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Abstract 

Palaeopathologists have a long history of recording and interpreting evidence for 

infectious and metabolic diseases seen globally in preserved bodies and skeletons from 

archaeological sites. People today often experience co-morbidities, as did our 

ancestors, but little specific research in paleopathology has addressed synergies 

between these two categories of disease. The chapter starts by introducing these health 

challenges from a clinical perspective, and then considers the types of evidence used to 

detect them in the past, and the many methods available for recording and 

interpretation (macroscopic, biomolecular, histological, imaging, parasite analysis). This 

is followed by exploring links between leprosy and tuberculosis and vitamin D 

deficiency, leprosy and osteopenia/osteoporosis, the Developmental Origins Hypothesis 

and metabolic and infectious disease, and Paget’s disease of bone and infection. It is 

concluded that palaeopathology is in an excellent position, theoretically and 

methodologically, to contribute to our understanding of disease synergies in the past, 

thereby providing the evolutionary time depth for present understanding.  
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<A> Introductory background 

Infectious and metabolic diseases have been extensively explored in palaeopathology 

using various methods, although previous editions of this volume did not include either 

category of disease.  To date there has been very little research synthesizing the two 

despite many synergies existing in the clinical literature. This chapter considers some of 

these synergies and highlights future research potential, rather than covering basic 

aspects of these two categories of disease that have been covered in many 

palaeopathological and clinical texts (e.g. Aufderheide and Rodríguez-Martín 1998; 

Ortner 2003; Roberts and Manchester 2005; and see Resnick 2002 as an example of a 

clinical text). In addition, this contribution attempts to consider the evidence for 

infections and metabolic conditions thematically, in order to understand better their 

aetiologies and interactions. These conditions have been identified in preserved bodies, 

but the evidence is less common (but see Fletcher et al. 2003 on tuberculosis in 

Hungarian mummies, Møller-Christensen and Hughes 1966 on leprosy in an Egyptian 

mummy, Stout and Teitelbaum 1976 on osteoporosis in an ‘Eskimo’ mummy, and 

Panzer et al. 2013 on rickets in a Lithuanian mummy). The focus is research on skeletal 

remains rather than preserved bodies, because the former is most commonly excavated 

from archaeological contexts. 

<B> Infectious diseases 

There are four types of organism that can cause infectious diseases: viruses, bacteria, 

eukaryotes (e.g. protozoa, fungi, and multicellular parasitic worms), and prions (e.g. 

Creutzfeldt-Jakob disease) (Finch et al. 2002). They can spread directly or indirectly, 

and cannot only be transmitted from human to human, but from other animals to 

humans (zoonoses). The routes for transmission include airborne, faeco-oral, vector 

borne, person-to-person, direct inoculation, and ingestion (ibid.).  Risk factors for 

infections are many, but include poverty, high population density, poor housing and 

hygiene, dietary deficiency, specific occupations, and migration. Today many of these 

infections are preventable and treatable but there is increasing antimicrobial resistance 

(http://www.who.int/mediacentre/factsheets/fs194/en/). Organisms can adapt to 

environments and change their constitution so that they can resist control by drugs that 

http://www.who.int/mediacentre/factsheets/fs194/en/


3 
 

normally kill them or stop growth. This is an evolutionary process that is causing major 

challenges today, “but is increased and accelerated by various factors such as misuse 

of medicines, poor infection control practices and global trade and travel” 

(https://www.gov.uk/government/collections/antimicrobial-resistance-amr-information-

and-resources).  

Infections can be considered alongside the epidemiological transitions that have shaped 

who we are today; these transitions characterize relationships between the human 

population, their environment, and the diseases that have, and are, affecting them. 

However, as Barrett and Armelagos (2013, 1) suggest, “despite our reigning 

civilizations, it is the microbes, not the humans, who are the colonial masters of the 

world.” While infectious diseases overall increased during the first epidemiological 

transition (foraging to farming), they have declined in the third transition that started in 

the late 19th-mid 20th centuries. Life expectancy increased, living conditions improved, 

and vaccines to prevent, and drugs to treat, infections were developed. In between, or 

during the second transition, industrialization flourished from the mid-18th century and 

pandemic, epidemic and endemic infections declined. However, there were still major 

infectious diseases that engulfed large percentages of populations over this transition. 

The third, and current, epidemiological transition is now characterized by increases in 

globalization and urbanization, more people living longer and thus populations rising, 

more chronic degenerative diseases, and, in recent years, emerging and re-emerging 

infections (Barrett et al. 1998). For example, recent infectious diseases that have 

emerged to cause problems for large numbers of the population in specific regions of 

the world include those caused by the Zika and Ebola viruses (Laupland and Valiquette 

2014; Fauci and Morens 2016). Infections shape morbidity and mortality in the human 

population today, as they have throughout human history; studying their origin and 

evolution can inform the present, such as through aDNA (ancient DNA) analysis of 

tuberculosis (TB) (e.g. see Müller, Roberts, and Brown 2014). 

<B> Metabolic diseases 

Classification of diseases is complex (Ortner 2012; Ortner 2003, 383) and the metabolic 

diseases have proved particularly difficult.  Clinically, this term is often applied to a 

https://www.gov.uk/government/collections/antimicrobial-resistance-amr-information-and-resources
https://www.gov.uk/government/collections/antimicrobial-resistance-amr-information-and-resources
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group of hereditary disorders (e.g., see Journal of Inherited Metabolic Disease).  In 

recent years interest in the group of cardiovascular diseases termed the ‘metabolic 

syndrome’ has also increased markedly, and this has led to further blurring of the way in 

which the term metabolic is applied to health issues.  Some authors in clinical medicine 

and palaeopathology have used the term ‘metabolic bone disease’ (see Brickley and 

Ives 2008, 2) and others working in palaeopathology have used the term metabolic to 

refer to “evidence of dietary deficiency disease in the skeleton” as indirect evidence of 

‘indicators of stress’ (Roberts and Manchester 2005, 224).  For the purposes of this 

chapter the definition used by Brickley and Ives (2008) has been followed, but as Ortner 

(2012, 250) noted, classifications are artificial mental constructs and should not interfere 

with our understanding of disease. 

A variety of risk factors put individuals at higher risk of developing metabolic diseases, 

many of which are linked to nutrition.  The occurrence of multiple metabolic diseases 

has frequently been noted (Semba 2012) and, as discussed in this chapter, 

development of infectious disease is a common consequence of metabolic diseases 

with nutritional causes.  The occurrence of metabolic diseases is variable across and 

within contemporary communities.  For example, Paget’s disease is suggested to be 

declining (Merashli and Jawad 2015), but there is widespread agreement that levels of 

vitamin D deficiency are rising in many areas of the world (e.g. Robinson et al. 2006; 

Wimalawansa 2012).  

Anatomically modern humans and other primates (lemurs and lorises excluded) have 

lost the ability to synthesize vitamin C (Padayatty and Levine 2016). With increased 

urbanization and differential food access, scurvy developed in a number of past 

contexts (Brickley and Ives 2008) and continues to be an issue in current groups 

(Wijkmans and Talsma 2016).  Vitamin D has also played an important role in human 

evolution. Vitamin D is one of the oldest known hormones, with an estimated age of 

750,000,000 years (Holick 2008). Although there is some debate (discussed by 

Brickley, Moffat, and Watamaniuk 2014), natural selection for lighter skin pigmentation 

during the African diaspora is the leading hypothesis to explain the development of 
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lighter skin pigmentation in humans living at higher latitudes (Holick and Chen 2008; 

Jablonski and Chaplin 2013). 

Combined with an appreciation of the synergistic relationship between infectious and 

metabolic diseases there is considerable potential to learn more about both past and 

present communities through an examination of skeletal evidence of metabolic disease. 

Appreciation of the importance of metabolic conditions in epidemiology and 

palaeopathology is far more recent than for studies of infectious diseases; therefore, 

large-scale diachronic studies are not yet available.  Significant advances might be 

expected in the study of metabolic diseases over the next ten years. 

<A> Palaeopathology of infections and metabolic disease 

<B> Types of evidence  

Human remains 

As a component of bioarchaeology, palaeopathology is defined as the study of disease 

evident in archaeological human and non-human remains. This evidence may be seen 

in skeletons and in mummies (see Brickley and Ives 2008 and Roberts and Buikstra 

2003 as examples). Defined as the direct evidence for disease, palaeopathology is 

complemented by documentary evidence describing disease and also artwork, which 

may include drawings, paintings, sculpture, and images on pottery. Mitchell (2011) has 

provided a full critique of documentary evidence, and many authors have considered 

the challenges of using data collected from human remains to reconstruct the history of 

disease (e.g. Wood et al. 1992, Wright and Yoder 2003). It is not the chapter’s place to 

detail the general challenges of palaeopathology, but more specific considerations are 

provided that focus on what the evidence can tell us about the experience of infectious 

and metabolic diseases in the past. 

Both infectious and metabolic diseases can affect the skeleton (and sometimes the 

teeth), but only in a small percentage of people affected. For example, only 3-5% of 

untreated people with leprosy or TB may have bone involvement (Resnick and 

Niwayama 1995a, 2462, 2487; Paterson 1961; Jaffe 1972). Reports on metabolic 
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diseases such as vitamin D deficiency in children (rickets) also suggest low frequency 

rates, for example 9% of young children in Glasgow, Scotland in the 1960s, based on 

radiographs (Richards, Sweet, and Arneil 1968). However, as bone changes are only 

detected via imaging techniques it is highly likely that these changes may be more 

common than clinical texts describe (and in this case less advanced imaging methods 

were used in the (pre-treatment) time periods that produced useful evidence for the 

palaeopathologist). Pathology museums with pre-treatment bones displaying these 

conditions can also be helpful (e.g. (e.g. https://www.rcseng.ac.uk/museums/hunterian), 

as might skeletal collections dated to pre-treatment eras where known medical histories 

are associated with specific diseases, despite the fact that those histories may not be 

accurate (see for example Assis, Santos, and Roberts 2012 on the Coimbra Collection).  

Diagnosis of both infectious and metabolic diseases does not usually include imaging 

today, with the patient being subject to a wide range of tests that are used to diagnose 

them. When taking a clinical baseline as a starting point it is necessary to know how an 

infectious or metabolic disease affects the skeleton, preferably in a person who has not 

had access to treatment. For studies of infectious diseases that affect the skeleton it is 

useful to examine remains of individuals who lived before the advent of antimicrobial 

drugs (e.g. antibiotics, antifungals, antivirals, and anti-malarials); metabolic diseases 

may be investigated in populations with conditions that have not been treated/reversed. 

