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Collapsed 3-Dimensional Alexandrov Spaces:

A Brief Survey

Fernando Galaz-García, Luis Guijarro and Jesús Núñez-Zimbrón

Abstract

We survey two recent developments in the topic of three-dimensional
Alexandrov spaces: the topological classification of closed collapsed three-
dimensional Alexandrov spaces and the geometrization of sufficiently
collapsed closed three-dimensional Alexandrov spaces.

13.1 Introduction

Alexandrov spaces (with curvature bounded below) are metric general-
izations of complete Riemannian manifolds with a uniform lower sec-
tional curvature bound. In addition to its intrinsic interest, Alexandrov
geometry plays an important role in the proof of finiteness results for
certain families of closed (i.e. compact and without boundary) Rieman-
nian manifolds (see, for example, the survey [12]). Indeed, by Gromov’s
precompactness theorem, the family MD

k (n) of closed Riemannian n-
manifolds with sectional curvature sec ≥ k and diameter bounded above
by D > 0 is precompact in the Gromov–Hausdorff topology. Moreover,
limits of sequences in MD

k (n) are Alexandrov spaces with curvature
bounded below by k. More generally, if X is the Gromov–Hausdorff limit
of a sequence {Xn

i }∞i=1 of compact n-dimensional Alexandrov spaces
with curvature bounded below by k, then X is an Alexandrov space
with curvature bounded below by k and (Hausdorff) dimension at most
n. Topologically, the case where the limit X is n-dimensional is well
understood. Indeed, by Perelman’s stability theorem [21], the elements
Xn

i of the sequence are homeomorphic to X for i sufficiently large. The
complementary phenomenon, in which the dimension of X is strictly less
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than n, is known as collapse. Note that, by Perelman’s stability theorem,
if sequences in a precompact family of closed Riemannian n-manifolds
with a uniform lower sectional curvature bound do not collapse, then
the family must consist of finitely many homeomorphism types. This
is the case, for example, for the family MD

k,v(n) of closed Riemannian
n-manifolds with sec ≥ k, diameter at most D > 0 and volume bounded
below by v > 0.
A simple example of collapse is furnished by rescaling the Riemannian

metric of a given flat n-dimensional torus Tn, n ≥ 2, by 1/k, k = 1, 2 . . .

In this way, one obtains a sequence {Tn
k } of flat n-tori whose diameter

decreases as k →∞. In this case, the sequence of flat tori collapses to a
point. By rescaling appropriate factors of Tn we may obtain sequences
of flat tori which collapse to flat tori of dimension strictly less than n.
Further examples of collapse with a uniform lower sectional curvature
bound may be obtained by rescaling the orbits of isometric compact Lie
group actions on a given closed Riemannian manifold. In this case, the
sequence of metrics converges to the orbit space of the action, which is
an Alexandrov space and is, in general, not a manifold.
Motivated by the preceding considerations, one may attempt to un-

derstand the topological consequences of collapse. In the Riemannian
category, a thorough analysis of collapse of Riemannian 3-manifolds was
carried out by Shioya and Yamaguchi in [28, 29]. More recently, Mit-
suishi and Yamaguchi obtained topological classification and structure
results for collapsed Alexandrov spaces of dimension 3 (see [18]), while
the authors of the present survey obtained the geometrization of closed,
sufficiently collapsed irreducible 3-dimensional Alexandrov spaces (see
[9]), thus extending the Riemannian results to the case of Alexandrov
spaces. In this note we give a brief account of these results in Alexandrov
geometry in the hope of sparking the interest of the reader.
This chapter is organized as follows. Section 13.2 contains a summary

of basic results in Alexandrov geometry. In Section 13.3 we recall the
basic results on the topological structure of general Alexandrov spaces
of dimension three. Finally, in Section 13.4, we present the topologi-
cal structure and classification results for closed collapsed 3-dimensional
Alexandrov spaces, as well as the geometrization of closed, sufficiently
collapsed irreducible Alexandrov spaces of dimension 3.
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13.2 Basic Alexandrov Geometry

In this section we will recall the notation and main aspects of the theory
of Alexandrov spaces (of curvature bounded below). Standard references
in the subject are [4, 5] (see also the recent manuscript [1]), and we refer
the reader to these sources for a detailed account of the theory.
In order to introduce the definition of an Alexandrov space, we first

recall some concepts. Alexandrov spaces fall within the class of the so-
called length spaces. A metric space (X, d) is a length space whenever,
for every x, y ∈ X,

d(x, y) = inf {L(γ) | γ(a) = x, γ(b) = y} .

