
A Framework for Software Architecture Visualisation Assessment

K. Gallagher A. Hatch & M. Munro

Visualisaton Research Group

Computer Science Department, University of Durham, South Road

Durham DH1 3LE, UK

{k.b.gallagher|a.s.hatch|malcolm.munro}@durham.ac.uk

Abstract
In order to assess software architecture visualisa-

tion strategies, we qualitatively characterize then con-
struct an assessment framework with 7 key areas and
31 features. The framework is used for evaluation and
comparison of various strategies from multiple stake-
holder perspectives. Six existing software architecture
visualisation tools and a seventh research tool were
evaluated. All tools exhibited shortcomings when eval-
uated in the framework.

1 Introduction and Related Work
1.1 Architecture

In the IEEE 1471-2000 standard [8], architecture
is defined as “the fundamental organization of a sys-
tem embodied in its components, their relationships to
each other, and to the environment, and the principles
guiding its design and evolution.” Architecture can
take two roles: one describing how the software sys-
tem’s architecture should be; the other role describing
how a software system’s architecture is.

While there are many variations on the theme of
software architecture, for the purposes of this work
work we use “Software architecture is a representation
of a software system at its highest level of abstraction,
consisting of a set of fundamental building blocks for
the software system and their interconnection.” [6].

1.2 Visualisation

Software visualisation attempts to retrieve and
present information about a software system to a user
in a visual format. By doing so, the user is often able
to understand the information presented in a shorter
period of time, or to a greater depth.

Visualisation, the process, can refer to the activity
that people undertake when building an internal pic-
ture about real world or abstract entities. The process
also includes decisions on metaphors, environment and

interactivity. The term visualisation in this work de-
scribes the process of mapping entities in the system
domain to graphical representations.

1.3 Stakeholders

For any software system, there are a number of
stakeholders, each with differing perspectives and re-
quirements of a software architecture depending on
their role. Stakeholders include the architects; design-
ers; developers; the sales, services and support teams;
and the customer.

Communication and understanding of the architec-
ture is essential in ensuring that each stakeholder can
play their role during a system’s lifetime. In support-
ing mainly developers and maintainers, software visu-
alisation has been largely concerned with representing
static and dynamic aspects of software at the code
level. Architecture visualisatons require a larger set of
stakeholders.

1.4 Software Visualisation

Price, et al., [11] presented a taxonomy of software
visualization. Our technique is similar to theirs in
that we also use a phenomenological approach to de-
rive properties from existing tools, then generalize to
a framework. Bassil and Keller [3] use Price’s frame-
work to qualitatively analyze a collection of software
visualisation tools. Maletic, et al., [10] enhance the
Price framework to regard task orientation.Hatch [6]
surveys software visualisation as a prelude to software
architecture visualisation.

1.5 Software Architecture Visualisation Re-
quirements

The aim of this work is to explore the ways in
which software architecture visualisation can assist in
the tasks undertaken by the differing stakeholders in
a software system. A comprehensive approach to soft-
ware architecture visualisation that is based on soft-

ware visualisation techniques should meet the follow-
ing requirements:

• support multiple representations of software ar-
chitecture.

• support multiple stakeholders of software archi-
tecture.

• support both static data and dynamic data.

• utilise a flexible data model to allow for the cap-
ture of a wide spectrum of architectures.

• utilise a flexible render model that allows for the
creation of many graphical components.

• utilise a flexible renderer for defining different
views.

The software architecture visualisation require-
ments can be incorporated into an evaluation frame-
work.

1.6 Result Summary

Our work is similar to that of Storey, et al. “[T]he
role of our framework is to act primarily as a discus-
sion tool. [The framework] can serve several purposes:
1) as a formative evaluation tool. . . 2) for potential tool
users. . . ; and 3) as a comparison tool. . . ” [16] The
principal difference being that this work is about ar-
chitecture, while theirs is about development.