This is because the effects of treatments on the skeleton may affect the expression of 

characteristic bone lesions. That said, standard macroscopic recording of abnormal 

bone forming and destroying lesions, their characteristics, distribution pattern, and 

potential differential diagnoses, is the first stage in providing an opinion on the specific 

nature of the disease in palaeopathology.  

In palaeopathology some infectious and metabolic diseases are more commonly 

identified. In terms of infections, the ‘specific’ conditions of leprosy, TB, and 

treponematosis (i.e. those where the causative organism is known) may be seen, 

alongside ‘non-specific’ conditions where there could be a range of organisms causing 

the bone changes (e.g. inflammatory lesions on the pleural surfaces of the ribs, the 

facial sinuses, the endocranial surface, and the lower leg bones). The metabolic 

https://www.rcseng.ac.uk/museums/hunterian
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diseases are less commonly identified, but increasingly are being recognised because 

more nuanced diagnostic criteria have been described in recent years. Conditions that 

are most frequently reported include vitamin D (rickets and osteomalacia), vitamin C 

(scurvy) deficiency, and osteopenia and osteoporosis. 

Historical and artistic evidence 

Historical and artistic evidence for infections and metabolic disease may be recognized, 

but are challenging to interpret unequivocally. For example, the signs and symptoms of 

TB can overlap with other lung diseases that may be described in historical documents 

(Roberts and Buikstra 2003, 214), and skin lesions in artwork may not be definitive 

enough in appearance and distribution to differentiate leprosy from other skin diseases. 

As Barnett (2014, 45) outlines for skin diseases in the 19th century, “the greatest 

challenge was simply that of distinguishing one condition from another”. There are, 

however, examples of historical and art evidence for some of the diseases under 

consideration in this chapter. 

Likely evidence for TB affecting the lymph glands of the neck is described in the 

1550BC Ebers Papyrus from Egypt, typical signs and symptoms documented in China 

in the 3rd millennium BC, and spinal TB noted by Hippocrates in Greece in the 5th/4th 

century BC (see Johnston 1993, 1063). Numerous depictions of people with kyphotic 

backs suggest the possibility of Pott’s disease (e.g. Morse et al. 1964 on 5000-year-old 

North African evidence), but many conditions, such as age-related osteoporosis, can 

result in kyphosis of the spine. Leprosy can affect the skin, resulting in lesions that may 

be difficult to differentiate from other skin conditions such as psoriasis andeczema etc.  

More recent artwork, such as that from Norwegian artists who directly observed people 

with leprosy, is more convincing (e.g. Danielssen and Boeck 1847). Scurvy was also not 

readily apparent in historical sources until more recent periods. For example, Vasco da 

Gama, a Portuguese explorer who visited the West Indies in 1497, described scurvy in 

his crew (Carnemolla 2003), but it was not until 1753 that the first full description was 

published (Lind 1753). Early descriptions of the signs of rickets in children, deformities 

of the legs and spine, are seen in the writings of Soranus of Ephesus, a physician 

practising in Alexandria in the 2nd century AD, and in Galen’s work around the same 
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time (Steinbock 1993). The classic description did not come until the 17th century when 

Glisson (1650) wrote his treatise on rickets. High frequencies of rickets in English 

children during and after the Industrial Revolution are also noted (Fildes 1986). 

Clearly, the historical and artistic data for these conditions can range from convincing to 

ambiguous; nevertheless, they need to be considered, and can in some cases provide 

earlier evidence than that documented in human remains. 

 

<A> Methods of analysis for metabolic and infectious diseases  

<B> Macroscopic 

“The gross anatomy (as corroborated by radiographs) is often a safer guide 

to a correct clinical conception of the disease than the variable and uncertain 

structure of a small piece of tissue” (Ragsdale and Lehmer 2012, 239 citing 

Ewing, 1922).   

 

This statement, made prior to many important developments in analytical techniques in 

biomedical research and palaeopathology, highlights an important general principal in 

palaeopathology.  The clinical literature is an important source of information.  Clinically, 

bone changes are rarely considered at the macroscopic level, but pathological changes 

to bone observed using other imaging techniques can often be observed directly in 

palaeopathology (e.g. ‘fraying’ of metaphyses seen radiologically in clinical rickets) 

(Thacher et al. 2000).  Although care is needed as ideas develop over time, clinical 

reports dating to the era before the widespread use of biochemical tests, when far more 

information was obtained from radiological and histological analyses, are an invaluable 

resource for paleopathologists.  Some of the earliest reports, such as Barlow’s 1883 

classic description of co-occurrence of rickets and scurvy, pre-dates treatments now 

commonly used for infectious and metabolic diseases in the developed world.  Despite 

recent advances in other investigative techniques, macroscopic analysis is still a critical 

part of paleopathological assessment of human remains, as discussed above. Indeed, 

this initial work is the basis for developing a differential diagnosis and must come before 
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any destructive techniques are applied to human remains (e.g. biomolecular); however, 

a better appreciation of the limitations of the various techniques has developed. 

 

Advances in diagnostic criteria used in palaeopathology continue to be made, even with 

conditions such as TB that have been the subject of much scrutiny. As an example, to 

date, much of the work undertaken has focussed on diagnosis in adults (Roberts and 

Buikstra 2003), but in 2011 Lewis extended research on pathological changes through a 

detailed investigation of TB in non-adults.  There are no pathognomonic features of TB 

in dry bone, but possible skeletal features of the condition in non-adults were reviewed, 

along with careful differential diagnoses of other infectious and metabolic diseases (e.g., 

brucellosis and scurvy), enabling new suggestions on disease prevalence to be made. 

In adult skeletons, spinal damage (Pott’s disease) has been the key focus for diagnosis 

stemming back to early work on this infection (e.g. Elliott Smith and Ruffer 1910 in 

Egypt), and continuing into contemporary studies. Nevertheless, there are a number of 

differential diagnoses for destructive lesions of the spine that must be considered (see 

Table 3.3 in Roberts and Buikstra 2003). Another bony change associated with TB is 

unilateral involvement of the joints of the arms and legs, and most frequently the hip and 

knee joints. Differentiating between TB of these joints and non-tuberculous septic 

arthritis is important, and useful differential diagnostic features are available (see Table 

3.4 in Roberts and Buikstra 2003). Recent work has, however, suggested that the 

pattern of tuberculous bony changes has seen temporal change (Steyn et al. 2013). In 

this study of documented skeletons with known causes of death in South Africa, the 

frequency of bone lesions was seen to increase over time, particularly after the 

introduction of antibiotics. This increase was explained by increasing longevity, enabling 

the lesions to develop in spite of drug therapy. 

 

Other areas of the skeleton have been highlighted in recent years where bone changes 

may also be related to TB. For example, the inflammatory-induced periosteal new bone 

formation (PNBF) on the pleural surfaces of the ribs has been a major discussion area 

in palaeopathology, initially from the research of Kelley and Micozzi (1984: Hamann 

Todd Skeletal Collection) – see Figure 1. Later, more nuanced contributions resulted 
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from research on skeletons with rib lesions from other identified skeletal collections in 

the USA (Robert J. Terry) and Portugal (Coimbra and Lisbon) from Roberts, Lucy, and 

Manchester (1994), Santos and Roberts (2006), and Matos and Santos (2006).  Cause 

of death data for each skeleton were used in concert with evidence for rib lesions to 

suggest that respiratory infections, and most likely TB, caused the lesions. The often 

very subtle lesions identified on the ribs seen palaeopathologically have not been 

described in clinical literature, although one report of enlarged ribs in patients with lung 

diseases can be interpreted as the result of respiratory disease (Eyler et al. 1996). In 

this study the horizontal width of the ribs were studied from radiographs in four groups 

of patients: 1: 41 with chronic pleural disease, 2: 30 with a clinical diagnosis of TB of 

five years or more (unilateral), 3: 25 with empyema, and 4: 60 with no disease (control). 

Twenty-four of the 41 in Group 1 (59%) had a range of lung diseases: TB (most 

common), non-TB empyema, trauma or metatastic tumour, or a person who had had 

thoracic surgery. There was a significant difference between the size of ribs on the side 

of the thoracic cavity affected and the non–diseased side in groups 1 and 2, and no 

difference between groups 3 and 4. The difference in size is interpreted as representing 

varying amounts of new bone formation on the visceral surfaces of the ribs. 

 

The common conclusion of the cited studies is that rib lesions are not pathognomonic 

for TB and could be caused by many lung problems, but that TB may be a cause. As a 

development on this idea, biomolecular studies have been used to try to prove a direct 

association between rib lesions and a diagnosis of TB using aDNA analysis (e.g. see 

Mays, Fysh, and Taylor 2002; Nicklish et al. 2012). While positive DNA results for TB 

were found in skeletons with rib lesions, this does not prove a direct association. It is 

possible than an individual with TB may have had another lung disease. Roberts, Lucy, 

and Manchester (1994) demonstrate this possibility: some skeletons in the Terry 

Collection had documented causes of death that included both TB and another 

pulmonary disease. In these cases, how can it be proved that TB caused the lesions 

and not the other respiratory disease?  These cases also highlight the importance of 

considering the possibility that human remains examined by paleopathologists may 

come from individuals who would have experienced a high disease burden, including 
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multiple lung problems; as today, co-occurrence of conditions would have been 

common in past communities. 

 

Rib lesions are not the only ‘non-specific’ bone change suggested to be related to TB. 

The cranium may develop destructive lesions of both tables of the skull. Hackett (1976) 

described and illustrated the damage, alongside showing how the lesions may be 

differentiated from other diseases such as venereal syphilis. Endocranially, a “maze like 

appearance” has been described in skeletons from the Hamann-Todd collection 

(Hershkovitz et al. 2002, 202), which may also be interpreted as well remodelled new 

bone formation. Subsequently Hershkovitz et al. (2008) published data using this 

diagnostic criterion as indicative of TB in 9000-year-old remains from Israel.  “Granular 

impressions” were also described in a Homo erectus skeleton (Kappelman et al. 2008, 

112; see also Roberts, Pfister, and Mays et al. 2009).  Lewis (2004) has reviewed data 

on these bone lesions and concluded that significant care should be taken in diagnosing 

specific diseases (including TB) because of their potential multifactorial aetiology; Lewis 

also noted that they may represent normal bone growth in growing children (see Figure 

2).  Calcification of the pleura could also occur in respiratory diseases, including TB, 

and the long and short bone diaphyses may also be involved in a range of diseases.  

For example, dacylitis may be seen in people with TB, congenital syphilis, and sickle 

cell anaemia (Resnick and Niwayama 1995a). Finally, the condition of hypertrophic 

pulmonary osteoarthropathy, which involves PNBF on long bones, can be associated 

with TB, but also other pulmonary and non-pulmonary diseases (Resnick and 

Niwayama 1995b; see also Assis, Santos, and Roberts 2012).  

