Turner et al. [22] we examined the principal
forms of web service technologies currently available and
concluded that these were as yet unable to meet all of the
needs of SaaS: in particular, the elements of SaaS that are
concerned with the dynamic composition and binding of
elementary services at the time of delivery.

However, web service technologies do now enable the
composition of less dynamically-changing forms of
system, so enabling us to explore some aspects of SaaS.
In this paper we describe how we have developed a
demonstration broker system for distributed information
management using these concepts and, where possible,
employing current service technologies. As the basis for
this, we have used the healthcare domain, as representing

1 The Pennine Group consists of software engineering
researchers from the University of Durham, Keele
University, and UMIST.

an archetypical, high value, low tolerance example of
information management. The IBHIS project (Integration
Broker for Heterogeneous Information Sources) is a three-
year project funded by the Distributed Information
Management programme of the UK’s Engineering &
Physical Sciences Research Council (EPSRC). Our plan
is to use a gradually evolving prototype to explore a
range of issues in distributed information management
within healthcare, and the system described in this paper
is the initial prototype, completed in summer 2003.

Within this context therefore, this paper addresses the
research question: “have web service technologies reached
sufficient maturity to enable the creation and (rapid)
evolution of complex systems?”. Indeed, although many
papers and web sites advocate the use of different forms
of web services, there are very few descriptions in these
of other than relatively small and simple demonstrations
of their use. IBHIS offers a substantial and complex
demonstration, and hence the construction of the initial
prototype has enabled us to learn some significant
lessons about the use of web services, and about the
degree to which these achieve their (and our) aims.

In the rest of this paper we briefly review the state of
the art for web service technologies; present the goals of
IBHIS and review the system challenges that it presents;
describe the form of the first IBHIS prototype; and then
use the experiences gained from this to formulate a set of
lessons that we have learned, both in terms of using web
service technologies, and also in terms of their ability to
meet the goals of IBHIS. In the case of the latter, as our
research plans are predicated upon the availability of an
evolving system to allow us to research different aspects
of the domain, we are particularly concerned to determine
how well the system as designed is able to support a
whole set of possible evolutionary paths.

2. The web services jungle

The first confusing aspect when starting to work with
web services is that, as for the component concept, there
is no single agreed definition of what the term itself
actually means. For the purposes of this paper, we use
the simple definition proposed by Aissi et al. [1]:
“software components that use standard Internet
technologies to interact with one another dynamically”.

Page 2 of 10

Web services are therefore loosely coupled components
that can interact independent of platform or language.
This independence is achieved through the use of agreed
protocols, machine-readable description languages and
message formats based upon XML.

Within the web services environment there are
numerous XML-based languages and protocols, all
offering different functionalities and which, in theory, can
be used collaboratively to produce fairly complex
systems. These protocols can be conceptually layered on
top of one another to form an Open Systems
Interconnection style stack, with different protocols
offering the functionality required by each layer.

The second problem arises because there is no single
agreed definition of this stack, in terms of what layers are
required, what protocols should be used, or even which
of those available are compatible. For example, IBM [16]
and the Web Services Architecture group [8] both have
their own versions of such a stack. Turner et al . [22]
proposed an updated Web services stack framework which
included a wider cross section of protocols than most
available stacks, including those stemming from the
semantic Web initiatives. It is this composite stack that
we will refer to throughout this section.

At the simplest level, such a web services stack
should consist of messaging, description, and discovery
layers. Three XML-based protocols have become de facto
standards for providing such functionality. Indeed, these
three protocols have become so widespread that the term
web services has become synonymous with them:

q Simple Object Access Protocol (SOAP)
provides a standard message format for
communicating with and invoking Web
services;

q Web Services Description Language (WSDL)
[24] describes how to access Web services; and

q Universal Description, Discovery and Integration
(UDDI) [25] provides a registry that clients can
use to discover available services.

These three protocols are adequate for simple service-
based development, where locating and binding to a
single web service needs to be performed semi-
automatically. However, even without considering the
more complex non-functional factors associated with
SaaS such as electronic contracts, these three protocols do
not provide the flexibility required for more complex web
service development. A cursory search through the UDDI
web interface illustrates that there is an abundance of
demonstrations of the (in)famous ‘Stock quote’ Web
service, whereby the name of a company is sent to the
service and it returns the company’s corresponding stock
value. SOAP, WSDL and UDDI are sufficient for
providing simple atomic services such as this, but when
developing something other than a proof-of-concept
technology demonstration, single atomic web services do
not provide adequate functionality, and it will be
necessary to develop web services that themselves consist

of calls to other, lower-level Web services. To this end,
other XML-based technologies that deal with the
composition of web services have been developed, such
as the Business Process Execution Language for Web
Services (BPEL4WS) [2] and the Business Process
Modelling Language (BPML). Technologies are also
needed to describe the order to call the methods—or
operations in WSDL terminology—of the services and to
deal with the issue of long-running transactions that web
services composition introduces. Initiatives such as the
Web Services Conversation Language (WSCL) [4], and
the WS-Transaction [11] and Business Transaction
Protocol [18], respectively aim to address these issues.