Here, the infimum is taken over all continuous curves γ : [a, b]→ X (for
some a ≤ b) and L(γ) stands for the length of γ. The length of such a
curve is defined as

L(γ) = sup

{
n−1∑
i=1

d (γ(ti), γ(ti+1))

}
,

where the supremum is taken over all finite partitions

a = t0 ≤ t1 ≤ . . . ≤ tn = b

of [a, b]. We require two technical assumptions on any length space
X: completeness and local compactness. This ensures the existence of
geodesics between each pair of points x, y ∈ X, that is, continuous curves
γ : [a, b] → X such that γ(a) = x, γ(b) = y and L(γ) = d(x, y).
A geodesic joining x and y will be denoted by [xy]. Note that such
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a geodesic might not be unique, as can be readily seen by considering
geodesics in a round sphere.
One of the concepts playing a central role in Alexandrov geometry is

that of the model spaces. Given a real number k, the 2-dimensional model
space M2

k is defined to be the complete, simply-connected 2-dimensional
Riemannian manifold of constant sectional curvature k. In other words,
depending on the sign of k,M2

k is isometric to one of the following spaces:

• S2k, the sphere of constant curvature k > 0;
• E2, the Euclidean plane of curvature 0; or
• H2

k, the hyperbolic plane of constant curvature k < 0.

Other prominent objects in the theory are geodesic triangles. A geodesic
triangle � pqr in a length space (X, d) is a collection of three points
p, q, r ∈ X and three geodesics [pq], [qr] and [rp]. Once a geodesic triangle
� pqr in X is given, one says that a geodesic triangle � p̃ q̃ r̃ in M2

k is
a comparison triangle for � pqr if d(p, q) = |p, q|, d(q, r) = |q, r| and
d(r, p) = |r, p|. Here |·, ·| stands for the usual length metric on M2

k .
With these definitions in hand, we may now recall the definition of

an Alexandrov space. We will say that a length space (X, d) has cur-
vature bounded below by k ∈ R, denoted by curv(X, d) ≥ k (or simply
curv(X) ≥ k), if, for every x ∈ X, there exists an open neighborhood
U ⊂ X of x such that for every geodesic triangle � pqr and any com-
parison triangle � p̃ q̃ r̃ in M2

k the so called Tk-property holds: For every
s ∈ [pq] and s̃ ∈ [p̃ q̃] such that d(p, s) = |p̃, s̃|, d(r, s) ≥ |r̃, s̃|.

Definition 13.2.1 An Alexandrov space is a complete and locally com-
pact length space (X, d) such that curv(X) ≥ k for some k ∈ R.

It is worth noting that there are several equivalent definitions of
Alexandrov spaces (see [4, Thm. 4.3.5]). Here we just mention the follow-
ing monotonicity of angles condition: Let γ1, γ2 : [a, b]→ X be geodesics
such that γ1(0) = γ2(0). Then X is an Alexandrov space of curv ≥ k if
and only if the function

θk(s, t) := ∠γ̃1(s)γ̃1(0)γ̃2(t) (13.1)

is monotone non-increasing in s, t ∈ [a, b]. Here, � γ̃1(s)γ̃1(0)γ̃2(t) is a
comparison triangle for � γ1(s)γ1(0)γ2(t).
One of the most powerful tools available in Alexandrov geometry is

the following globalization theorem, essentially asserting that once the
Tk-property is satisfied locally, then it holds in the large (see [4, Thm.
10.3.1]).
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Theorem 13.2.2 (Globalization theorem) Let X be an Alexandrov
space with curv(X) ≥ k. Then the Tk-property is satisfied for any geodesic
triangle in X.

The most familiar examples of Alexandrov spaces are smooth, com-
plete Riemannian manifolds of sectional curvature bounded below. This
is guaranteed by the Toponogov distance comparison theorem, [23, Thm.
12.2.2]. The same result implies naturally that if l < k and X is an
Alexandrov space of curv ≥ k, then curv(X) ≥ l. However, the class of
Alexandrov spaces includes non-smooth spaces. For example, the bound-
ary of an open and convex set in a Euclidean space Rn, regarded with the
induced metric, is a non-negatively curved space [27]. There are a num-
ber of constructions available to produce new Alexandrov spaces from
known examples. In this way one can produce Alexandrov spaces which
are not homeomorphic to manifolds. Let us mention the most commonly
used constructions.

• Cartesian products. Let X and Y be Alexandrov spaces with curv ≥ k

and k ≤ 0. The Cartesian productX×Y with the usual product metric
is an Alexandrov space of curv ≥ k. For k > 0, the product is a space
of curv ≥ k only in the case that one of the spaces is a single point.