 

Weston has examined the aetiology of PNBF by studying bone reactions on pathology 

museum bones with known medical histories (2008, 2009, 2012).  Although PNBF can 

be associated with some infectious and metabolic diseases, this type of change 

develops in response to a much wider range of traumatic events and pathological 

conditions.  It was concluded that the tissues involved dictate the type of reaction rather 

than the traumatic event or pathological agent.  Importantly, it was also found that 

although some locations are more consistent with some conditions, no location is 
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uniquely diagnostic for a particular causative agent and factors such as age, sex, 

ethnicity, general health and co-occurrence of other conditions, as well as the stage of 

development of the condition at the time of death, will play an important role in the 

appearance of PNBF (Weston 2008, 56). 

 

The research by Lewis (2011) and Weston (2008, 2009, 2012) are good examples of 

developments in macroscopic diagnosis in conditions that have been investigated for a 

considerable period of time.  Lewis (2011) demonstrates how new approaches to non-

adult remains, which received limited attention during the early years of 

palaeopathology, can provide new information whilst highlighting the potential 

contribution that aDNA analysis can make to the identification of less studied infectious 

diseases such as brucellosis.  Weston’s research will enable paleopathologists to 

evaluate what can be said with confidence, and identify areas in which further research 

could help increase certainty.  Research that has developed the use and interpretation 

of non-specific markers of TB and leprosy (e.g. rib lesions in TB, and phalangeal 

grooves and dorsal tarsal ‘bars’ in leprosy – Figure 3) has also provided useful aids to 

strengthen diagnoses where more pathognomonic changes are present (for example, 

see Roberts, Lucy and Manchester 1994 for rib lesions and TB, and Andersen and 

Manchester 1987, 1988 for leprosy). 

 

Paleopathological investigations of metabolic diseases have a far shorter history than 

the infectious diseases.  Information on many of the metabolic bone diseases was 

compiled and published in 2008 (Brickley and Ives). This volume, along with extensive 

work by both Ortner and Mays since 1997 (e.g., Ortner and Mays 1998; Ortner and 

Ericksen 1997), has led to a number of developments (to be covered in a second edition 

of The Bioarchaeology of Metabolic Bone Disease in 2018).  The topic of co-occurrence 

of rickets and scurvy, for which there is considerable clinical evidence and a small 

number of recent reports in palaeopathology, has been tackled by Schattmann et al. 

(2016).  These authors specifically considered the effect of having both rickets and 

scurvy on the skeletal manifestations of pathological change (see Figure 4).   

Furthermore, large-scale studies, using data from well over 1000 skeletons in each 
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case, have been used in evaluations of osteomalacia in adults (Ives and Brickley 2014) 

and paleopathological evidence for hip fractures (Ives et al. in press).  Similarly, Roberts 

and Buikstra’s (2003) synthetic study of the bioarchaeology of TB explored the value of 

different methods of diagnosis for skeletal remains, bringing together extant published 

and unpublished data on TB globally.  The authors further recommended close 

reflection on the diagnostic criteria used for identification of TB in palaeopathology in the 

future, and suggested that it would be beneficial to try to identify the early stage bone 

lesions of TB. Identification of TB before collapse of the spine in Pott’s disease, which is 

often the ‘classic’ image provided in textbooks, would be beneficial (for example see 

Mariotti et al. 2015).  Authors have tried to categorically establish early stage lesions 

(e.g. Baker 1999; Haas et al. 2000) and some have suggested that rib lesions may 

indicate that a population could have harboured TB (e.g. Larsen 1997). Roberts and 

Buikstra (2003) suggested that archaeozoologists might also consider exploring non-

human archaeological bones for evidence of TB since it can be a zoonosis.  They also 

highlighted the increasing contributions of aDNA analysis to understanding TB in 

palaeopathology, for example being able to diagnose TB in skeletons without bone 

changes, and differentiating between the bovine and human form of TB.  This was 

before research commenced concerning ancient strains of the M. tuberculosis complex 

(see below).  

 

<B> Biomolecular analysis: aDNA 

 

Genetics have come to play an increasingly important role in the investigation of many 

aspects of health.  A review of publication data available on PubMed reveals a rise in 

publications on aspects of genetics starting in the late 1980s.  There has been a steady 

increase since this date, with genetics now constituting a significant source of 

information on many aspects of both metabolic and infectious diseases (e.g. see 

overview for TB in Galagan 2014, and Brites and Gagneux 2015).  Advances in aDNA 

analysis in human remains have mirrored this trend, and high-throughput (or Next 

Generation) sequencing, from the mid-2000s has enabled whole genome sequencing 

from ancient DNA (e.g. Orlando et al. 2015).  DNA from living communities can also be 
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used to investigate aspects of the origins of humans and their diseases, and has 

significant potential to contribute an evolutionary perspective on various conditions (e.g. 

see Jobling, Hurles, and Tyler-Smith 2004).  For example, extensive work has been 

undertaken on skin pigmentation which is thought to have changed to allow adequate 

synthesis of vitamin D as humans moved to higher latitudes (Jablonski, 2012; Jolliffe et 

al. in press).  Furthermore, recent developments in understanding genetic aspects of 

contemporary disease has considerable potential to contribute to our understanding of 

conditions such as Paget’s disease of bone in the past (see below).  Rapid advances in 

techniques employed mean that journal articles are the best way to access current 

information on available techniques and developments (e.g. see recent review of 

ancient pathogen genomics in Harkins and Stone 2015). However, information on basic 

approaches to interpreting paleopathological data and to aDNA research is provided in 

chapters in Grauer (2012), and more generally in Brown and Brown (2011, 242-263). 

There have been extensive investigations of infectious disease using biomolecuar 

analysis, particularly that pertaining to aDNA, in archaeological human remains. Mycolic 

acid (e.g. see Gernaey et al. 2001; Masson et al. 2015) and protein analyses have been 

studied (e.g. Boros-Major et al. 2011; Hendy et al. 2016), but the latter is only in its early 

stages of development. 

 

Ancient DNA analysis has been used successfully to investigate various infectious 

diseases, and most commonly TB. Other infections have also been the focus of work, 

including leprosy and the plague, and less so for treponematosis and malaria. However, 

it should be noted that there are limitations to ancient DNA studies.  For example, as 

pointed out by Roberts (2012, 436), if one of the aims of the work is to prove an 

association between bone lesions and a disease using aDNA analysis, a definitive link 

between the lesion and the pathogen cannot be established.  There are wider ranges of 

issues to consider relating to aspects of the investigation of other infectious diseases, 

covered by Spigelman, Shin, and Bar Gal (2012), but also see Roberts and Ingham 

(2008). Whilst most work in this field has concentrated on samples of bone from 

skeletons or soft tissues of preserved bodies, dental calculus and coprolites are being 

targeted more frequently in recent years because they are believed to have “reliable 
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and abundant sources of directly dateable bacterial genomes from a wide variety of 

microorganisms” (Warinner et al. 2014, 132, and see Weyrich, Dobney, and Cooper 

2015).  The field is rapidly advancing and research trajectories are being shaped 

accordingly.  Fortunately for aDNA studies, access to modern DNA data allows 

comparative work to be undertaken.  

 

Research in the field of aDNA analysis can provide information that cannot necessarily 

be acquired through other palaeopathological methods.  Establishing that a person had 

a specific disease even if bone changes were not evident at death (perhaps because 

they died in the acute stages), identifying diseases without bone changes, and 

indicating species or strains of pathogenic organisms are some examples.  As 

described above, TB has been the focus for many analyses and has revealed exciting 

results. It is well known now that there are different phylogenetic lineages of the 

Mycobacterium tuberculosis complex (MTBC, or the organisms that cause TB in 

humans and other animals) associated with different geographic regions (Brites and 

Gagneux 2015, 21); this allows the tracking of MTBC’s evolution and spread globally.  

In the early years, from 1993, the focus was on using the method to diagnose TB in 

human remains in various parts of the globe (e.g. see Salo et al. 1994: 1000 year old 

skeletons from Peru). Research then began to consider diagnosis in skeletons where 

there was no bone change (e.g. Medieval Lithuania: Faerman et al. 1997), and 

genotypic analysis where the infecting strain was identified to be similar to M. 

tuberculosis and not M. bovis (Taylor et al. 1999). This was followed in 2001 by a study 

of the species of TB infecting humans buried at Wharram Percy, a Medieval site in 

Yorkshire, England, where Mays et al. found that nine individuals all had the human 

form of TB. In a similar study, Zink et al. (2003) found M. africanum preserved in 

Egyptian mummies with TB. It was not until 2009 that M. bovis was identified (Murphy et 

al. 2009: Iron Age Siberia).  Modern strains of TB were then found in 18th-19th century 

Hungarian mummies (Fletcher et al. 2003), and in Iron Age England (Taylor et al. 2005).  

 

Since then, numerous reports of tuberculous aDNA being identified in human remains 

have appeared in a range of journals, and interesting developments have appeared 
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over the last five years or so. For example, Barnes et al. (2011) studied an allele with 

natural resistance to intracellular pathogens such as TB in in 12 ancient populations 

from different contexts. They observed that people with long histories of living in urban 

environments are better adapted to resisting infections such as those caused by 

Mycobacteria, which has implications for the evolution of the bacteria, and the 

development of resistance and susceptibility genes for infectious diseases. Of recent 

date there are further studies on the strains of TB in archaeological human remains, and 

of particular note is the documenting of TB strains in Peruvian humans, mentioned 

above, that are closely related to those adapted to seals and sea lions (Bos et al. 2014). 

It is also apparent that seals are implicated for transmission of TB to other mammals 

today (e.g. cattle), as seen in New Zealand where cattle have access to seals through 

grazing on beaches and via water courses that feed into the sea (Loeffler et al. 2014). 

Indeed, there is accumulating evidence that TB strains were clearly being ‘transported’ 

by humans (and other animals) as they moved around in the past. For example, a strain 

of TB uncommon in England in the 19th century, but present in North America at that 

time, was identified in a woman buried in England (Bouwman et al. 2012). Variations in 

strains were also found over time and in different regions of England, with two different 

strains being found at one Roman site, different strains in 19th century sites, and a 

completely different strain to all identified in England found in a person buried in 

Scotland (Müller, Roberts, and Brown 2014). Indeed, linking mobility with infectious 

disease seen in skeletal remains is beginning to become more common in 

palaeopathological research, although there are only a small number of extant studies. 

Furthermore, the trend for aDNA analysis of TB now seems to be very much focused on 

both macroscopic and aDNA analysis in attempting a diagnosis (e.g. Masson et al. 

2013), the latter of which may not always be appropriate if a macroscopic diagnosis is 

clear. 