While there are protocols available that can deal with
the majority of technical issues concerning web services
development, the question of how successfully an
application can be built with them is still open. In the
rest of this paper we aim to outline our experience of
using a sub-set of these protocols to build an information
broker, and in the next section we describe the goals for
this.

3. IBHIS: a healthcare information broker

The widespread development of computer networking
has made it possible to transfer large quantities of
information between users and sites using well-
established protocols. However, this vision (for
example, as espoused in the seminal US Institute of
Medicine study [14]) is short of analysis of practical
solutions, and subsequent national policies are still
heavily dependent upon concepts of large organisational
enterprise systems whose shortcomings have been noted
in the commercial sector [19]. Moreover, the integration
of that information to meet enterprise or user needs
presents a much more difficult problem, given its often
heterogeneous nature, for example, in terms of such
aspects as format, semantics, meaning, importance,
quality, ownership, cost and ethical control.

When information is created, modified and stored
independently, its integration requires run-time binding
on demand. In human-centred management of
information, this role is often performed by a broker
(such as a travel agent), who is able to meld information
on demand. In the IBHIS project we are seeking to create
an information broker service that will support the
reliable integration of information that is held in
heterogeneous forms, and managed by autonomous
agencies, using the healthcare domain as our exemplar.

While the detailed funding and organisation of
healthcare may vary substantially between different
countries, the essential properties of information
exchange and management do not differ. Hence,
although our project is based upon the structures that
currently apply to the U.K., its applicability is
worldwide.

In the healthcare domain, the National Health Service
of the U.K. is, in systems terms, a classic large
dysfunctional organisation. Yet within this, autonomous

Page 3 of 10

agents are expected to deliver seamless care to the patient.
Primary care practices, hospitals, community trusts,
mental health trusts, and health authorities are all
independent organisations, each with its own information
system. In addition, the funding of social services is
organised on a totally different national basis.

Within this very wide, varied, and continually
changing context, we have chosen to employ a set of case
studies as the basis for our information models. These
case studies have been drawn up with the aid of our
collaborators in Solihull Primary Care Trust, which has
acted as the field site for the IBHIS project.

The six case studies (not all of which have been
modelled in equal depth) were selected as representing a
mix of health and social care needs with complex
information flows, and are titled as:

q Disabled children with complex needs
q Mental health of ‘looked-after’ children
q Child protection
q Single assessment process
q Intermediate care
q Mental health

While we do not have space to expand on these here,
we should also note that these headings represent local
implementation of issues that appear on national agendas
and hence which are fairly well-defined. They also
represent a complex and rich set of information flows.

In technical terms, these require the IBHIS broker to
do more than simply function as a federated database
(itself a challenging task as explained later). Information
that is held by separate agencies may well be indexed
using different keys (for example, the Health Service uses
a Patient Record Number fairly extensively, whereas
Social Services employ quite different keys). A further
set of issues arise concerning custodianship,
authentication and ethical control of information—while
the goal of IBHIS is to demonstrate what is technically
possible, even if this is not permissible under current
regulatory structures, this does not remove any overall
ethical considerations concerning access to patient
information. There are also issues concerning the access
to information by role, which in turn leads to the need to
be able to provide for the possibility that individuals
may take on different roles at specific times, and also that
authority may be transferred by mandate when necessary.

The next section describes the architecture of the fully
service-oriented broker and identifies some of the
mechanisms we are employing to address issues such as
those above. By necessity, this section provides only a
brief summary of what is a very complex problem
domain and of the processes by which we are seeking to
model its needs in order to create the domain models
needed for IBHIS.

4. IBHIS Service-oriented architecture

In order to provide the end-user with a unified view
of data on demand from autonomous heterogeneous data
sources, we propose a Service-Oriented Data Integration

Architecture (SODIA) as illustrated in Figure 1, which is
based on the concepts of SaaS and its use of dynamic
(late) binding. It is this architecture that we plan to
employ within the final prototype IBHIS broker.

Figure 1. Service-Oriented Data Integration Architecture

An explanation of the architecture is as follows:

1) We assume that all the elements such as
business content (vocabulary), constants
(measure, postcode), data types and intent are
defined by an authority within the Health and
Social Care domain, and described using an
ontology-based approach. This ensures that they
can be interpreted correctly by the service
requesters and providers.

2) Service providers (including data service
providers) implement services and describe them
using service description languages such as
WSDL and DAML-S [3].

3) Service providers publish the service description
file into a service registry, such as UDDI, and
map the local data elements to the standard
terms defined by the Health and Social Care
authority.

4) Services are located using the service registry
and the service implementation is invoked via
SOAP. When an end user wants to get
integrated data, he/she looks for the UDDI
registry and finds a suitable Integration Broker
Service (IBS) which satisfies his or her
requirements. When the IBS is invoked, it
dynamically finds the sub-services (data and
functional services) and binds to them.