2 Visualisation Evaluation Strategies
There are several strategies adopted when eval-

uating software visualisations design guidelines and
feature-based evaluation frameworks. Design guide-
lines are informal statements about aspects of a field
that are intended to assist further inquiry. Informal
statements promote reasoning about aspects of the vi-
sualisation to quickly determine their value. Guide-
lines can identify the relative merit of cognitive issues.
The primary use of design guidelines is to help in early
stage evaluation.Identifying areas in which guidelines
are used as evaluations can help in identifying where
there is a lack of evaluation frameworks.

Feature-based frameworks often take on the form of
multiple-choice questions which can be answered com-
paratively quickly. The application of an evaluation
framework imposes no prerequisites on infrastructure
or target system [9] and allow for evaluation of a sys-
tem at multiple levels of detail. Frameworks therefore
facilitate an evaluation capability with low overhead
and investment. Here, the style of question used is
of critical importance. Framework questions that re-
sult in simple “yes” or “no” answers may be too open

ended. Other problems with questions include a slid-
ing scale, which may then become too subjective, or
questions that depend very much on user experience.
Finally, some questions are simply too vague to be
answered accurately.

3 Evaluation Framework

3.1 Rationale for the Evaluation Framework

A new framework is required when considering
the evaluation of visualisations that explicitly address
software at an architectural level.Software visualisa-
tions do capture several aspects of visualisation that
are directly applicable to software architecture visual-
isation. The framework described here is not without
a strong basis in software visualisation evaluation.

We use a design guideline approach to build a
feature-based framework. The modular structure de-
scribed allows individual concerns to be addressed in
comparative isolation, and so the application of the
framework need not be performed in its entirety. Some
software visualisations make no attempt to evaluate
the implementation of a visualisation, but focus on
the visualisation itself. This framework also considers
implementation, because some properties of a visual-
isation can be better reasoned about in terms of its
implementation.

3.2 Description of the Evaluation Framework

The proposed framework is divided into seven key
areas: static representation, dynamic representation,
views, navigation & interaction, task support, im-
plementation and visualisation. Static representation
characterizes the size and accessibility of the architec-
tural information. Dynamic representation character-
izes the support for run-time collection and observa-
tion of architectural information. Views characterize
the perspective of the observer. Navigation and Inter-
action characterize the ease of use of the tool. Task
support characterizes the operational use of the visu-
alisation. Implementation assesses the “computable-
ness” the information. And visualisation character-
izes the quality of the information presented to the
observer. Visualisation refers to hardware; views refer
to the observer. While it may be that some of the
following items could be shifted from one key area to
another, the point is that any framework must address
all of these concerns. Table 1 presents a summary of
the individual evaluation framework questions/items.
Table 2 is the set of possible responses to questions in
the key areas.

Key Area Question
Static Representation (SR)

SR 1 Multiple software architectures
SR 2 Types of software architecture
SR 3 Recovery of software

architecture information
SR 4 Accommodate large volumes

of information
Dynamic Representation (DR)

DR 1 Support dynamic data
DR 2 Associate events with

architectural elements
DR 3 Non invasive approaches
DR 4 Live collection
DR 5 Replay data

Views (V)
V 1 Multiple views
V 2 Representation of viewpoint

definition
Navigation and Interaction (NI)

NI 1 Browsing
NI 2 Searching
NI 3 Query building
NI 4 Inter-view navigation
NI 5 View navigation

Task Support (TS)
TS 1 Represent anomalies
TS 2 Comprehension
TS 3 Annotation
TS 4 Communication
TS 5 Show evolution
TS 6 Construction
TS 7 Planning and execution
TS 8 Evaluation
TS 9 Comparison
TS 10 Show rationale

Implementation (I)
I 1 Automatic generation
I 2 Platform dependence
I 3 Multiple users

Visualisation (VN)
VN 1 High fidelity and completeness
VN 2 Dynamically changing architecture

Table 1: Evaluation Framework

Response Meaning
Y Full support
Y? Mainly supported
N? Mainly not supported
N No support
NA Not Applicable
? Unable to determine

Table 2: Possible responses to items in Table 1

3.2.1 Static Representation (SR)
A visualisation should be capable of accessing its data
source. Oftentimes, architectural data often does not
reside in a single location and must be extracted from
a multitude of sources. An architecture visualisation
certainly benefits from the ability to support the re-
covery of data from a number of disparate sources.
Moreover, with multiple data sources there should be
a mechanism for ensuring that the data can be consol-
idated into a meaningful model for the visualisation.