 

Indirectly related to TB, and an area that has not been developed in palaeopathology, is 

the recent literature pertaining to lactase persistence in human populations, or the 

innate ability to digest the milk sugar lactose (Burger et al. 2007; Itan et al. 2009; 

Gerbault et al. 2011). There are some aDNA data suggesting that Neolithic skeletons 
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from the earliest farmers of Central Europe show the presence of the lactase 

persistence gene (−13.910*T); although the sample size was small it was concluded 

that lactase persistence was rare in these early farmers (Burger et al. 2007). Assuming 

that ingestion of infected milk was a route for transmission of TB to humans, it could be 

hypothesized that skeletons showing TB from the archaeological record may harbor the 

lactase persistent gene. 

 

<B> Biomolecular analysis: Stable isotopes 

 

Analysis of dietary and mobility stable isotopes also has the potential to make a number 

of important contributions to understanding and contextualising many aspects of 

metabolic and infectious disease in past communities.  For example, nutrition is a key 

factor in the immune response (Krawinkel 2012) and is directly linked to the 

development of metabolic disease (e.g. Gennari 2001).  Isotope analysis has seen a 

surge in popularity in the last 15 years, and Richards and Montgomery (2012) usefully 

provide an overview of the integration of isotopic data with evidence of disease. While 

there are many publications on diet or mobility, very few try to link those data to 

disease, using either macroscopic or aDNA data.  

 

Investigation of paleodiets is an important component of stable isotope analysis 

(Katzenberg 2008).  The field has undergone a number of significant developments 

since the 1970s when researchers began to address questions linked to the 

development of maize cultivation and consumption (e.g. Vogel and van der Merwe 

1977).  Stable isotopes do not provide information on specific diseases or nutrients, but 

when interpreted in an ecological framework, isotopic data can provide information on, 

for example, patterns of weaning, levels of marine resources consumed, and the 

contribution of protein to the diet (Katzenberg 2012). These types of data can provide 

strong contextual information for investigations of both metabolic and infectious 

diseases.  Weaning patterns are known to impact the development of both rickets and 

scurvy and Giuffra et al. (2015) undertook isotopic analysis to establish weaning 

patterns in children with rickets entombed in the Medici Chapel in Florence, Italy.  The 
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contribution of stable isotopes to investigations of vitamin D deficiency is also 

considered by Brickley, Moffat, and Watamaniuk (2014).  Regarding vitamin C, humans 

can only access this nutrient from the diet, with human breast milk being an important 

source (Brickley and Ives 2008, 42-45); therefore, breastfeeding will be a key 

consideration when considering evidence for scurvy in infants.  For example, 

Schattmann et al. (2016) and Lewis (2010) considered weaning practices in the 

evaluation of scurvy and rickets in skeletons of infants and children, but no isotopic 

analysis was carried out in these studies.  However, care is required when linking 

weaning to conditions such as scurvy and rickets because questions have recently been 

raised regarding what can be said definitively about the timing of weaning (Reynard and 

Tuross 2015; see also Beaumont et al. 2015).  Nevertheless, direct integration of 

isotopic data in future studies of scurvy in infants and young children would provide 

valuable additional data, as has been done for rickets (Giuffra et al. 2015).  It has also 

been suggested in an in vitro study of M. bovis that bacterial growth was slower if 

humans were given vitamin C (Wang et al. 2012), M. bovis being one of the organisms 

in the MTBC that is responsible for TB in humans and other animals.   

 

In contemporary societies high levels of infectious diseases such as TB (Pace-Asciak, 

Mamo, and Calleja 2013) and metabolic diseases, including vitamin D deficiency, have 

been noted in migrants and their children (Pillow, Forrest, and Rodda 1995; Hintzpeter 

et al. 2008).  Indeed, the recent work identifying TB strains in archaeological skeletons, 

described above, indicates that people were likely migrating and taking their infections 

with them (as seen today: Gao and Rao 2015). People moved and move for many 

reasons, including to trade, access a better life, and move away from war torn areas of 

the world (e.g. see Harrison 2012 on historical perspectives of trade and its impact on 

disease).  In addition, it is well known that migrants today often live in poverty as they 

travel, and may do so at their final destination, thus challenging health care settings in 

their chosen country (Rechel et al. 2011; Gao and Rao 2015).  People travelling to TB-

endemic countries are also at risk (Cobelens et al. 2000), and relevant to this discussion 

are the definitions today of first- and second-generation immigrants, the former being 

defined today as a foreign-born resident who has relocated and become a citizen or 



19 
 

permanent resident in a new country, and the latter being children born of at least one 

foreign-born parent who is a first-generation immigrant 

(http://immigration.about.com/od/glossary/f/How-Is-First-generation-Immigrant-

Defined.htm).  For example, using census data in Berlin, Germany to link immigrant 

status to disease, higher rates of TB in second-generation immigrants were found (Marx 

et al. 2015).  

 

Isotope data in archaeological settings can provide information on patterns of migration 

and mobility in the past, including identifying first-generation migrants (e.g. Budd et al. 

2004), but isotopic analysis may also identify second-generation migrants. For example, 

in a study of mobility in Roman Winchester, England it was found that up to a quarter of 

people buried at the Lankhills cemetery were incomers, but few likely originated outside 

England (Eckardt et al. 2009). There were, however, burials at Lankhills for which 

context suggested non-normative burial rites for this region and time period. It was 

suggested, though isotopic analysis, that these burials represented second-generation 

immigrants, but retained all the cultural behaviour of the upbringing of these people. 

Therefore, even though local isotopic signatures may be found for archaeological 

skeletons from non-normative burials in the archaeological record, this could suggest a 

second-generation immigrant who, at death, was afforded a burial practice of their 

parents’ region of origin.   

 

The relationship of mobility to the spread of disease is relevant to this chapter.  For 

example, nutritional deficiencies associated with famine events were considered 

alongside isotopic evidence for migrant status in individuals buried in the East Smithfield 

Black Death cemetery in London, England (Kendall et al. 2013).  This type of 

information could contribute interesting contextual information to studies of metabolic 

and infectious diseases related to under- and malnutrition in past groups, such as those 

experiencing leprosy and TB. Refinements in isotopic investigations allow for 

comparisons to be made between stable isotopes from teeth and bone from the same 

individual, thus allowing changes in diet or place of residence during the lifetime of the 

individual investigated.  Sequential samples have also been taken from dentine, 

http://immigration.about.com/od/immigrationglossary/g/CondPermResidnt.htm
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providing a time dimension (Beaumont and Montgomery 2015).  Although hair is 

preserved relatively rarely in archaeological contexts, recent studies have investigated 

stable isotopes encapsulated in archaeological hair to look at changes in diet (Webb, 

White, and Longstaffe 2013) and physiological stressors such as chronic infectious 

disease (D’Ortenzio et al. 2015).  Furthermore, work by D’Ortenzio and colleagues 

supported suggestions made by Katzenberg and Lovell (1999) that long term illnesses 

may be a confounding factor that should be considered in stable isotopic investigations 

of diet.  Related to stable isotope analysis, dental calculus can also provide information 

on a range of aspects of past diets and genetic data (see summary review in Salazar-

García et al. 2014), and calculus has now also been analysed isotopically (Eerkens et 

al. 2014).  However, studies have produced conflicting results and the exact nature of 

the correlation and offset between data from calculus and bone are not fully understood 

(see results and discussion in Warinner et al. 2014 and Eerkens et al. 2014).  

Nevertheless, dental calculus is a frequent deposit found on archaeological teeth, 

meaning there is potentially a wealth of information waiting to be revealed (Warinner et 

al. 2014, 2015).   

 

There has been little work focusing on understanding infectious disease from a mobility 

perspective and to date no paleopathological work has been done on mobility and 

metabolic disease.  Future work could enable an assessment of metabolic disease in 

migrants in earlier human groups.  Montgomery (2002) tried to use mobility isotope 

analysis to track mobility and its relationship to infectious disease through studying 

treponematosis in late Medieval Gloucester, England – 12th-16th century AD.  A more 

recent study by Roberts et al. (2012) also attempted to track mobility histories of 

individuals with treponematosis in a late Medieval cemetery associated with the port of 

Hull, England.  Research linking mobility isotope data and TB in Roman individuals 

buried in England is ongoing 

(https://www.dur.ac.uk/archaeology/staff/?mode=staff&id=11974), and a recent paper 

has indicated that a person with leprosy buried in Great Chesterford, Essex, England 

may have originated from outside England (Inskip et al. 2015). The lack of studies in 

this field make it imperative that isotope specialists should work more with 

http://www.sciencedirect.com/science/article/pii/S0305440312003718#aff1
http://www.sciencedirect.com/science/article/pii/S0305440312003718
https://www.dur.ac.uk/archaeology/staff/?mode=staff&id=11974
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palaeopathologists to explore opportunities that link both disciplines (Richards and 

Montgomery 2012, 725).  These collaborations may reveal the dynamics of infectious 

disease transmission in the past.  However, the data will remain challenging to interpret, 

without knowing when a person contracted a disease during their mobility history. 

 

<B> Histology 

 

With the advent of biochemical tests for many conditions the use of histological 

assessment in clinical work has declined considerably.  However, clinically, histological 

assessment is still used in assessment of conditions such as renal osteodystrophy 

(Zang and Chouchan 2012) and older clinical work provides a valuable resource for 

those investigating metabolic diseases (e.g. Ranström and Von Sydow 1949; Follis, 

Park, and Jackson 1950).  Histological analysis can provide important additional 

information on some aspects of metabolic and infectious diseases, but there are 

significant limitations in diagnosing specific diseases from dry archaeological bone 

(Ragsdale and Lehmer 2012, 228).  As Ragsdale and Lehmer note, osteopenia is the 

most usual initial expression of disease, and the range of conditions that will produce 

this initial reaction is extensive (see review by Brickley and Ives 2008).  As discussed by 

De Boer, Van der Merwe, and Maat (2013) and Ragsdale and Lehmer (2012), the 

changes used in palaeopathology will be different to those used in clinical medicine and 

it is likely that only individuals with more severe or longer standing conditions will be 

identified.  

 

De Boer, Van der Merwe, and Maat (2013) have produced a review of research ondry 

bone histology undertaken in palaeopathology and addressed both its usefulness and 

challenges involved in the identification of infectious disease.  They suggest that 

features previously thought to be pathognomonic for conditions such as syphilis, 

leprosy, and TB cannot be used as unequivocal indicators of disease (De Boer, Van der 

Merwe, and Maat 2013, and see Blondiaux et al. 1994; Schultz 2001; Schultz and 

Roberts 2002; Von Hunnius et al. 2006).  Patterns of bone change observed 
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histologically can however be used to suggest the speed at which a lesion developed 

and if the features produced suggest a recurrent condition.  