5) The discovery service is used to discover and
bind to service implementations at run time.
When there is more than one service providing
the same function, it can be used to choose one
service based on the user’s requirements.

6) An ontology service is used to provide semantic
transformation for different data items.

7) The security service is used to authenticate the
user and control the data items that a given user
can access.

Page 4 of 10

8) The Integration Broker Service (IBS) itself is a
composed service, which integrates different data
access services and functional services such as
the Discovery Service (DS) and provides the end-
user with an integrated uniform view of the data.
The backbone is the workflow service, which
manages the business logic, i.e. how different
data services work together to provide integrated
data. The IBS could also compose a negotiation
service to perform negotiation with data sources.

9) A Data access service (DAS) is a variation on a
typical (Web) service as it is more data intensive
and designed specifically to expose data as a
service. Data service providers implement a
DAS, which may query multiple, heterogeneous
data sources. Alternatively, different DASs may
query the same data source but produce different
data outputs.

10) When data service providers publish a DAS
description file into the registry, they also
publish the associated DAS metadata and
ontology.

1 1) For reasons of change management, DAS
providers may provide users with different
versions of their DAS. The service consumer can
decide which one better meets their
requirements, or choose to bind to the latest
version by default.

12) Unlike the functional service, DASs are stateful
and service transaction mechanisms may be
employed (Section 2).

13) Because services could be recursive, the IBS
could also be composed with other services such
as a security service, or a transformation service
to provide a more value-added service.

14) There is no integrated schema; data is integrated
on the fly.

In the next section we describe the form of the initial
prototype broker as completed in the summer of 2003,
including details of the technologies used and the
methods employed to expose a number of sample
healthcare data sources as services.

5. The initial prototype

The aim of the IBHIS project is to develop a series of
prototype information brokers of increasing complexity.
Each subsequent version of the prototype will realise
more of the ongoing SaaS research until the final version
is based around the SODIA architecture (Figure 1).

The following section describes the implementation
of the first prototype, which incorporates an initial sub-
set of the service-oriented elements.

5.1. System architecture
The underlying architecture of the first prototype is based
around a fusion of the available web service protocols

with the concepts of a Federated Database System
(FDBS). A detailed breakdown of the IBHIS architecture
in relation to FDBS can be found in Kotsiopoulos et al.
(2003) [15].

By its very nature, a major part of the IBHIS project
is concerned with the seamless accessing and integration
of many forms of complex data and exposing it as a
service. As many service-based projects are concerned
with exposing software as a set of services and not data,
one of our research questions was how to realise
traditional database structures within a service-oriented
architecture, especially given the limitations of the
available protocols. It was with this in mind that we
chose to employ a traditionally database-oriented concept
–that of the federated schema—but realise it within a
service-based implementation. We use web services to
enable the provision of data on demand whilst keeping
the underlying data sources autonomous. This
architecture allows us to provide data as a service (DaaS)
as oppose to software.

5.2. Service elements within IBHIS
Figure 2 illustrates how, conceptually, the first IBHIS
prototype is made up of several component ‘services’.

Figure 2. Conceptual architecture of Prototype 1

Access Rules Service (ARS)
The ARS is responsible for the initial user

authentication and subsequent data access authorisation.
Within the Health and Social Care domain there are a
number of clearly defined roles each with their own set of
generalised data access rights. Much research has been
conducted into applying Role Based Access Control
(RBAC) within the Health domain [20], with the
conclusion that RBAC alone is too inflexible for health
care applications. Therefore, a more complex set of access
rules were developed in conjunction with Solihull
Primary Care Trust, incorporating individual user rights
with roles. This prototype incorporates an initial set of

Page 5 of 10

these, which will gradually be expanded and
implemented fully in subsequent prototypes

Federated Schema Service (FSS)
The FSS maintains the Federated Schema and all of

the mappings between the local Export Schemas and the
global Federated Schema. The FSS is consulted by the
Federated Query Service during query decomposition.

The Federated Schema and the corresponding
mappings to the Export Schemas are bound during broker
initialisation.

Federated Query Service (FQS)
The FQS contains two sub-modules:
1. The Query Decomposer decomposes the Federated

Query into a set of local queries; this is done in
consultation with the FSS.

2. The Query Integrator receives the set of local results
from the Data Access Services and integrates them
into a Federated Record.

The FQS sends the Federated Query and the Federated
Record to the Audit Service.

Audit Service (AS)
The AS will contain two sub-modules which will

keep track of every action of IBHIS that needs to be
recreated or audited in the future, including user (login
date and time, IP address and sequence of queries
executed) and system audit details (data source
registration and user setup).

Data Access Services (DAS)
In the first prototype, DASs perform conceptually

the same function as was described in section 4. The
service description of a DAS must allow the consumer to
discover:

q The data input, output and its format
q The domain and functionality related to the data
q The security requirements for using the service
q Other non-functional characteristics, including

quality of service, and cost

The service providers then publish the description file
into the service registry so that a consuming service, in
our case the FQS, may discover them. Essentially, the
DAS is used to provide a transparent, unified way to
access distributed, autonomous heterogeneous data
sources.