• Euclidean cones. Let (X, d) be a metric space with diam(X) ≤ π.
Recall that the cone over X is the metric space (K(X), dK) obtained
from X × [0,∞) by collapsing X × {0} to a point. The metric dK is
given by

dK ((x1, t1), (x2, t2))) =
√

t21 + t22 − 2t1t2 cos d(x1, x2).

The cone K(X) is an Alexandrov space of curv ≥ 0 if and only if X
is an Alexandrov space of curv ≥ 1.

• Spherical suspensions. Let (X, d) be a metric space with diam(X) ≤
π. The spherical suspension (Susp(X), dS) of X is the metric space
obtained from X × [0, π] by collapsing X ×{0} and X ×{π} to single
points. A metric dS is then defined by the equation

cos dS ((x1, t1), (x2, t2)) = cos t1 cos t2 + sin t1 sin t2 cos d(x1, x2).

If X is an Alexandrov space of curv ≥ 1, then Susp(X) is an Alexan-
drov space of curv ≥ 1.

These constructions are in fact special cases of warped products. The
fact that they indeed produce spaces of curvature bounded below can
be easily seen from the so called fiber independence theorem, [1, Thm.
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10.1.3]. The problem of obtaining necessary and sufficient conditions for
a warped product to be an Alexandrov space was solved in [2, 3]. One
of the most important features in Alexandrov geometry is the following:

• Gromov–Hausdorff limits. Let {Xi}∞i=1 be an infinite sequence of com-
pact Alexandrov spaces with curv(Xi) ≥ k for all i. If Xi converges
in the Gromov–Hausdorff sense to a metric space X, then X is an
Alexandrov space of curv ≥ k.

It is in the context of Gromov–Hausdorff limits where the phenomenon
of collapse occurs. We say that a sequence of compact Alexandrov spaces
{Xi}∞i=1 of (Hausdorff) dimension n which converges in the Gromov–
Hausdorff sense to an Alexandrov space X collapses if dimX < n.
As the previous examples indicate, the local geometry and topology

of an Alexandrov space may be vastly different from that of a manifold.
Nevertheless, there are certain similarities with the manifolds case. It is
known that the Hausdorff dimension of an Alexandrov space is either
a non-negative integer or infinite. In fact, if the Hausdorff dimension is
finite, then, as in the manifold setting, the Hausdorff dimension coincides
with the topological dimension [5, Cor. 6.5]. For simplicity we focus on
finite-dimensional spaces below.
In the smooth category, the local structure of the space is completely

determined by the infinitesimal picture, in the sense that, for every point
in a smooth manifold there exists a neighborhood diffeomorphic to the
tangent space at the said point. A similar relationship is available in
Alexandrov geometry via the space of directions. In order to recall this
concept, we outline some definitions.
Firstly, let us recall that the monotonicity of angles condition implies

the well possessedness of angles between two geodesics which share a
starting point. Let X be an Alexandrov space of curv ≥ k, and assume
that γ1, γ2 : [a, b] → X are two geodesics with p := γ1(0) = γ2(0). As
the function θk(s, t) of Equation (13.1) is monotone non-increasing and
takes values in [0, π], one can define the angle between γ1 and γ2 by

∠(γ1, γ2) := lim
s,t

θk(s, t).

It is worth noting that the angle is, in fact, independent of k. An equiva-
lence relation between geodesics emanating from the same point is then
obtained: Two such geodesics are equivalent if they make a null angle. A
geodesic direction at p ∈ X is an equivalence class of geodesics having p

as a starting point. The collection of all geodesic directions at a point p
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has the structure of a (possibly incomplete) metric space when equipped
with the angle as metric. The completion of the space of geodesic direc-
tions at p is the space of directions of X at p and is denoted by ΣpX (or
simply by Σp).
To obtain a tangent space at p ∈ X there are at least two natural

procedures one can use:

(i) Consider the cone over Σp.
(ii) Consider a blow-up of X at p, i.e. the pointed Gromov–Hausdorff

limit of balls B(p, ri) with the restricted metric rescaled by a factor
of 1/ri, where ri → 0. Such a limit exists and is independent of the
choice of sequence.

These two methods give rise to isometric metric spaces denoted by
TpX (see [4, Thm. 10.9.3]), directly implying the following structural
properties of Σp, [4, Cor. 10.9.6].