 

De Boer, Van der Merwe, and Maat (2013) also review limitations and possibilities of 

diagnosing various metabolic conditions using histology.  They confirm that vitamin D 

deficiency, hyperparathyroidism, and Paget’s disease can all be identified histologically.  

For some conditions, such as Paget’s disease, the histological changes produced in 

bones affected are distinctive, and the presence of such features has assisted in 

diagnosing evidence in a number of skeletons (Bell and Jones 1991; Aaron, Rogers, 

and Kanis 1992).  However, poor preservation and diagenetic change may be present in 

archaeological bone and can prevent clear conclusions being reached (Pinto and Stout 

2010). For example, poor preservation limited the use of histological assessment of 

rickets by Schattmann et al. (2016), but histological analysis has proved effective in a 

number of investigations of rickets and osteomalacia (Schamall et al. 2003; Brickley, 

Mays, and Ives 2007; Ives and Brickley 2014, and see Figure 5).  Vitamin D is essential 

for effective mineralisation of osteoid, and in states of deficiency the amount of osteoid 

present increases (St-Arnaud and Glorieux 1997).  Clinically an increased volume of 

osteoid is the main feature used to make a diagnosis (Pitt 2002).  Osteoid is unlikely to 

preserve in archaeological skeletal material and, as a result, some people diagnosed 

clinically would be missed by those working solely with dry bone.  There is a range of 

features indicative of vitamin D deficiency that can be observed histologically, but these 

are likely to be found in more severe and longstanding cases of deficiency; a  review of 

features is available in Brickley and Ives (2008, Tables 5.7 and 5.13).  Features such as 

cloudy granular areas of bone formation (Bonucci et al. 1969) and ‘buried’ osteoid 

(Priemel et al. 2010) can be readily identified in well preserved archaeological bone.  In 

a living person nutritionally-related vitamin D deficiency will be resolved by obtaining 

adequate amounts of vitamin D.  In these cases the histological features that may be 

identified in bone will be lost through remodelling.  It is not clear how long histological 

features linked to deficiency will remain in bone when the condition is resolved, and the 

length of time will vary depending on the age, sex and general health of the individual 

concerned.  
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Archaeological human remains with preserved soft tissues offer greater scope for 

diagnosing pathological conditions with the aid of histological assessment (Aufderheide 

2003, 369-376; Grove, Peschel, and Nerlich 2015).  Naturally, levels of preservation 

and inclusion of internal organs vary widely depending on date, mummification 

techniques used, or natural conditions.  Evidence of parasitic infection has been 

identified in a number of mummies. For example, Chaga’s disease (T. cruzi infection) 

has been noted  in South America by Grove, Peschel, and Nerlich (2015) and Fornaciari 

et al. (1992).  Members of the latter team have also identified various infectious 

diseases with the aid of histology including syphilis (Fornaciari et al.1989).  

 

<B> Imaging 

 

Imaging is a method of analysis applied to human remains using a range of methods, 

including plain film, microradiographic, and tomographic techniques (e.g. see Rockall et 

al. 2013, and specifically for bones and joints Section 1 of Resnick 2002 where 

diagnostic techniques are considered).  Imaging allows for visualization of features that 

cannot be seen macroscopically, and has been most commonly applied to analyses of 

preserved bodies. However, a number of studies have suggested that x-rays can 

damage ancient DNA (e.g. Grieshaber et al. 2008), and therefore careful planning for 

future work is required (Bertrand et al. 2015) since there is more to be learned 

concerning the exact impact of various imaging techniques on different tissues. 

 

Wanek, Papageorgopoulou, and Rühli (2012) provide an excellent review of the history, 

advantages, and disadvantages of various imaging technologies.  This review examines 

approaches to differential diagnosis in palaeopathology using imaging technologies and 

outlines challenges such as equipment availability, levels of specialist knowledge 

required to access equipment, and relative costs involved.  Plain film radiography, the 

simplest and most widely available imaging technique, provides important information 

that can assist with identification and interpretation of pathological lesions related to 

both metabolic and infectious diseases.  CT (computed tomography) and microCT 

http://www.sciencedirect.com/science/article/pii/S0165993614002490
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analysis is less frequently employed compared to plain film radiographic analysis in 

palaeopathology, when compared to clinical medicine, but there is significant potential 

to obtain additional information when imaging technqiues beyond plain film radiography 

are employed. For example, Wanek, Papageorgopoulou, and Rühli (2012) suggest that 

more would be learned about subtle pathological changes such as PNBF if CT scanning 

was undertaken.   

 

Even so, simple x-ray imaging can enable significantly more information to be obtained 

from archaeological skeletons concerning many of the metabolic diseases.  In the case 

of rickets, as discussed by Mays, Brickley, and Ives (2006), it is possible to gather  

additional information that, when used in combination with some macroscopic features, 

can enable differentiation between active or healed rickets, or suggest an individual had 

experienced multiple episodes.  Radiological assessment also aided in the identification 

of scurvy and of the co-occurrence of both rickets and scurvy (Schattmann et al. 2016). 

It has also been found that systematic radiological analysis can be key in accurately 

detecting new bone formation caused by a range of traumatic events and disease 

processes that had healed at the time of death (Weston 2008). Plain film radiography 

can also be invaluable in diagnosing Paget’s disease in both clinical and 

paleopathological contexts ((Wittenberg 2001 and  Rogers, Jeffrey, and Watt 2002, 

respectively).  Clinically the V-shaped area of radiolucency seen in long bones, often 

referred to as the ‘blade of grass’ or ‘flame’ sign, is virtually pathognomonic of Paget’s 

disease.  Although the use of radiographs in the assessment of age-related bone loss 

and osteopenia has fallen from common use in clinical work, techniques such as 

metacarpal radiogrammetry, which was developed for use in clinical medicine, can be 

an excellent source of information on age-related cortical bone loss in palaeopathology 

(Ives and Brickley 2005; Mays 2001, 2006).  

 

Plain film radiography can also be useful for nuancing a diagnosis of infections, 

particularly because lesions beyond the surface of bones cannot be seen 

macroscopically. For example, following radiography of a femur that displayed new 

bone formation, it was revealed that osteomyelitis was present, represented by opacity 
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inside the bone (Santos and Suby 2012). Likewise, multiple bone TB was diagnosed 

following radiographic examination shown by well-defined radiolucent lesions in the long 

bones (Dabernat and Crubézy 2009). Finally, in work studying preserved bodies, Elliot 

Smith and Dawson (1924) described leprosy in the hands and feet of a Coptic Christian 

mummy from El Bigha (c. 500 AD). Unerupted teeth affected by infection may also be 

visualised through imaging as seen in the diagnosis of congenital syphilis in a colonial 

period child’s skeleton from Mexico City (Mansilla and Pijoan 1995).  

 

<B> Parasite analysis 

 

Parasites are organisms that spend all or part of their lifecycle living in or on another 

living organism.  Humans host a wide range of parasites, and infection with these 

organisms has a significant effect on health and well-being today.  Infection by intestinal 

parasites has a number of health consequences, and these include reduced nutrients 

for the human host. As such, they are closely linked to overall immune system strength 

and the metabolic diseases.  As discussed by Bunnag and other members of the WHO 

Expert committee, there are important differences between the various intestinal 

parasites in communities today, and such infections can pose a significant risk to 

individuals with a poor nutritional and/or immune status (Bunnag et al. 1987).  Due to 

the relatively robust nature of the eggs of intestinal parasites there has been 

considerable work on retrieval and analysis of their eggs from archaeological sites 

(Dittmar 2009).  Parasite eggs may be found in a variety of archaeological contexts, for 

example grave soils, cess pits, latrines and sewer systems, coprolites, and intestinal 

contents of preserved bodies. The majority of archaeological parasites found are 

classed as ‘souvenir’ parasites (“acquired relatively recently in human prehistory” - 

Reinhard and Araújo 2012, 755), rather than ‘heirloom’ parasites (“hosted by primate 

common ancestors of modern apes and humans” – ibid.). While parasites not only 

provide evidence for infection by these organisms, and information on diet, including 

methods of food preparation, it has also been demonstrated that their analysis can 

contribute to understanding past human migrations (Le Bailly, Maicher and Dufour 

2016), and modelling human adaptation (Dittmar, Araújo, and Reinhard 2012).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Le%20Bailly%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27130884
https://www.ncbi.nlm.nih.gov/pubmed/?term=Le%20Bailly%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27130884
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dufour%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27130884


26 
 

 

Some thoughts on the history of paleoparasitology and on future directions have been 

provided by Faulkner and Reinhard (2014), and also Reinhard and Araújo (2012).  

Importantly, it should be noted that researchers in different areas of the world use 

slightly different techniques to retrieve parasite eggs from different contexts, likely 

because of the robusticity and preservation of eggs encountered in these different 

regions (Mitchell pers com. February 2016).  Dittmar, Araújo, and Reinhard (2012) 

provide current methodology, particularly aDNA approaches, developments that have 

been made, and future considerations. As discussed in this chapter, histological 

analysis of soft tissues from South American mummies has produced evidence of 

Chagas disease (leishmaniasis), caused by the parasite Trypansosoma cruzi carried by 

the triatomine bug.  In the past the condition was restricted to Latin America, but 

recently it has spread to other areas of the world (WHO 2016).  Research that looks at 

evolution in parasite-human host interaction demonstrates taking multiple approaches, 

including using aDNA and immunological techniques (Dittmar, Araújo, and Reinhard 

2012), and also takes into account descriptions of lesions in mummified human remains 

(Araújo et al. 2009).  

 

Although it is possible to undertake analysis of infectious and metabolic diseases using 

just one of the methods described in this section, it has been demonstrated by 

numerous studies that that it is possible to say much more about their characteristics 

and history when using multiple methodologies.  Importantly this type of approach is 

more likely to produce data that can assist with suggesting the possible presence of co-

occurrence. 

 

<B> The contributions of other disciplines to understanding past metabolic and 

infectious disease  

Palaeopathologists by necessity often work with scholars from other disciplines. These 

include commercial archaeologists who excavate human remains, archaeologists with 

specialisms in the time period being studied, and those who focus on other types of 

archaeological ‘materials’. Other relevant disciplines range across the arts, humanities, 
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social sciences, and sciences, and include anthropology, biology, chemistry, earth 

sciences, geography, history (including the history of medicine), medicine, and physics. 

However, in this section, a focus on (medical) anthropology, (medical) geography, and 

(evolutionary) medicine is considered. 