Architectural information may be recovered from
sources that are non-architectural. File-systems pack-
ages, classes, methods and variables can all contribute
to a view of the software architecture, and so a visu-
alisation system should support these data types.

If architectural data is to be retrieved from non-
architectural data, there is a potential for the data
repository to contain large amounts of data from lower
levels of abstraction. If this is the strategy employed
by the visualisation, then the visualisation should be
able to deal with large volumes of information; i.e.,
the system should be scalable.

3.2.2 Dynamic Representation (DR)
Runtime information can indicate a number of aspects
of the software architecture. Visualisations should
support the collection of runtime information from dy-
namic data sources in order to relay runtime informa-
tion. When dynamic events occur, the visualisation
should be able to display these events appropriately,
and within the context of the architecture. The visu-
alisation must therefore be able to associate incoming
events with architectural entities.

Disruptive behaviour is not desirable. The visu-
alisation system should support a suitable approach
to recovery of dynamic architecture data in the least-
invasive way.

3.2.3 Views (V)
A visualisation may support the creation of a number
of views of the software architecture, and may wish to
allow simultaneous access to these views. In the IEEE

1471 standard [8], architectural views have viewpoints
associated with them. A viewpoint defines a number
of important aspects about that view including the
stakeholders and concerns that are addressed by that
viewpoint, along with the language, modeling tech-
niques and analytical methods used in constructing
the view based on that viewpoint. A visualisation may
choose to make this information available to the user
in order to assist in their understanding of the view
they are using.

3.2.4 Navigation and Interaction (NI)
Storey, et al. [15] indicate that a software visualisa-
tion system should provide directional navigation. An
architectural visualisation should support the same fa-
cility.

Searching is the data-space navigation process that
allows the user to locate information with respect to a
set of criteria. Storey, et al [15] label this as arbitrary
navigation – being able to move to a location that is
not necessarily reachable by direct links.

Query building is a hybrid combination of brows-
ing and searching. It allows a user to find a set of
information, and then continually expand on a search
in a particular direction by repeated searching from a
related result. Visualisations should support this style
of data-space navigation.

Context should also be maintained when switching
between views so as to reduce disorientation. Along
with data-space navigation, the movement within a
view is also important. Schneiderman’s mantra for vi-
sualisation is overview first, zoom and filter, and then
show details on demand [12]. A visualisation system
should support this strategy. Also, the visualisation
should allow the user to move around so as to focus
on and see the information they are looking for.

3.2.5 Task Support (TS)
The visualisation should be able to cope with data
anomalies that are unexpected and may cause un-
wanted behaviour and report these anomalies to the
user if they can be detected.

Stakeholders may require very different views from
other stakeholders. As comprehension strategies are
task dependent, architecture visualisations should
support either of top-down or bottom-up strategies,
or a combination of the two.

An architecture visualisation should provide a facil-
ity to show the evolution. This support may be basic,
showing architectural snapshots, or the support may
be more advanced by using animation.

Visualisations may offer the capability for the users
to create, edit and delete objects in the visualisation.
Architectural descriptions can be used for the plan-
ning, managing and execution of software develop-
ment [8]. In order for the visualisation to support
this task, it should provide rudimentary functionality
of a project management tool – or have the ability
to communicate with an existing project management
tool.

Software architecture evaluation allows the archi-
tects and designers to determine the quality of the
software architecture and to predict the quality of the
software that conforms to the architecture description
[8]. A visualisation should have some mechanism by
which quality descriptions can be associated with com-
ponents of the software being visualised.

Rationale for the selection of architecture, and the
selection of the individual architectures of the com-
ponents of that architecture, are included in architec-
tural descriptions. Rationale can also be associated
with each viewpoint of an architecture.