Theorem 13.2.3 Let X be an n-dimensional Alexandrov space and
p ∈ X. Then the following hold:

(1) Σp is a compact (n− 1)-dimensional Alexandrov space.
(2) If n ≥ 2, then curv(Σp) ≥ 1.
(3) If n = 1, then Σp either consists of two points or a single point.

The local topology of X at a point p is determined by TpX, a fact
that is asserted in the following result of Perelman [22].

Theorem 13.2.4 (Conical neighborhood theorem) Let X be an Alexan-
drov space and p ∈ X. Then, any sufficiently small neighborhood of p is
pointed-homeomorphic to TpX.

Being one of the most powerful tools in Alexandrov geometry, the pre-
vious result allows one, among several other applications, to define in-
ductively the boundary of an Alexandrov space. One-dimensional spaces
are topological manifolds. Hence the boundary of such a space is de-
fined in the usual manner. Assuming that the boundary of (n − 1)-
dimensional spaces has been defined, one says that a point p in an n-
dimensional space is in the boundary if Σp has non-empty boundary. The
boundary ∂X of an Alexandrov space X is a closed subset of Hausdorff
codimension 1.
Once one has a well-posed concept of boundary, one can construct

more examples of Alexandrov spaces from pairs of them by gluing along
the boundaries:
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• Gluing along the boundary. Let X1 and X2 be Alexandrov spaces of
curv ≥ k with non-empty boundaries such that ∂X1 is isometric to
∂X2 when considered with the induced metrics. Let f : ∂X1 → ∂X2

be an isometry. Then the adjunct space X1 ∪f X2 is an Alexandrov
space of curv ≥ k [24, Thm. 2.1]. It is possible to glue along more
general subsets known as extremal subsets in some circumstances [17].

The conical neighborhood theorem suggests the following terminol-
ogy. A point p on an n-dimensional Alexandrov space X is said to be
topologically regular if Σp is homeomorphic to a sphere Sn−1. Other-
wise, p is said to be topologically singular. Furthermore, p is metrically
regular if Σp is isometric to the unit round sphere Sn−1 and metrically
singular otherwise. In contrast to Riemannian manifolds, an Alexandrov
space can be topologically regular (that is, each of its points is topologi-
cally regular) but have metrically singular points, (see, for example, [25,
Exam. 97]). However, the subset of topologically singular points of X
is dimensionally not very large. The codimension of the subset of topo-
logically singular points which are not boundary points is at least 3.
This is a consequence of the fact that Alexandrov spaces have a canon-
ical stratification by topological manifolds (see [4, Thm. 10.10.1], [22,
Thm. III structure theorem]). This fact will play an important role in
the following section.

13.3 Three-Dimensional Alexandrov Spaces

As previously seen, Alexandrov spaces are generalizations of Riemannian
manifolds, and, as such, it is interesting to study their topology. In this
section we will focus on the three-dimensional case, with the intention of
providing the necessary background for the main results in this survey.
It should be observed that Alexandrov spaces of dimensions one or

two are respectively topological curves or surfaces. This was already
proven in the original [5] (see also [4]), but it is also a consequence of
Perelman’s conical neighborhood theorem (see Theorem 13.2.4) and the
classification of Alexandrov spaces of positive curvature in dimensions
zero and one (that are, respectively, one or two points, and circles of
length less than 2π or an interval of length less than or equal to π).
Therefore, the first dimension where interesting new phenomena occur
is dimension 3.
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To understand the difference between genuine 3-dimensional Alexan-
drov spaces and 3-manifolds, it is helpful to think again of Perelman’s
conical neighborhood theorem; the spaces of directions that can appear
in a 3-dimensional Alexandrov space will be compact Alexandrov sur-
faces of positive curvature. The list of these is also found in [5], where
it was proven that, ignoring those with non-empty boundary, they are
topologically 2-spheres or projective planes. The former will give rise to
manifold points, while the latter will correspond to singular points. We
collect these observations in the following statement. As is customary,
we will say that a compact space without boundary is closed.

Lemma 13.3.1 Let X be a closed 3-dimensional Alexandrov space. If
X is not homeomorphic to a closed topological 3-manifold, then there is
an even number of points p1, . . . , pk in X such that X is homeomorphic
to the union of k disjoint cones over RP 2s, and a non-orientable 3-
dimensional compact manifold Y with a boundary formed by k connected
components equal to RP 2.