Anthropology has a four field approach, that of archaeology, sociocultural, 

biological/physical anthropology, and linguistics. Palaeopathology ‘sits’ within biological 

anthropology but medical and nutritional anthropology are also found within this 

subdiscipline. As McElroy and Townsend state, “reaching widely across space and time 

for its materials, medical anthropology builds a bridge between health sciences and 

anthropology” (1996, xxi). It focuses on health in living populations, often in 

communities who live ‘traditionally’, which makes data from this discipline often relevant 

to interpreting our ancestors’ lives and deaths. It furthermore engages with all aspects 

of anthropology to better understand those factors which influence health and well-

being, the experience and distribution of illness, the prevention and treatment of 

sickness, healing processes, the social relations of therapy management, and the 

cultural importance and utilization of pluralistic medical systems 

(http://www.medanthro.net/9/).  For example, understanding the impact of leprosy and 

tuberculosis on the treatment of people with these diseases in the past necessarily 

draws on this vast body of literature (e.g. see Roberts 2011). Understanding the ‘here 

and now’ is important, while at the same time recognising that communities that are the 

focus of medical anthropologists are distanced in space and time from our ancestors’ 

worlds.  Nutritional anthropology goes beyond contemporary foodways and takes a 

biocultural approach to considering food as a dynamic system and the development of 

contemporary foodways with a clear evolutionary perspective (Dufour, Goodman, and 

Pelto 2013). Data and approaches from these areas may not always be appropriate to 

use in palaeopathology, but they offer valuable perspectives. 

Within geography lies the subdiscipline of medical geography, or “the comparative study 

of the spatial distribution of diseases and their possible causes” (Howe 1997, 1), which 

includes relationships between human disease and the physical and human-made 

environments (e.g. see Le Mare, Makungu, and Dunn 2014 on malaria). It is closely 

http://www.medanthro.net/9/
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related to epidemiology, or “the study of the distribution and determinants of health-

related states or events (including disease), and the application of this study to the 

control of diseases and other health problems” 

(http://www.who.int/topics/epidemiology/en/).  One of the very early and famous studies 

is John Snow’s investigation of the relationship of cholera victims to their water supply 

(public water pumps) in 1854 Soho, London. This study highlighted that one particular 

water pump on Broad Street was probably contaminated. On the basis of this study, 

Snow recommended that the pump handle be removed, which led to cholera’s decline 

in the area (Howe 1997, 161).  This sub-discipline is of importance in palaeopathology 

because it can provide information that may be used to understand the distribution of 

disease in the past.  For example, why is Paget’s disease today seen most commonly in 

the north-west of Europe (Mays 2010), including palaeopathological evidence (see, for 

example, Boylston and Ogden 2005)?  In a more general sense, infections that are 

transmitted from person to person via droplet spread necessarily rely on high population 

density and people living in close contact with each other. Thus, it is to be expected that 

these will rise in frequency in urban situations when people have chosen to live in towns 

and cities. This is clearly the case for tuberculosis in the past, which became a 

particularly acute problem in Industrialised Europe.  This transition to urban living was 

also noted to have led to large numbers of children developing rickets by both 

contemporary (Palm 1890) and later authors, and paleopathologists (Mays, Brickley, 

and Ives 2006). Indeed, studying global spatial frequencies of disease (essentially 

‘medical geography’), integrated with genetic data, is allowing insights into epidemiology 

and management and control of disease in the 21st century (Pybus, Tatem, and Lemey 

2015; Sintchenko and Holmes 2015). 

Finally, clinical medicine is key to understanding health and well-being in people whose 

remains are studied by palaeopathologists (Mays 2012).  Appreciating how disease 

affects the living person (mechanisms and its signs and symptoms), and their remains 

(bones, teeth, and soft tissues), is essential to appreciate how a palaeopathologist 

recognises and interprets disease present in skeletons and preserved bodies.  

However, diagnostic criteria are “usually adapted so that they are suited to the 

circumstances of palaeopathology rather than uncritically taken from clinical sources” 

http://www.who.int/topics/epidemiology/en/
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(ibid., 302). Evolutionary medicine is related to clinical medicine; the evolutionary angle 

is in effect a “set of concepts and approaches with which to analyse many different parts 

of medical science” (Stearns 2012). This is defined as placing human disease “within a 

framework of evolutionary thought” so that its causes can be better understood 

(Gluckman et al. 2011, 250). It has developed from the initial work of Williams and 

Nesse (1991), and explores why there is a mismatch in human evolution whereby 

culture is proceeding at such a fast pace that people’s bodies cannot adapt to changes 

quickly enough and they become sick (Gluckman and Hanson 2008).  Scurvy is a key 

example. Humans are one of the few primates who cannot synthesise vitamin C and it 

is only if they are exposed to an environment lacking vitamin C that this inability is 

shown due to an enzyme mutation (Gluckman et al. 2011). This is why lack of access to 

vitamin C  in the past is used to explain its presence in skeletal remains. 

Palaeopathology nicely complements evolutionary medicine as it provides insight to 

health and well-being over thousands of years. In particular the research being 

conducted on the evolution of pathogenic organisms found in archaeological human 

remains shows great promise, in concert with modern genomics, in unravelling how 

pathogens have changed over thousands of years (see above). In addition, medical 

genomics is providing essential data that will help palaeopathologists better understand 

disease risk (Crespi 2010).  

<B> The importance of context 

 

While research in palaeopathology crosses disciplinary divides, context is important for 

the interpretation of pathological conditions.  Here the focus is on metabolic disease. In 

reviewing theory in palaeopathology, Grauer (2012, 5-6) found a tendency to take a 

processual approach, assuming that high frequencies of pathological conditions reflect 

individuals that are ‘less healthy’, these individuals being invariably those of lower social 

status.  Taking such an approach leaves little scope for properly exploring the full range 

of human social possibilities (Grauer 2012).  For example, there is a wide range of 

conditions, spatial and temporal, as well as socially and culturally mediated, that could 

result in the development of metabolic disease.  As discussed by Brickley, Moffat, and 

Watamaniuk (2014), considering context and avoiding a processual approach is critical 
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in the case of vitamin D deficiency.  Many people exploring vitamin D deficiency 

instantly think of rickets in the urban poor of 18th and 19th century industrial cities in 

northern Europe.  Deficiency was indeed widespread in English communities as is 

evident in reports from London (e.g. Ives 2015), Birmingham (Brickley et al. 2006), 

Wolverhampton (Adams and Colls 2007), and North Shields (Roberts et al. 2016), and 

continental Europe in the inter-war years (see Figure 6).  Although poor children have 

frequently developed rickets, the situation is more complex and context is required in 

considering differential diagnoses and interpreting findings. 

 

In 18th and 19th century Birmingham, England, there were two broad social groups 

represented by burials made at St. Martin’s Churchyard: earth-cut graves representing 

working-class individuals, most of whom would have been of fairly limited means, and 

brick-lined graves and vaults built by middle-class families.  Vitamin D deficiency (active 

and healed cases) was evident in both adult and non-adult individuals from both social 

groups (Mays, Brickley, and Ives 2006; Brickley, Mays, and Ives 2007).  The northerly 

location of Birmingham (52°N) would mean that from November to March the solar 

angle would be too low to produce effective vitamin D synthesis in exposed skin 

(latitude data from Holick 2008).  The poorer individuals would also have lived in 

crowded housing in the city centre, in contrast to the larger houses with gardens at the 

edge of the city occupied by those ultimately buried in vaults.  The range of socio-

cultural factors operating to produce nutritional-related vitamin D deficiency in both 

these groups is discussed by Brickley, Moffat, and Watamaniuk (2014).  Birmingham 

provides an example of how different socio-cultural factors could lead to the same 

disease outcome in both rich and poor. 

 

In addition to nutritional-related vitamin D deficiency there are numerous pathological 

conditions that can cause skeletal changes associated with rickets and osteomalacia 

(Brickley and Ives 2008, Table 5.4; Ortner 2003, 393).  Most other conditions that 

produce such changes are very rare and, prior to current medical treatment, few 

individuals would have survived for long enough for skeletal changes to manifest.  The 

first step in determining if one of the rare conditions featured in Table 5.4 of Brickley and 
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Ives (2008) is present is a careful differential diagnosis.  Consideration of context and 

socio-cultural factors can provide useful information on how likely it is that nutritional 

rickets or associated deficiency diseases were present. Vitamin D deficiency resulting 

from failure to acquire sufficient nutrients has been termed input insufficiency (Brickley, 

Moffat, and Watamaniuk 2014) and clinically the term ‘nutritional rickets’ is often used 

for these conditions in juveniles.  

 

If a skeletal assemblage contains more than one individual with pathological changes 

associated with rickets or osteomalacia, rare aetiologies are unlikely.  Given the poor 

preservation of skeletons with conditions causing mineralisation defects, in many cases 

differentiating such conditions would be impossible.  Radiological assessment could 

assist in some conditions such as hypophosphatasia (Jaffe 1972), a genetic condition in 

which mineralisation of new bone is abnormal and dental development can be disrupted 

(Brickley and Ives 2008, 259).   Genetic diagnosis of hypophosphatasia, caused by a 

mutation in the ALPL gene, has been undertaken clinically (Taillandier et al. 2015) and 

aDNA work could enable a diagnosis to be made in palaeopathology.  

 

Scurvy is another example where development of disease can occur in a range of 

socio-economic groups for different reasons.  The first commercially produced ‘infant 

foods’ became available in mid-19th century London.  These foods would have been 

expensive and therefore only available to better off families.  However, in the absence 

of firm nutritional knowledge, early commercially produced foods lacked many nutrients 

essential for healthy growth and development, including vitamin C.  As reported by 

Barlow (1894) infants feeding on these foods would have been at risk of developing 

scurvy.  In contrast, scurvy was widespread amongst the poorest members of society 

during the Great Irish Famine in the 1840s (Geber and Murphy 2012).  The potato was 

an important source of vitamin C for poorer members of society and loss of this 

resource had massive health consequences.  With the assistance of contextual 

information it is possible to suggest the presence of scurvy in archaeological skeletons 

and infer important information about contemporary socio-cultural situations in past 

communities. 
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<A> Some synergistic relationships between metabolic and infectious diseases 
 
Using currently available techniques there are limitations to investigating relationships 

between infectious and metabolic disease in palaeopathology.  If there was greater 

appreciation of the importance of exploring co-occurrence, and awareness of what can 

be said with confidence, this area of research could be further developed in 

palaeopathology. The following considers some co-morbidities. 

 
<B> Leprosy, TB and vitamin D deficiency 

 
Nutritional deficiency has been noted as having a particular impact on immunity 

(Chandra 1983), and vitamin D in particular is an immunomodulator in combatting 

mycobacterial and other infections (Bhutta 2008; Facchini et al. 2015).  The main 

source of vitamin D is exposure of the skin to UVB radiation, although small amounts 

are available from dietary sources and are closely linked to maintaining calcium 

homeostasis (Holick 2008).   It should also be remembered that leprosy and TB are 

both caused by Mycobacteria and have a degree of cross-immunity (Leitman, Porco, 

and Blower 1997). The strong link between malnutrition and many metabolic conditions 

means that they are closely associated with infectious disease because poor diets can 

affect the development and maintenance of a strong immune system that is resistant to 

infections.   