Table 1, below, illustrates how the conceptual
services implemented in the first prototype can be
mapped onto the SODIA architecture (Figure 1).

SODIA First
Prototype

Notes

IBS (integration
broker service)

FQS The FQS is used for
integrating data only,
but IBS is a broker
service that will call
other services if
necessary.

service that will call
other services if
necessary.

Data Access
Service (DAS)

DAS Similar, but in
prototype 1 we do not
use semantic
descriptions.

Security Service ARS ARS is imposed at the
beginning of the session
rather than on a per-use
basis of the DAS.

Ontology Service FSS In prototype 1, it is not
an individual service, it
is part of the FSS

Discovery
Service

FSS Included within the
FSS

Service registry FSS Implemented as a
mappings database in
prototype 1

Table 1. Mapping prototype 1 to the SODIA

5.3. Implementation
The following section details the technologies chosen
along with the reasons behind their choices.

Development and Deployment Tools
Whilst web services are language independent, there

are two main choices for programming platform [23]:
Microsoft’s multi-language .NET or Sun’s J2EE
framework. An evaluation of both technologies was
performed through the use of both a SWOT and feature
analysis with the result that the Java based J2EE appeared
more suitable for IBHIS. This was largely due to the
support for multiple platforms.

Once the programming language was decided upon, a
set of application servers and Integrated Development
Environments (IDE) were needed. The choice of J2EE as
a programming environment to some extent dictated the
choices as we required tools that were compatible with
Java. Five available servers and IDEs were evaluated,
with IBM’s Websphere suite of tools appearing to fulfil
our requirements. Specifically, Websphere Studio
Application Developer version 5 was chosen as the IDE
along with Websphere Application Server version 5. We
aimed to use a consistent development environment
throughout the three sites to ensure that any problems
encountered were not due to version or tool
incompatibility. The use of a number of servers allowed
us to deploy the individual services at different sites in
order to build a truly distributed system.

Finally, we needed to provide a set of heterogeneous,
distributed data sources to provide a context within
which to test and demonstrate IBHIS with respect to
complex data integration. Three DBMS platforms were
chosen—MySQL, IBM DB2, and Oracle—which were
deployed on servers on site within each of the
universities. The content was designed to simulate
typical healthcare agencies based upon the case studies of

Page 6 of 10

section 3, such as General Practitioners and Social
Services, with all of the semantic and syntactical
heterogeneity that exists in the domain.

IBHIS Service elements
Figure 3 illustrates a schematic of the first prototype.

As can be seen, not all of the conceptual services
modelled in Figure 2 were actually implemented at this
stage, particularly the audit service. This has been left to
a later increment of the prototype:

Access Rules Service

Data Source 1 Data Source 2 Data Source 3

Export
Schema

Export
Schema

Export
Schema

XML file XML file

XML
file

Query

Query Processor

Results

User Interface

DATA ACCESS SERVICE 1 DATA ACCESS SERVICE 2 DATA ACCESS SERVICE 3

Federated
Query

Service

Query Integrator
Query

Decomposer

Federated Schema

XML
Repository

Administrator

Mappings
Mechanism

Federated
Schema
Service

Access
Rules

Figure 3. Schematic Diagram of Prototype 1

ARS
For the first prototype we used the ARS to restrict

access to the federated schema (itself implemented as an
XML Schema document) according to a set of rules, and
to create a ‘view’ of the schema for that session.

A number of possible policy language specifications
were evaluated, including the XML Access Control
Language (XACL) [17] and XACML [13]. We chose to
use XACL as it offered fine-grained access control to
XML elements. We believed XACML, whilst a more
recent specification, was not appropriate for the type of
document control required.

FSS
The FSS is mainly used at design time to create the

federated schema and the corresponding mappings. The
export schemas of the component databases are retrieved
in XML format and stored in a database. The system
administrator, along with a domain expert, resolves any
semantic differences and creates the federated schema. In
our model, the mappings between the export schemas and
the federated schema are stored in a relational database.

The database is wrapped as a web service and the
appropriate mappings are exposed as methods.

FQS
The query that the FQS receives consists of a list of

attributes, a search criterion and its value. The query is
analysed by a query decomposition algorithm and a set of
methods are called from the underlying data access
services. The results from the DASs are subsequently
integrated into a single record according to the federated
schema. The query decomposition algorithm relies on
the mappings mechanism to resolve any semantic
problems such as synonyms and homonyms.

DAS
In a real situation, service providers may choose to

implement their DASs differently, so to simulate this we
used two different programming designs. Two DASs
were programmed using JDBC to access their databases
directly, while the two remaining DASs used J2EE.
Entity beans were used to access the databases, with
session beans accessing the entity beans. The session
bean was then wrapped as a web service to form the
DAS.