Proof Observe that if a point p ∈ X has RP 2 as its space of directions,
then, by Perelman’s conical neighborhood theorem, there is a neighbor-
hood U of p such that any other point in U \ {p} has S2 as its space
of directions. Thus, singular points in X are isolated and, since X is
compact, there can only be a finite number of such p’s.
Denote by p1, . . . , pk the singular points in X. For each 1 ≤ i ≤ k,

choose a conical neighborhood of pi, Ui, such that the collection {Ui}
consists of pairwise disjoint sets. Then Y := X \ ∪Ui is a compact 3-
manifold with boundary equal to a disjoint union of k copies of RP 2.
Since each boundary component of Y has a collared neighborhood, Y
contains two-sided RP 2’s, and is therefore non-orientable. A simple ap-
plication of Lefschetz duality shows that k is an even number (see, for
instance, [11, Exer. 28.25]).

We can improve upon the preceding description by considering the
orientable double cover of Y , as we illustrate in the following proposition.

Proposition 13.3.2 Let X be a closed 3-dimensional Alexandrov space
with singular points. Then there is an orientable closed 3-dimensional
manifold M and an orientation-reversing involution a : M → M with
a finite number of isolated fixed points such that X is homeomorphic to
the quotient space M/a.



300 F. Galaz-García, L. Guijarro and J. Núñez-Zimbrón

Proof Let Y be the compact 3-manifold obtained above by removing
disjoint open neighborhoods of the singular points of X. Since Y has
some boundary components homeomorphic to the projective plane, Y
contains two-sided RP 2’s, and is therefore non-orientable. Denote by Ȳ

its orientable 2-fold cover, and its covering map by ā : Ȳ → Ȳ ; since Ȳ

is orientable but Y is not, ā is orientation reversing. Observe also that
Ȳ has the same number of boundary components as Y , but containing
only S2’s. Capping out these boundary components by 3-disks, D3, we
get a closed orientable 3-manifold M . The involution ā : Ȳ → Ȳ can be
extended to the whole M by identifying each disk D with the Euclidean
3-ball B, and using the involution mapping each point x �→ −x in B. It
is clear that the extended involution a : M → M will have only fixed
points corresponding to the center of the disks, and will therefore be
isolated.

The above topological description of 3-dimensional Alexandrov spaces
is quite useful, since it allows us to switch from the category of metric
spaces to that of 3-manifolds, where a lot of information is available. Note
that singular Alexandrov 3-spaces are homeomorphic to non-orientable
3-dimensional orbifolds.
The next natural step is to return to the metric category, and consider

whether lifting the metric from X to M produces something of interest.
This is contemplated in the following lemma due to Grove and Wilking
[13, Sect. 5].

Lemma 13.3.3 Let X be a closed three-dimensional Alexandrov space
with curvature bounded below by k, with k ≥ 0, and assume that X is
not a topological manifold. If M is the orientable double branched cover
of X in Lemma 13.3.2, then the following hold:

(1) The metric in X can be lifted to M so that M is an Alexandrov
space with curvature bounded below by k.

(2) The involution a : M →M is an isometry.

The proof of this lemma appears in [13], although as it also includes
the case of Alexandrov spaces of dimension 4, it is at times brief; for a
more detailed version, entirely adapted to dimension three, the reader
can refer to [6].
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13.3.1 Geometric 3-Alexandrov Spaces

Geometric 3-manifolds can be considered the building blocks of arbi-
trary 3-dimensional closed manifolds, as Thurston’s geometrization con-
jecture shows. It is then natural to ask about the corresponding notion
for Alexandrov spaces. Recall that the eight Thurston geometries are S3,
E3, H3, S2 × R, H× R, Nil, Sol and S̃L2(R) (see [26]).

Definition 13.3.4 We say that an Alexandrov space X3 has a given
Thurston geometry (see [26]) if X3 can be written as a quotient of the
corresponding geometry by some cocompact lattice. In that case, we will
say that such an Alexandrov 3-space is geometric.

The main difference with the manifold case is that we allow for fixed
points in the lattice action.

13.3.2 Geometrization of 3-Alexandrov Spaces

Recall that the usual geometrization of closed 3-manifolds requires the
manifold to be divided into pieces: first one takes the decomposition into
prime manifolds using 2-spheres to subdivide, and later one performs a
Jaco–Shalen–Johannson decomposition using 2-tori. In our case, since
Alexandrov 3-spaces with singular points contain a non-orientable core,
we will require more subdividing surfaces.

Definition 13.3.5 We say that a closed three-dimensional Alexandrov
space X admits a geometric decomposition if there exists a collection of
spheres, projective planes, tori and Klein bottles that decompose X into
geometric pieces.

Theorem 13.3.6 (Geometrization of 3-dimensional Alexandrov spaces)
A closed three-dimensional Alexandrov space admits a geometric decom-
position into geometric three-dimensional Alexandrov spaces.