 

For all pathological conditions the number of individuals that develop skeletal changes 

recognisable by paleopathologists will be a small proportion of individuals with the 

condition.  For TB and leprosy there are currently no available data on what proportion 

of infected non-adults will develop bony changes.  Some skeletal changes, such as 

Pott’s disease of the spine, could be considered pathognomonic for TB, and the facial 

damage in leprosy, often described as specific to leprosy, has differential diagnostic 

options such as TB and treponemal disease. Nevertheless, collapse of the spine can 

occur in other conditions (see Roberts and Buikstra 2003: Table 3.3), and therefore 
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close attention to clinical descriptions of bone changes for these infections is required. 

Additionally, the non-specific bone changes associated with TB and leprosy could have 

a number of causes, making identification of individuals with these infections based on 

macroscopic evidence challenging (see Roberts, 2012, 435-436). The availability of 

prevalence data varies widely for the metabolic diseases and are dependent on the 

community under investigation.  The international occurrence of scurvy is unknown, but 

a 7.1% overall prevalence of vitamin C deficiency, which can result in scurvy if severe, 

has been reported for the United States (Goebel 2015).  Figures for Vitamin D 

deficiency are varied, in part because there is no internationally agreed level set for 

deficiency.  Care in interpretation of reported figures for serum 25(OH)D levels are also 

required as a number of authors have pointed out the poor accuracy and issues with 

test result precision (e.g. Reid and Bolland 2014).  Reported serum levels of 25(OH)D 

also vary greatly within and between communities; these issues are discussed further 

below, as is Paget’s disease.  All of these factors further confound assessing co-

morbidity between infectious and metabolic disease. 

 

If levels of vitamin D affect whether leprosy or TB develop then it is necessary to assess 

what levels are adequate for the prevention of vitamin D deficiency.  Although there are 

now widespread data on levels of vitamin D evaluated from serum concentrations 

observed in communities around the world, there is a lack of consensus on what an 

individual’s vitamin D level should be for sufficiency.  Recommended levels of 25(OH)D 

are set at >50nmol/L in many countries and Spiro and Buttriss (2014) suggest levels of 

25 nmol/L are the cut-off value to prevent rickets or symptomatic osteomalacia; this 

figure is widely used to denote deficiency.  The percentage of individuals in the UK with 

plasma 25(OH)D of <25 nmol/L on a year-round basis ranges from 7.5% of girls and 

boys aged 1.5 -  three years to 24.4%  of girls aged 11-18 years (Spiro and Buttriss 

2014, 328).  It is not currently clear how low 25(OH)D levels need to be before the types 

of pathological changes observed by paleopathologists manifest.  More research is 

required, as this type of information would help put the numerous current reports of 

vitamin D insufficiency and deficiency into context. 
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Investigations of adult skeletons excavated from the cemetery of St. Martin’s, 

Birmingham, England produced a prevalence rate of 4.9% for osteomalacia (, Mays, 

and Ives 2007). Data pooled from a much wider range of 18th and 19th sites (including 

St. Martin’s) produced a prevalence rate of 1.4% (Ives and Brickley 2014).  The 

prevalence of rickets in people buried at St. Martin’s was high (13% in juveniles) 

compared to 1.2% in the rural Medieval community from Wharram Percy examined by 

Ortner and Mays (1998). At St. Martin’s skeletal evidence revealed that 15% of adults 

had evidence of a previous episode of vitamin D deficiency (Brickley, Mays, and Ives 

2010), but no such evidence was identified from Wharram Percy.  Conditions in 

Birmingham during the Industrial Revolution would have been markedly different to 

those experienced by the current population of the UK, although rickets, as identified by 

fraying of the ends of the long bones seen on radiographs, and bowed legs, is still 

reported, particularly amongst the immigrant community of Birmingham and the West 

Midlands (Callaghan et al. 2006).  However, there are marked differences in patterns of 

vitamin D deficiency and rickets between paleopathological and clinical investigations. 

In the current UK population low 25(OH)D is most common in girls aged 11-18 (ibid.), 

but in the paleopathological investigation it was the younger children who were mstly 

affected. A significant factor in this difference is probably the fact that pathological 

changes are more likely to be seen in palaeopathology when individuals are undergoing 

rapid growth. Co-occurrence of vitamin D deficiency and tuberculosis has been noted at 

some 18th and 19th century British sites (e.g., Mays, Brickley and Ives 2006; Roberts et 

al. 2016 and Figure 7), but consideration of the relationship between vitamin D 

deficiency was not always part of the research objectives of these studies.  However, a 

study to specifically consider co-occurrence of TB and vitamin D deficiency has recently 

been completed by Donoghue et al. (in press). 

Limited data on 25(OH)D levels in individuals with pathological changes due to vitamin 

D deficiency that would be observable by paleopathologists are currently available.  

Holick (2007) reports that children with rickets often have 25(OH)D serum levels of 

<15ng/ml (37.44nmol/L (all figures converted using Oxford University Press 2016), and 

notes that skeletal deformities are usually a result of long standing rickets.  In a report of 

symptomatic rickets in juveniles from the UK, bowed legs were reported in an 11-year-



35 
 

old individual with 25(OH)D of 8.99 nmol/L, and severe knock-knee deformities in two 

individuals aged 14 years, both with 25(OH)D of <4.99 nmol/L (Crocombe, Mughal, and 

Berry 2004).  Symptomatic osteomalacia was also reported in a young adult female (21 

years) from Japan with serum 25(OH)D of <5 ng/mL (Watanabe pers. com. May 2016). 

In the person reported by Watanabe, Hotta and Ichihara (2015), thoracic deformities 

were observed of the type reported by Mensforth (2002) in the Hamann-Todd collection 

(kyphosis, scoliosis and deformities of the clavicles, sternum and ribs).  There were 

multiple vertebral fractures, but no typical pseudofractures observed.  This individual 

also had secondary hyperparathyroidism, and it was determined that the cause of the 

deficiency was nutritional rather than one of the rare conditions known to result in 

osteomalacia (ibid. See Brickley and Ives 2008, Table 5.4).  Useful information on the 

lifestyle and diet of the individual and the development of the skeletal changes over two 

years are provided by this study.  

 

Improvements in testing quality and data standardisation, as well as additional data, 

would be required for greater certainty, but it seems likely that many individuals reported 

as being deficient in 25(OH)D levels <25 nmol/L in the clinical literature would not be 

identifiable in palaeopathology using currently available analytical techniques.  It is 

unlikely that as many skeletons with vitamin D deficiency are missed as skeletons with 

TB where, as discussed, the percentage of individuals with the condition that display 

skeletal changes is very low, but a substantial proportion of people will not be identified 

and levels will be higher for adults.  Of course, with tuberculosis and leprosy there is the 

possibility of using aDNA analysis to identify individuals with no skeletal changes.  

 

It is possible that episodes of vitamin D deficiency in utero and during the first few years 

of life may have significant consequences for health in later life (Barker 1994; Holick 

2007).  There is also good evidence that vitamin D deficiency after birth will affect an 

individual’s immune response (Wei and Christakos 2015).  Positive effects of vitamin D 

on the health of individuals with TB have been noted for some time, and there are 

reports from the 1940s of treating skin lesions caused by TB infection with vitamin D 
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(e.g. Dowling, Gauvain, and Macrae 1948). In a review undertaken by Peterlik (2012), 

tuberculosis was the only infectious disease with good evidence that vitamin D reduces 

the infectivity of the pathogen from large cohort studies. More recently Facchini and co-

workers (2015) found a significant association between TB and low vitamin D levels in a 

review of 147 published studies.  There is still much to learn about the relationship 

between TB and vitamin D and some authors have urged caution regarding claims that 

vitamin D could be used in the prevention or treatment of TB (e.g. Miragliotta and 

Miragliotta 2015). It is, however, clear that there is a synergistic relationship between 

these two conditions and future studies using paleopathological data may be able to 

provide additional information. 

 

Leprosy and Vitamin D deficiency 

 

While the full role of vitamin D and its receptor (VDR) in the control of Mycobacteria is 

not fully understood yet, it is clear that the VDR influences the cellular immune response 

to leprosy (Fernando and Britton 2006). It can affect the type of leprosy a person 

develops, and the complexity and severity in how a leprosy reaction progresses (see 

Mandal et al. 2015). Vitamin D has been associated with modulating the immune 

system to protect against the development of either multibacillary or paucibacillary 

leprosy, confirmed by Lu’o’ng and Nguyê Combining Tilde (2012). Furthermore, recent 

work indicates that two VDR gene polymorphisms place people at risk from developing 

leprosy (Neela et al. 2015). As yet, there is no work in palaeopathology that has tried to 

identify the VDR genes. 

 

Leprosy and osteopenia/osteoporosis 

Osteopenia is diagnosed when bone mineral density is between 1-2.5 standard 

deviations lower than the mean for a healthy young adult reference group, and 

osteoporosis is significant bone loss (> 2.5 standard deviations below the mean), with 

associated with bone fragility which can predispose to fracture (Kanis 1990; WHO 

2003)”. Osteoporosis may affect most of the skeleton (e.g. in scurvy or rickets and 

osteomalacia), one part (e.g. paralysis following a ‘stroke’), or be very localised and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Miragliotta%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25386893
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related to infection and tumours. It can also co-occur with other conditions. For 

example, rheumatoid arthritis may be accompanied by osteoarthritis (Resnick and 

Niwayama 1995c, 823), and osteoporosis can be related to health problems that have 

led to limb disuse, such as in the viral infection of poliomyelitis (Resnick 1995:3365).  

Osteoporosis will predispose bones to subsequent fractures, especially in those 

experiencing age-related changes (e.g. post-menopausal women).  A genetic 

predisposition needs also to be considered when aetiological factors are being 

assessed because “genes may act variably on bone metabolism” (Brickley and Ives 

2008, 157). However, bone loss has been noted in infectious diseases (see Brickley 

and Ives 2008, 192-197), including leprosy, and it has been suggested that infections 

can “upset the balance between bone deposition and bone resorption” (Trevathan, 

Smith, and McKenna 2008, 205). 