5.4. Web service protocols
Each of the service elements were implemented as
described and built as one or more distributed web
services. To achieve this it was necessary to use a number
of different web services protocols to invoke, describe
and bind to each service. However, as outlined in section
2, there is an extensive choice of protocols that can be
used.

In terms of messaging and invoking services, SOAP
is the only real choice. Within SOAP itself there are two
choices for messaging style: Remote Procedure Call
(RPC) or Document style messaging. RPC style
messaging is based around a traditional request/response
interaction, with proxies being used at the client side of
the interaction to deal with the message construction. By
comparison, Document style messaging is asynchronous
and requires the client to build the SOAP messages
themselves, using an agreed XML syntax.

There are a number of advantages and disadvantages
to both styles of messaging but for the first prototype we
chose to use RPC with SOAP data encoding, largely
because of the static nature of the service interfaces and
also because of the potential performance benefits offered.
The latter is especially important when building a system
that could be used in a ‘real-time’ healthcare environment

Service based registries, such as UDDI, are used to
allow clients to dynamically discover services. Within
IBHIS, some form of registry is needed to enable the
FQS to discover which DASs can provide the appropriate
data to solve a user’s query. This discovery needs to be
performed at run-time to enable the FQS to retrieve the
location and interface details of appropriate DASs.
However, we believed that current service-based registry
implementations, and in particular service description

Page 7 of 10

languages, were lacking in certain areas required to
dynamically locate and bind to DAS services (see section
6) and as a result chose not to employ a standard service
registry. Our solution was to use a ‘registry’ database
which included mappings to DAS interfaces that could
provide each attribute in the federated schema.

As illustrated in Turner et al. [22], there are
numerous available languages with which to describe web
services, all offering slightly different content and with
varying support within the community. The choice of
which to use depends greatly upon the project and the
degree to which factors such as dynamic binding,
composition, and negotiation are required. Whilst many
of these features will become important in future
prototypes (see section 6), most were of only minimal
importance to the first prototype. Composition, for
example, will be important as we move towards the
architecture described in section 4, as services will be
discovered in a registry and dynamically composed. In
this situation, composition languages such as BPEL4WS
will be implemented, whilst in the first prototype
services are statically bound at design time, making
composition languages unnecessary.

We chose to use the de-facto standard description
language WSDL for the first prototype as we believed it
provided adequate descriptions for our initial
requirements. Also, the fact that it was supported by our
chosen development tools enabled us to benefit from
rapid development.

6. Discussion and observations

Overall, the development of the first prototype was
successful, in that it was completed on time without any
major technological changes, and enabled the integration
of distributed, heterogeneous data based upon healthcare
case studies. It is currently in the process of being
reviewed by experts within the healthcare domain.

However, the development was not without problems
and as explained in section 5 it was necessary to employ
a number of alternative temporary solutions in order to
complete the first prototype. Some of these arose from
our focus on exposing traditional database structures
rather than software, thus revealing limitations in the
current web services protocols by deploying them in an
unfamiliar environment. It is also beneficial to examine
how we believe the technologies employed will allow us
to evolve the first prototype towards the architecture
outlined in section 4. In doing so, we will be able to
assess if current web services technologies are mature
enough to meet our needs. Firstly, we examine our
choice of architecture.

6.1. Architecture
As explained above, due to our focus on data and the
limitations of service protocols (see section 6.3), we
chose to base the architecture of the first prototype around
a hybrid form using web services together with a

Federated Database System. This architecture is an
example of a tightly coupled FDBS with multiple
federated schemas. The advantage of such an architecture
is that it allows the creation of multiple integrated
schemas according to the system requirements. This was
realised in IBHIS by dynamically producing different
views of the federated schema according to a set of access
rules. The federated architecture proved to fit relatively
well with the concept of data as a service as long as the
schemas of the underlying data sources did not change
frequently and the number of subscribed data sources
remained relatively small. Manual schema integration is a
time consuming and error prone procedure which makes
frequent changes in the underlying data schemas difficult
to manage. Given that the federated schema is built at
design time, frequent changes would result in serious
functionality problems.

As a result, one of our research objectives is to design
a more flexible version of the proposed architecture, and
within this to seek to use the service model as described
in section 4 to overcome this problem. Along with this
goes the notion of a ‘meta-IBHIS’, in which a hierarchy
of communicating IBHIS brokers, each themselves
exposed as services, cooperate to connect islands of data.

6.2. Web services protocols
A number of different web services protocols and
languages were employed to create the first prototype. In
this section we progress beyond the architectural
discussions to discuss our protocol choices and assess the
extent to which they will facilitate the system’s
evolution.

At the most basic level, our deployment of SOAP
based services proved to be successful. Our choice of
RPC web services meant that local client proxies were
used, giving performance benefits and a shallower
learning curve, as the proxies dealt with the message
creation and data type encoding.