The proof of the above result can be found in [8]. For an overview
of further results on three-dimensional Alexandrov spaces, we refer the
reader to [7].
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13.4 Collapsed Three-Dimensional Alexandrov
Spaces

Let {Xi}∞i=1 be a sequence of n-dimensional Alexandrov spaces with di-
ameters uniformly bounded above by D > 0 and curv ≥ k for some
k ∈ R. After passing to a subsequence, Gromov’s precompactness theo-
rem implies that there exists an Alexandrov space Y with diamY ≤ D

and curvY ≥ k such that Xi
GH−→ Y . As in the Riemannian case, the

sequence Xi is said to collapse to Y if dimY < n. We will also say
that an n-dimensional Alexandrov space X collapses (or that it is a
collapsing Alexandrov space) if there exists a sequence of Alexandrov
metrics {di}∞i=1 on X, such that {(X, di)}∞i=1 is a collapsing sequence. In
this section, the last in this survey, we give an overview of the available
structure and classification results for collapsed Alexandrov 3-spaces.

13.4.1 General Structure Results

In Riemannian geometry, collapse imposes strong geometric and topolog-
ical restrictions on the spaces on which it occurs. Indeed, Shioya and Ya-
maguchi obtained comprehensive structure results for closed, collapsed
three-dimensional Riemannian 3-manifolds [27]. In the Alexandrov cat-
egory, Mitsuishi and Yamaguchi carried out an exhaustive study of col-
lapsed, closed, three-dimensional Alexandrov spaces, and we summarize
their results in this section. The main difference between the collapse
of three-dimensional Alexandrov spaces and that of three-dimensional
Riemannian manifolds resides in the fact that in the Alexandrov case
collapse can occur along the fibers of a “generalized” Seifert fibration.
Collapsed Alexandrov 3-spaces can be described as unions of certain
pieces. Before stating the general structure results, let us give a brief
account of those pieces where topological singularities arise.

The space B(pt) Let D2 × S1 ⊂ R2 × C be equipped with the usual
flat product metric. An isometric involution α on D2 × S1 is defined by

α((x, y), eiθ) := ((−x,−y), e−iθ).

The space B(pt) := D2 × S1/α is an Alexandrov space of curv ≥ 0

with two topologically singular points corresponding to the image in the
quotient of the points ((0, 0), ei0) and ((0, 0), eiπ), which are fixed by α

(see [18, Exam. 1.2]). There is a projection p : B(pt)→ K1(S1) sending
an interval joining the topologically singular points to the vertex o of
the cone. To describe it, observe that the quotient of D2 ⊂ R2 by the
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involution (x, y) �→ (−x,−y) is homeomorphic to D2, and metrically is
isometric to K1(S1), where the S1 taken has length π. The projection
p : B(pt)→ K1(S1) is then obtained by mapping

[(x, y), eiθ]→ [(x, y)].

This projection is a fibration on K1(S1) \ {o}.
The space B(pt) can also be described as follows (see lines after [18,

Exam. 2.60]): take two cones over RP 2, select a disk D2
i , i = 0, 1, on

each RP 2-boundary, and glue both cones using some homeomorphism
ϕ : D2

0 → D2
1. The resulting space does not depend on the gluing homeo-

morphism ϕ, and is homeomorphic to B(pt). It is clear that its boundary
is obtained by taking two Möbius bands glued by their boundaries, i.e.
the boundary of B(pt) is a Klein bottle.

Spaces with 2-dimensional souls We now describe three different
closed Alexandrov 3-spaces as quotients of certain involutions:

(i) B(S2) := S2× [−1, 1]/(σ,−id), where S2 is a sphere of non-negative
curvature in the Alexandrov sense with an isometric involution
σ of S2 topologically conjugate to the involution on the 2-sphere
given by the suspension of the antipodal map on the circle. The
resulting space is homeomorphic to Susp(RP 2) \ int(D3), where
D3 ⊂ Susp(RP 2) is a closed 3-ball consisting of topologically reg-
ular points (see [18, Rem. 2.62]).

(ii) B(S4) := T 2 × [−1, 1]/(σ,−id), where T 2 is a flat torus and the
involution σ : T 2 → T 2 maps (z1, z2) to (z1, z2) (observe that T2/σ

is homeomorphic to S2). This space has four topologically singular
points, corresponding to the four fixed points of the involution; this
can be seen by observing that at each such point, the differential
of the involution acts as the antipodal map on the unit tangent
sphere. Its oriented branched cover is T2 × [−1, 1].