While clinical reports of osteoporosis associated with leprosy are quite scarce, perhaps 

because leprosy is usually the focus of treatment and not any associated 

osteopenia/osteoporosis, it is clear that one of the complications of leprosy is endocrine 

dysfunction (Leal and Foss 2009), including hypogonadism, sterility, and osteoporosis 

(Ishikawa et al. 1999). In hypogonadism the body does not produce enough 

testosterone (for male growth and development during puberty), or it has an impaired 

ability to produce sperm, or both. The consequence of osteoporosis in leprosy is 

fracture, and a high proportion of people with leprosy have been found to have 

associated osteoporosis (Choudhuri et al. 1999) and low mineral density. Indeed, 

osteoporosis has been implicated in tarsal disintegration in leprosy (Patil and Jacob 

2000). This suggests that hypogonadism in men with the infection is a risk factor for this 

condition. In addition, it has been noted that there is variation in the vitamin D receptor 

(VDR) gene in relation to susceptibility to osteoporosis, and the type of immune 

response to leprosy (Roy et al. 1999). A poor prenatal environment may also lead to 

lower bone mineral deposition and people will be predisposed to osteoporosis later in 

life (Cooper et al. 2006). In leprosy, localised osteoporosis can also occur in people with 

the low resistant form (lepromatous leprosy) as osteolytic lesions, and can be present 
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underneath active localised skin lesions. The relationship between leprosy, 

osteoporosis, and vitamin D deficiency in the past has not been explored in any detail.  

In a study of one archaeological site, however, 65 skeletons with osteoporosis were 

noted from the late Medieval leprosarium at Chichester, England (Lee and Boylston 

2008), with 12 of 29 males (41%) having osteopenia. The association of osteoporosis, 

trauma and leprosy has also not been considered very frequently. However, of 

relevance here is the study of Judd and Roberts (1998) who considered evidence for 

fractures in people with and without leprosy buried in the same leprosarium cemetery. 

Males in particular may develop leprosy-associated osteoporosis, as discussed above, 

and people with leprosy may become blind, and could develop impairments leading to 

clumsiness, and loss of proprioception; they thus might be more likely to experience 

falls and fractures. In this study twenty-seven males (12.7% of 212 sexed individuals) 

and five females (2.4%) had fractures. Firstly, the frequency of fractured bones (2.6%) 

and the fracture rate among individuals (15.1%) were much higher than data from other 

urban medieval cemetery sites, and secondly, males exhibited more fractures. 

However, although fractures were seen at Chichester, people with leprosy did not have 

a higher frequency of fractures than those without leprosy, but it is possible that those 

with tuberculoid leprosy (high resistance, with no identifiable bone changes) could have 

been represented by some skeletons identified with fractures.  

 

While this archaeological site produced a high frequency of people with fractures overall 

when compared to other contemporary urban late Medieval sites, the impact of leprosy on 

fracture rates in particular is apparent (one third of long bone fractures were seen in people with 

bone changes of leprosy). However, diagnosing osteoporosis in archaeological remains can be 

challenging because of diagenetic changes that can make a bone appear to be osteoporotic. If 

the bones of the skeleton are affected by post-mortem changes, leading to loss of bone mass 

and/or thinning of the bone cortex, this may be mistaken for osteoporosis (but cortical erosion 

may indicate diagenesis). Furthermore, suggesting that bone loss was the result of leprosy in 

archaeological skeletal remains is complicated by the fact that it cannot be known whether bone 

loss occurred first or leprosy, and of course bone loss may purely be an indicator of increasing 

age. Nevertheless, this is an area of study that is worth pursuing in palaeopathology, 
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considering the strong link between osteoporosis and leprosy, and between vitamin D deficiency 

and leprosy.  
 

<B> The Developmental Origins Hypothesis, metabolic and infectious disease  

 

In 1990 David Barker proposed the Developmental Origins Hypothesis, suggesting that 

intrauterine growth retardation, low birth weight, and premature birth predisposed 

people later in life to metabolic syndrome diseases, such as cardiovascular disease and 

diabetes (Barker 1990). As a result, structures in organs can change, systems that 

control hormone levels, normal metabolism may alter, and enhanced stress responses 

may develop, making people more likely to react to psychosocial stress (Godfrey and 

Hanson 2009). The immune system changes over the life course, varying the strength 

of an individual’s resistance to infections. It is suggested that young adults adapt better 

to deal with chronic infections, when compared to the very young and very old; this 

adaptation reflects the importance of young adults in ‘…the survival of the species...’ 

(Simon, Hollander, and McMichael 2015, 7). Therefore, taking a life course approach to 

understand past and present health and well-being makes sense.  

 

Palaeopathologists in particular have been adopting this working hypothesis in their 

research in recent years, and linking evidence for height and various health indicators 

with age at death (Gowland 2016). For example, short stature was found to be 

associated with a higher risk of death in people living in London during the Black Death 

(DeWitte and Hughes-Morey 2012). While genetics and environmental (mostly) factors 

contribute to attained adult stature, in palaeopathology it is not possible to be specific 

about what might have caused short stature, but childhood diseases such as infections 

and nutritional deficiency are implicated. Infection that affects the teeth and alveolar 

bone (caries and periodontitis) has also been used to explain a higher risk for death in 

another Medieval cemetery in London, when compared to people buried there without 

these conditions (DeWitte and Bekvalac 2010). However, perhaps the most common 

health indicator used in palaeopathology to test the Developmental Origins Hypothesis 

has been linear enamel hypoplastic defects, or defects in the enamel of the teeth that 
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can develop during growth of the teeth if a person is stressed due to a childhood 

disease (possibly an infection) and/or a nutritional deficiency (Hillson 1996). For 

example, early work relating to infectious disease found that people with TB in their 

skeletons had more frequent and severe enamel hypoplasia than those without TB, and 

the defects developed “prior to circa seven years of age” (Knick 1981, 136). Duray 

(1990, 1996) also found more hypoplasias in people from the 800-1100 AD Libben site, 

Ottawa County, Ohio, USA who died early. More recent research confirms these 

findings from other geographic regions (e.g. Miszkiewicz 2012).  

 

Directly correlating early life ‘stress’ markers in the skeleton, indicative of metabolic or 

infectious disease, or both, with disease later in life is a challenge for palaeopathology.  

Determining the precise early life health problem that has led to a specific metabolic or 

infectious disease evident in the skeleton would be impossible. However, this type of 

research shows how palaeopathologists must take a whole life course approach to 

appreciating morbidity and mortality in past communities. 

 
<B> Paget’s disease of bone and infection 

 
Paget’s disease of bone (PDB) is a metabolic disease in which there is focal disruption 

of normal bone remodelling. Localised areas of increased resorption develop in 

association with extensive defective bone formation (Galson and Roodman 2014).  The 

pelvis, skull, long bones (particularly the femur and tibia) and the lumbar vertebrae are 

commonly involved (Figure 8), although other skeletal areas can be impacted (see 

review in Brickley and Ives 2008).  Histological (De Boer, Van der Merwe, and Maat 

2013) and radiological (Brickley and Ives 2008) techniques have significant potential to 

assist in suggesting paleopathological evidence of PDB with confidence.  It has been 

suggested that the prevalence of PDB has declined in recent years (Galson and 

Roodman 2014; Merashli and Jawad 2015) and it has been proposed that 

environmental triggers, including infectious diseases, have played a role.  Changes in 

prevalence are not, however, completely clear-cut because in earlier stages the 

condition is often asymptomatic.  The development of PDB is strongly age-related and 
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is often diagnosed in individuals over the age of 55 years (Merashli and Jawad 2015); 

thus, there will be difficulties in accurately establishing the incidence of the condition in 

clinical medicine.  Prevalence is highly variable geographically (Cundy and Bolland 

2008), but has been reported to be 0.71% ± 0.18% in the United States (Altman et al. 

2000).  Recent work on archaeological evidence of PDB provides strong evidence to 

support the theory that the disease originated in populations in Northwest Europe (Mays 

2010). Clinical evidence appears to show that there has been a marked reduction in the 

prevalence of PDB (Bolland and Cundy 2016) and paleopathological work could provide 

valuable data on the epidemiology of the condition. 

 

In some pathological conditions there is a genetic factor that is only expressed if there is 

a triggering agent (Ortner 2012, 251).  In the case of PDB there are clearly underlying 

genetic factors (Ralston and Albagha 2014), but there has been considerable debate 

about what the possible triggering agents could be.  There are clear regional differences 

in the prevalence of PDB. Individuals from Britain currently have the highest levels, with 

high rates in other areas of Northern Europe, and regions of the world that have 

experienced high levels of immigration from these areas (Merashli and Jawad 2015).  

High on the list of possible suspects for triggering agents are viral infections.  Various 

viral infections have been suggested (Cundy and Bolland 2008), and these infectious 

conditions may have a zoonotic component.  Studies have noted that individuals with 

PDB are more likely to have owned a dog than control individuals, and possible links 

with canine distemper virus have been investigated (Ralston 2008).  However, the 

debate regarding a possible relationship between PDB and viral infections remains 

unresolved.  Some viruses have been demonstrated to impact aspects of bone 

remodelling, but such observations do not mean there is a direct link (Ralston 2008, 

822).  It is likely that the development of PDB varies between individuals with different 

genetic mutations.  In some individuals a specific viral infection may be a required co-

factor in the development of PDB, and in others carrying the p62P392L gene (a result of 

the commonest genetic mutation in PDB) a second genetic mutation could be required, 

or an additional viral trigger (Galson and Roodman 2014, 87-88).  With advances in 
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high-throughput sequencing for DNA studies it may be possible to investigate genetic 

mutations in paleopathological skeletons showing PDB.  

 

<A> Conclusions 

With recent developments in the field, paleopathologists are now on the cusp of being 

able to fully investigate the synergistic relationships known to exist between infectious 

and metabolic diseases.  Developments in analytical techniques outlined in this chapter 

mean it is now possible to investigate a much wider range of questions, and 

biomolecular analysis is likely to remain particularly important.  A number of important 

areas have emerged where combining information from both infectious and metabolic 

diseases offers the potential to not only understand more about the lives of those who 

experienced these diseases in the past, but also contribute clearer answers to 

questions in current clinical medicine.  For example, palaeopathology has the potential 

to contribute information on the epidemiology of Paget’s disease of bone and assist in 

determining the role of infectious disease in its development.  Much clearer information 

could also be provided on the nature of the co-occurrence of infectious and metabolic 

conditions such as TB and vitamin D deficiency. More can be also learned about the 

way in which bone loss develops, through systematic studies of the development of 

osteopenia and osteoporosis in skeletons diagnosed with leprosy. Importantly, 

consideration of both infectious and metabolic disease in the context of the 

Developmental Origins Hypothesis would make a significant area of research that has 

considerable potential to contribute to a number of important debates on current health. 

A theme that emerges is the important need for curation of archaeological human 

remains in a careful manner, and planning for their long-term study. It is clear that 

restudies of human remains with new methods and questions generate new outcomes 

(Buikstra and Gordon 1981). Reburial of human remains prevents their study in the 

future as sophistications in methodology develop and new theories about the history of 

disease emerge. Thus, the potential is lost for using palaeopathology’s deep time 

perspective which enables the present to learn from the past. 
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