However, a number of problems were encountered as
a result of our choices. One problem was related to the
format in which data could be sent between services. In
our example, the interface needs to send a query to the
FQS. If Document style messaging had been used, the
query could be dynamically constructed and sent as a
single XML document, using pre-specified element
names and XML Schema data typing. However, when
using RPC web services the developer is tied to using
data types that are consistent with section 5 of the SOAP
1.1 specification [10]. Also, as the SOAP message is not
under the developer’s control there is much less
flexibility in terms of element names, as they are tied to
the names of methods and parameters. The result was that
the services were forced to return the results as array data
types to fit in with Java’s method based structure. Whilst
a concern, this in itself was easily solved. However,
arrays could not be sent as parameters due to problems
with SOAP data encoding. Therefore, instead of sending
an array as a query parameter it was necessary to send it

Page 8 of 10

as a concatenated string, requiring the receiving service to
perform unnecessary work in decomposing it.

Also, a great deal of time was spent during
development recreating the local proxies and changing the
requesting service every time the service interfaces
changed. The project is addressing a rapidly changing
domain and transient requirements, therefore service
interfaces are not only going to change during early
development but are almost certainly going to change
regularly throughout the project’s lifetime. The use of
RPC messaging produces a tightly coupled system, and
therefore it is unlikely that RPC will provide sufficient
support for the planned evolution of the prototype [12].
RPC was only able to support the development of the
first prototype because we were able to specify the form
of the interfaces in advance. In the future this may not be
possible. As a result, we will move towards the use of
Document messaging and literal data encoding. However,
the problems encountered were largely due to our
particular usage of SOAP, and we believe that as a
protocol it is able to provide everything necessary for us
to progress towards our service-oriented architecture.

It is difficult to examine our actual experience with
service-oriented discovery as we chose to employ an
alternative registry implementation rather than use UDDI.
Obviously, this approach was tailored more towards our
hybrid architecture than a pure service-oriented route and
in that respect it worked successfully, enabling the
system to locate and bind to DASs at run-time. However,
the problem is that it requires an extensive prior
knowledge of the data sources and the DAS interfaces. If
these were unknown, the system would fail. Also, the
frequent addition of new data sources or changes to the
existing schemas will quickly render this solution
unmanageable.

Hence, we are currently investigating adding a
service-oriented registry to the prototype. This would
provide a more flexible design by allowing the FQS to
dynamically discover and bind to any number of DASs at
run-time, without requiring the FQS designer to have
extensive prior knowledge. However, the major problem
with implementing a service registry and the reason why
we decided to use an alternative solution is because we
are exposing data as a service and not software, which
requires an extremely detailed service description which
the majority of available languages lack.

WSDL was the sole language used to describe each
web service within the prototype. It was created at design
time by the chosen IDE, and used to provide the interface
with which to create the client side proxies. WSDL was
able to provide adequate descriptions to allow the
development of the first prototype, but we believe it will
not provide the descriptions necessary to implement our
SODIA architecture (Figure 1). If a registry structure is
implemented then the FQS will search the registry and
hence the service description files with the aim of
dynamically discovering DASs that can solve a query.
However, in order to achieve this, the registry must allow
for reasonably semantic, flexible searching and the service

descriptions must be rich enough to describe the service
in both a technical sense and also in terms of the data
that it can provide. WSDL only describes a service in
terms of its data types, methods and parameters, message
format, transport protocol, and end-point uniform
resource identifier (URI). Whilst using literal data
encoding within the WSDL file and not SOAP encoding
would allow a consumer to discover what data the service
could provide, it does not describe other significant
factors required when accessing autonomous data sources
in a service-oriented environment. For example, WSDL
lacks descriptions of the service’s security requirements,
versioning details, quality of service and other non-
functional descriptions. Security is particularly important
as without a federated schema, the ARS will become
more service-oriented, granting or denying permissions
on a per-use basis in collaboration with the DAS’s own
security measures. Also, without reference to an ontology
of terms and semantics, it is difficult for consumers to
automatically discover the meanings behind services.
Therefore, it is unlikely that WSDL would be suitable for
our needs, at least not without significant extensions.

Ontology-based description languages such as
DAML-S offer richer service descriptions, and so it is
feasible that it would be adequate for a service-based
architecture. However, DAML-S has not yet reached a
final release, meaning that the finer details of the
language are still in flux. Also, the fact that tools do not
offer widespread support for the language limits current
possibilities for rapid application development. Even if
the language reaches a formal release, there will still be
problems with the currently available registries in that
they are largely keyword based, which limits the
possibility for truly dynamic searching.

6.3. Service-oriented development
We and others believe that service-oriented development
offers considerable benefits over traditional software
development paradigms [5, 6, 7, 9, 21]. Such benefits
include rapid software evolution and updating, dynamic
discovery, configuration and binding to services on a per-
use basis, and the dynamic creation of new services
composed from other services. Whilst web services do
not currently allow implementation of all of these
features [22], they are the closest available technology.
Despite this, there appears to be little documented
evidence of developer’s experience of web service
development and the benefits it can bring. In this section
therefore, we have reviewed some of our experiences with
web services development in general.