(iii) B(RP 2) := K2 × [−1, 1]/(σ,−id), where K2 is a flat Klein bottle
and σ : K2 → K2 is an isometric involution topologically conjugate
to the unique involution on K2 whose quotient is RP 2.

Generalized Seifert fiber spaces A generalized Seifert fibration of a
topological 3-orbifold M over a topological 2-orbifold B (both possibly
with boundaries) is a map f : M → B whose fibers are homeomorphic to
circles or bounded closed intervals. It is required that, for every x ∈ B,
there is a neighborhood Ux homeomorphic to a 2-disk such that
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(i) if f−1(x) is homeomorphic to a circle, then there is a fiber-
preserving homeomorphism of f−1(Ux) to a Seifert fibered solid
torus in the usual sense, and

(ii) if f−1(x) is homeomorphic to an interval, then there exists a fiber-
preserving homeomorphism of f−1(Ux) to the space B(pt), with
respect to the fibration (B(pt), p−1(o))→ (K1(S1), o).

Furthermore, for any compact component C of ∂B there is a collar
neighborhood N of C in B such that f |f−1(N) is a usual circle bundle
over N . We say that M is a generalized Seifert fibered space and we use
the notation M = Seif(B).

Generalized solid tori and Klein bottles A generalized solid torus
(respectively, generalized solid Klein bottle) is a topological 3-orbifold Y

with boundary homeomorphic to a torus (respectively, a Klein bottle).
It admits a map Y → S1 such that the fibers are homeomorphic to either
a 2-disk or a Möbius band, and the fiber type can only change at a finite
number of corner points in S1. We refer the reader to [18, Def. 1.4] for
the precise definitions.

I-bundles over the Klein bottle These are obtained as disk bun-
dles of certain line bundles over the Klein bottle K2. They are easily
described as quotients of R3 under certain isometric actions. Except for
the trivial bundle K2 × I, the rest are as follows.

(i) K2×̃I: this is the disk bundle in the orientable 3-manifold obtained
as the quotient of R3 under the group generated by

(x, y, z)
τ̃→ (x+ 2, y, z), (x, y, z)

σ̃→ (−x, y + 1,−z).

Its boundary is given by a 2-torus.
(ii) K2×̂I: this is the disk bundle in the non-orientable 3-manifold

obtained as the quotient of R3 under the group generated by

(x, y, z)
τ̂→ (x+ 1, y,−z), (x, y, z)

σ̂→ (−x, y + 1,−z).

Its boundary is given by a Klein bottle.

The identity map in R3 induces a two-fold Riemannian covering map
π : K2×̃I → K2×̂I. At the fundamental group level, π is an injective
homomorphism that sends τ̃ → τ̂2 and σ̃ → σ̂. Furthermore, since the
fundamental group of K2 is the dihedral group, and this group contains
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a unique subgroup of index 2, it follows thatK2×̃I is the unique two-fold
cover of K2×̂I.
With these pieces now in hand, we are ready to state the topological

classification and structure theorems for closed, collapsed Alexandrov
3-spaces obtained by Mitsuishi and Yamaguchi in [18]. These results
are obtained via a thorough analysis of the local structure of the limit
spaces and we refer the reader to [18] for more details. We divide the
presentation according to the dimension of the limit space, starting with
the case where it is two dimensional. We always assume that our spaces
are connected.

13.4.1.1 Collapse to Dimension Two
In this case, the limit space of the collapsing sequence is a compact two-
dimensional Alexandrov space, possibly with boundary. Hence, the limit
space is topologically a surface.

Theorem 13.4.1 (Collapse to a compact surface without boundary)
Let {Xi}∞i=1 be a sequence of closed, three-dimensional Alexandrov spaces
with curvXi ≥ −1 and diamXi ≤ D. If Xi GH-converges to a two-
dimensional Alexandrov space X∗ without boundary, then, for sufficiently
large i, Xi is homeomorphic to a generalized Seifert space over X∗.

In the preceding theorem, singular fibers may occur over essential
singular points in X∗, i.e. over points whose space of directions has
radius at most π/2.

Theorem 13.4.2 (Collapse to a compact surface with boundary) Let
{Xi}∞i=1 be a sequence of closed, three-dimensional Alexandrov spaces
with curvXi ≥ −1 and diamXi ≤ D. If Xi GH-converges to a two-
dimensional Alexandrov space X∗ with non-empty boundary, then, for
sufficiently large i, there exist a generalized Seifert fiber space Seifi(X

∗)

over X∗ and generalized solid tori or generalized Klein bottles πi,k :

Yi,k → (∂X∗)k over each component (∂X∗)k of ∂X∗ such that Xi is
homeomorphic to the union of Seifi(X∗) and the Yi,k, glued along their
boundaries, where the fibers of Seifi(X∗) over boundary points x ∈ (∂X∗)

are identified with ∂π−1
i,k (x) ≈ S1.