3.2.6 Implementation (I)
Visualisations need to be able to be generated auto-
matically. A visualisation should be able to execute
on a platform suitable for the types of software it is
intended to visualise. As there are many stakeholder
roles in a software system, there may also be a one-
to-one mapping of role to physical users. Therefore
the visualisation should support multiple users con-
currently, or asynchronously.

3.2.7 Visualisation (VN)
For software architecture visualisation, the visualisa-
tion must present the architecture accurately and com-
pletely. During its execution, software may change its
configuration in such a way that its architecture has
changed. Dynamic architecture characterises software
that changes its architecture as it executes. If the vi-
sualisation is able to support architectural views of the
software at runtime, then it may be capable of showing
the dynamic aspects of the architecture.

4 Tools

This section presents a brief summary and discus-
sion of the features of tools that are to be assessed.

4.1 ArchView (AV)

The ArchView [4] tool uses the architecture analysis
activities of extraction, visualisation and calculation.
It produces an architecture visualisation that presents
the use relations in software systems.

4.2 The Searchable Bookshelf (SB)

The Searchable Bookshelf [14] visualisation at-
tempts to combine both searching and browsing ap-
proaches to software comprehension. The Search-
able Bookshelf adds search capabilities to the Software
Bookshelf. User to browse the software structure from
an initial overview by navigating through an HTML
style display and a software landscape central view.
4.3 SoftArch (SA)

SoftArch [5] is both a modeling and visualisation
system for software, allowing information from soft-
ware systems to be visualised in architectural views.
SoftArch supports both static and dynamic visualisa-
tion of software architecture components, and does so
at various levels of abstraction.
4.4 SoFi

SoFi [7] is a tool that performs source code analysis
in order to compare intended architecture with imple-
mented architecture. SoFi’s clusters source files into a
structure based on source file naming schemes. SoFi
relies heavily on the intervention by an architect.

4.5 LePUS

LePUS is a formal language dedicated to the specifi-
cation of object-oriented design and architecture [1, 2].
LePUS diagrams are intended to be used in the spec-
ification of architectures and design patterns, and in
the documentation of frameworks and programs.
4.6 Enterprise Architect (EA)

Enterprise Architect [13] is a UML CASE tool that
allows software architects, designers and analysts to
design software from several viewpoints. EA can be
used from requirements capture to UML modeling to
testing and project management.
4.7 ArchVis (AVis)

ArchVis [6] is prototype software architecture visu-
alisation tool. Its design was driven by the key con-
cerns identified in section 1.5. That is to say that
ArchVis was designed and built using the evaluation
framework as requirements. In this sense, including it
in this list is skews the results. However, the frame-
work and ArchVis were developed in parallel, so fea-
tures were added to the framework after the design of
ArchVis was complete.

5 Evaluations
Table 3 presents the evaluation of the features in

tabular form. Most tools do reasonably well in static
representation. Dynamic representation is another
matter, as none of the surveyed tools have support
for this key area. Most tools support multiple views;

none support viewpoint definition. Navigation and in-
teraction is supported by browsing in all tools. The
Enterprise Architect is the only tool that has all of the
searching, querying, and view navigation features. It
seems that all tools are deficient in task support. This
is mildly surprising as one would expect architecture
tools to be closely allied with project management and
IDE systems. It is also surprising to note that not
all tools have automatic generation and multiple user
support. And all tools support high fidelity visualisa-
tion, but none dynamically changing architectures.

With respect to ArchVis, it is worth noting that it
does not meet the full set of requirements. It does
not show evolution and give comparisons, and has
only lightweight support for anomalies and construc-
tion. It does meet the dynamic representation criteria,
and thus has one singular advantage over all the other
tools.

6 Conclusion
Software architecture is gross structure of a system;

as such it presents a different set of problems for vi-
sualisation than those of the visualising the software
itself. We used existing tools to develop and present
a framework for the assessment of the capabilities of
software architecture visualisation tools. The intent of
the framework is formulation, assessment, comparison
and discussion. Once the framework was constructed,
we used it to evaluate the 7 tools that were used in its
formulation.

References
[1] A.Eden. Visualization of object-oriented architec-

tures. In Twenty-third International Conference
on Software Engineering, Toronto, Canada, 2001.