It is claimed that web services offer complete
platform, language and implementation independence.
Despite small incompatibilities between minor IDE
versions, this proved to be true in our case. The DASs in
particular were programmed using different underlying
concepts and deployed at distributed sites on
heterogeneous platforms, accessing a number of different
DBMSs. This is all transparent to the consuming service
–the FQS—because of SOAP’s unified XML data

Page 9 of 10

format. The separation of the service description and
implementation also means that the implementation of
the service could change without changing the code of the
consuming services. This independence also eased the
process of building the system independently. It allowed
the developers to code and deploy the individual web
services within their local application servers and be
confident of ‘plug and play’ interaction between them.

As regards updating, in our architecture the FQS
changed fairly regularly. However, the developer was
able to deploy new versions in their local application
server without affecting the system. The other services
were still able to communicate with new versions of the
FQS without changing the code or restarting. Therefore,
this feature combined with the independence provided by
XML messaging, should allow the evolution of the
system towards a service-oriented architecture much more
rapidly and with less disruption than traditional software
paradigms.

6.4. Development and Deployment Tools
The development team benefited a great deal from using
IBM’s Websphere platform. The version of the
Websphere development platform used provided all the
facilities needed to implement, test and deploy web
services. The web services were deployed in Websphere
Application Server. The process of creating and
deploying web services was carried out without any
major problems, and the IDE offered a number of time-
saving features in the form of automatic WSDL and
XML creation. An added bonus was the Concurrent
Versions System which is an open source plug-in for
Websphere providing version control for distributed
development.

 However, it has to be noted that a number of
problems arose during the first months of the project
with the early versions of Websphere Application
Developer v5, but these seem to have been considerably
reduced in the latest version. However, despite the
successful improvements, it was always felt that these
tools have problems with backward compatibility.

Overall, Websphere appears to have matured enough
to support the seamless development of web services
applications.

7. Conclusions

The primary aim of this paper was to assess the
extent to which web services could enable the successful
development and deployment of a complex, data-oriented
system and whether they are sufficiently mature to allow
the rapid evolution of this system towards a completely
service-oriented architecture.

As Section 4 illustrates, we are aiming to develop an
extremely complex service-oriented broker, and in
Section 5 we described the implementation of the first
prototype, which is the first step to realising a data-
oriented problem domain with a service-oriented design.

Our choice of IBM’s Websphere set of tools proved to be
successful, offering a consistent development and
deployment environment. The combination of SOAP,
WSDL and our own ‘registry’ implementation was
effective in handling distributed deployment across
heterogeneous platforms and allowed for relatively
transparent evolution of the component services. It was
discovered that the federated schema architecture was too
statically bound to the data sources and required a great
deal of manual editing at design time to accommodate
change. However, this architecture was only a temporary
measure to allow us to tackle the problems of
heterogeneous data integration, and to discover any
potential web services problems before building the
service-oriented architecture.

The problems we have identified arose from a
combination of our particular protocol choices, and
problems with using the Web protocols in general to
access traditional database structures. The former were
easily solved, whilst the latter are more difficult and
provide issues for further research. For example, we have
identified problems with using WSDL for our needs, in
that it does not offer the type of flexible, semantic, non-
functional descriptions we require when dynamically
locating Data Access Services. Confusion can arise in the
meanings of service and parameter names without
semantic descriptions, and without non-functional
descriptions essential features such as quality and even
security are neglected. There are other languages—see
section 2—but these either lack the support of tools or
registries or are currently unfinished. Therefore, it is
likely that we will need to extend one of the available
languages to fit our needs.

Registries also offer problems for flexible searching
using methods other than keywords, for example
ontology based searching or searching by function. Also,
it is unlikely that the Integrated Broker Service (IBS) can
always find the exact DAS(s) it needs to meet the user’s
requirements, so therefore the matchmaking mechanism
needs to be investigated to ensure that the end user can
still get some of their results. Another challenge is how
the IBS can evolve with the changes made by individual,
autonomous DAS owners.

Overall, our experience with web service technologies
when developing the first IBHIS prototype and planning
the system’s evolution has been positive and has offered
many benefits over other programming and deployment
paradigms. However, we believe that there are still some
areas where web services are not yet mature enough to
meet the requirements of a complex system such as
IBHIS, particularly as regards service description
languages.

Acknowledgements

We thank the members of the Pennine Group for their
continuing research into Software as a Service and for
contributing to the ideas in this paper. We also thank the

Page 10 of 10

members of the IBHIS project, including our
collaborators in Solihull, for their useful discussions
during the development of the first prototype and for
their insight into the needs of the Healthcare domain.
This work was funded by an award from the Distributed
Information Management programme of the Engineering
and Physical Sciences Research Council.

References
[1] S. Aissi, P. Malu and Srinivasan. K, “E-Business Process
Modeling: The Next Big Step”, IEEE Computer, 35 (5), 2002,
pp 55-62
[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, I. Trickovic and S.
Weerawarana, “Specification: Business Process Execution
Language for Web Services Version 1.1”,2003;
http://www-106.ibm.com/developerworks/library/ws-bpel/
[3] A. Ankolekar et al., “DAML-S: Web Services Description
for the Semantic Web,” in Proc. 1st Int’l Semantic Web Conf.
(ISWC 02), Springer-Verlag Heidelberg, 2002, pp. 348-363.
[4] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K
Govindarajan, A. Karp, H. Kuno, M. Lemon, G. Pogossiants,
S. Sharma and S. Williams, “Web Services Conversation
Language (WSCL) 1.0” 2002; http://www.w3.org/TR/wscl10/
[5] K. H. Bennett, P.J. Layzell, D. Budgen, P. Brereton,
L.Macaulay and M. Munro, “Service-Based Software: The
Future for Flexible Software”, in Proceedings of 7th Asia-
Pacific Software Engineering Conference, IEEE Computer
Society Press, December 2000, pp214-221.
[6] K.H. Bennett, J. Xu, M. Munro, Z. Hong, P.J. Layzell,
N.E.Gold, D. Budgen and O.P. Brereton, “An Architectural
Model for Service-Based Flexible Software”, in Proceedings
of COMPSAC’01, IEEE Computer Society Press, October
2001, pp137-142.
[7] K.H. Bennett, M. Munro, N.E. Gold, P.J. Layzell, D.
Budgen and O.P. Brereton, “An Architectural Model for
Service-Based Software with Ultra-Rapid Evolution”, in
Proceedings of ICSM’01, IEEE Computer Society Press,
November 2001, pp292-300.
[8] D. Booth et al., “Web Services Architecture: W3C
Working Draft,” 14 May 2003; www.w3.org/TR/ws-arch/
[9] O.P. Brereton, D.Budgen, K.H. Bennett, M. Munro,
P.J.Layzell, L. Macaulay, D. Griffiths and C. Stannett, “The
Future of Software”, Comm. ACM, 42(12), December 1999,
pp78-84.
[10] D. Box., D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H.F. Nielsen, S. Thatte and D. Winer, “Simple
Object Access Protocol (SOAP) 1.1”, 2000;
http://www.w3.org/TR/SOAP/
[11] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T.
Storey and S. Thatte, “Specification: Web Services
Transaction (WS-Transaction” 2002; http://www-
106.ibm.com/developerworks/webservices/library/ws-
transpec/
[12] T. Ewald, “The argument against SOAP Encoding”,
2002;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnsoap/html/argsoape.asp
[13] Godik. S et al., “OASIS eXtensible Access Control
Markup Language (XACML): Committee Specification 1.0
(Revision 1)”, December 2002; http://www.oasis-
open.org/committees/xacml/repository/cs-xacml-
specification-01.pdf

[14] Institute of Medicine, “The Computer-Based Patient
Record – An essential Technology for Health Care (R.S Dick
and E.B Steen, eds.)”, 1991; National Academy Press,
Washington DC
[15] I. Kotsiopoulos, J. Keane, M. Turner, P.J. Layzell and F.
Zhu, “IBHIS: Integration Broker for Heterogeneous
Information Sources”, to appear in Proceedings of
COMPSAC’04, IEEE Computer Society Press.
[16] H. Kreger, “Web Services Conceptual Architecture
(W S C A 1 . 0) , ” 2 0 0 1 ; www-
3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
[17] M. Kudo and S. Hada, “XML Document Security based
on Provisional Authorization”, in Proceedings of 7th ACM
Conference on Computer and Communication Security,
November 2000, pp87-96.
[18] OASIS Business Transactions Technical Committee,
“Business Transaction Protocol. An OASIS Committee
Specification. Version 1.0”, 2002;
http://www.oasis-open.org/committees/business-
transactions/documents/specification/2002-06-
03.BTP_cttee_spec_1.0.pdf
[19] E. Oz, “When Professional Standards are Lax: The
CONFIRM Failure and its lessons”, CACM, 37(10), October
1994, pp29-36
[20] J. Poole, J. Barkley, K. Brady, A. Cincotta, and W.
Salamon, "Distributed Communication Methods and Role-
Based Access Control for Use in Health Care Applications,"
Second Annual CHIN Summit 1995.
[21] C. Szyperski, “Component Technology – What, Where,
and How?”, in Proceedings of 25TH International
Conference on Software Engineering, IEEE Computer
Society Press, May 2003, pp684-693
[22] M. Turner, D. Budgen and O.P. Brereton, “Turning
Software into a Service”, IEEE Computer, 36(10) October
2003, pp??.
[23] C. Vawter and E. Roman, “J2EE vs Microsoft .NET. A
comparison of building XML-based web services”, 2001;
http://www.theserverside.com/resources/articles/J2EE-vs-
DOTNET/article.html
[24] Web services description language (WSDL) 1.1.
http://www.w3.org/TR/wsdl
[25] UDDI version 2.0 API specification.
http://www.uddi.org