[2] A.Eden. LePUS: A visual formalism for object-
oriented architectures. In Sixth World confer-
ence on Integrated Design and Process Technol-
ogy, Pasadena, California, June 2002.

[3] S. Bassil and R. Keller. A qualitative and quan-
titative evaluation of software visualization tools.
In Proceedings of the Workshop on Software Vi-
sualization, pages 33–37, 2001.

[4] L. Feijs and R. de Yong. 3D visualization of soft-
ware architectures. Communications of the ACM,
41(12), Dec 1998.

[5] J. Grundy and J. Hosking. High-level static and
dynamic visualisation of software architectures.

AV SB SA SoFi LePUS EA AVis
Static Representation (DR)

1 Y Y Y Y Y Y Y
2 Y Y Y Y Y Y Y
3 Y? Y? N Y? NA N Y
4 Y ? N? Y NA Y Y

Dynamic Representation (DR)
1 N N N? N NA N Y?
2 N N N? N NA N Y
3 N N N? N NA N Y
4 N N N? N NA N Y
5 N N N? N NA N Y

Views (V)
1 N Y Y N Y Y Y
2 N Y? N? N N Y Y?

Navigation and Interaction (NI)
1 Y Y Y N? NA Y Y
2 N Y N N NA Y Y
3 N N N N NA Y Y
4 N Y Y N NA Y Y?
5 Y N? Y N NA Y Y

Task Support (TS)
1 Y ? N Y NA N N?
2 Y Y Y Y Y Y Y
3 N N Y N Y? Y Y?
4 Y Y Y Y Y Y Y
5 N N? N N Y? N? N
6 N N Y N Y Y N?
7 N N N N N N Y?
8 Y Y? N Y Y Y Y?
9 Y? Y? N Y? Y N? N
10 N N? N N N? Y Y?

Implementation (I)
1 Y Y N Y NA N Y
2 Y? N? Y ? NA N Y
3 N Y Y N? NA Y Y?

Visualisation (VN)
1 Y Y Y Y NA Y Y?
2 N N N N NA N N?

Table 3: Evaluation Summary. See Table 2 for key.

In IEEE Symposium on Visual Languages, Seat-
tle, Washington, Sept 2000.

[6] A. Hatch. Software Architecture Visualisation.
PhD thesis, University of Durham, 2004.

[7] I.Carmichael, V. Tzerpos, and R. Holt. Design
maintenance: Unexpected architectural interac-
tions. In International Conference on Software
Maintenance, 1995.

[8] IEEE. IEEE Recommended practice for archi-
tectural description of software intensive systems.
Technical report, IEEE, Piscataway, N.J., 2000.

[9] B. Kitchenham and L. Jones. Evaluating soft-
ware engineering methods and tools. part 1: The
evaluation context and methods. In Software En-
gineering Notes, Jan 1996.

[10] J. Maletic, A. Marcus, and M. Collard. A task
oriented view of software visualization. In Pro-
ceedings of the IEEE Workshop on Visualizing
Software for Understanding and Analysis (VIS-
SOFT 2002), pages 32–40, 2002.

[11] Blaine A. Price, Ronald Baecker, and Ian S.
Small. A principled taxonomy of software visu-
alization. J. Vis. Lang. Comput., 4(3):211–266,
1993.

[12] B. Schneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Inter-
action. Addison-Wesley, 1998.

[13] Sparx Systems. Enterprise Architect.
http://www.sparxsystems.com.au.

[14] S.Sim, C. Clarke, R. Holt, and A. Cox. Brows-
ing and searching software architectures. In In-
ternational Conference on Software Maintenance,
Oxford, England, Sept 1999.

[15] M. Storey, F. Fracchia, and H. Muller. Cognitive
design elements to support the construction of a
mental model during software exploration. Jour-
nal of Software Systems, 44, 1999.

[16] M. A Storey, D. Cubranic, and D. German. On
the Use of Visualization to Support Awareness
of Human Activities in Software Development:
A Survey and Framework. In SoftVis–05, ACM
Symposium on Software Visualization, 2005.