13.4.1.2 Collapse to Dimension One
In this case, the limit space of the collapsing sequence is a compact one-
dimensional Alexandrov space, possibly with boundary. Hence, the limit
space is topologically a circle or a compact interval.
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Theorem 13.4.3 (Collapse to a circle) Let {Xi}∞i=1 be a sequence
of closed, three-dimensional Alexandrov spaces with curvXi ≥ −1 and
diamXi ≤ D. If Xi GH-converges to a circle, then, for i sufficiently
large, Xi is homeomorphic to the total space of fiber bundle over S1 with
fiber homeomorphic to one of S2, RP 2, T 2 or the Klein bottle K2. In
particular, Xi is a topological manifold.

Theorem 13.4.4 (Collapse to a compact interval) Let {Xi}∞i=1 be a
sequence of closed, three-dimensional Alexandrov spaces with curvXi ≥
−1 and diamXi ≤ D. If Xi GH-converges to an interval I ≈ [−1, 1],
then, for i sufficiently large, Xi is homeomorphic to a union B−i ∪B+

i of
two spaces B±i glued along their boundary ∂B−i = ∂B+

i . The boundary
∂B±i is homeomorphic to one of S2, RP 2, T 2 or the Klein bottle K2.
The topology of the spaces B±i is determined as follows:

(1) If ∂B±i ≈ S2, then B±i is homeomorphic to one of D3, RP 3− intD3

or B(S2) with S2 ≈ S2.
(2) If ∂B±i ≈ RP 2, then B±i is homeomorphic to K1(P

2).
(3) If ∂B±i ≈ T 2, then B±i is homeomorphic to one of S1×D2, S1×Mb,

K2×̃I or B(S4).
(4) If ∂B±i ≈ K2, then B±i is homeomorphic to one of S1×̃D2, K2×̂I,

B(pt), or B(S2) with S2 ≈ RP 2.

13.4.1.3 Collapse to a Point
The last case to consider is collapse to a zero-dimensional space, i.e. to
a point.

Theorem 13.4.5 (Collapse to a point) Let {Xi}∞i=1 be a sequence
of closed, three-dimensional Alexandrov spaces with curvXi ≥ −1 and
diamXi ≤ D. If Xi GH-converges to a point, then, for i sufficiently
large, Xi is homeomorphic to some space among the following:

(1) generalized Seifert fiber spaces as in the conclusion of Theorem 13.4.1
with base an Alexandrov surface with non-negative curvature;

(2) spaces in the conclusion of Theorem 13.4.2 with base an Alexandrov
surface with non-negative curvature;

(3) spaces in the conclusion of Theorems 13.4.3 and 13.4.4;
(4) closed Alexandrov three-dimensional spaces with non-negative cur-

vature having finite fundamental group.

By the work in [8], a manifold in item (4) in Theorem 13.4.5 is
homeomorphic to a three-dimensional spherical space form or to one
of Susp(RP 2), Susp(RP 2)#Susp(RP 2) or RP 3#Susp(RP 2).
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13.4.2 Geometrization of Sufficiently Collapsed
Three-Dimensional Alexandrov Spaces

We conclude this chapter with a brief discussion of the geometrization
of sufficiently collapsed closed Alexandrov 3-spaces. We refer the reader
to [9] for further details.
Recall the eight Thurston geometries: S3, R3, H3, S2 × R, H2 × R,

S̃L2(R), Nil and Sol. As stated in Section 13.3, a closed (i.e. compact
and without boundary) 3-manifold is geometric if it admits a geometric
structure modeled on one of these geometries. In this context, Shioya and
Yamaguchi [28] obtained a geometrization result for sufficiently collapsed
Riemannian 3-manifolds. More precisely, they showed that, for any D >

0, there exists a constant ε = ε(D) > 0 such that if a closed, prime
3-manifold admits a Riemannian metric with diameter at most D and
sectional curvature bounded below by −1 with volume < ε, then it
admits a geometric structure modeled on one of the seven geometries
S3, R3, S2 × R, H2 × R, S̃L2(R), Nil and Sol (see [28, Cor. 0.9]).
Recall that a non-trivial closed 3-manifold M is prime if it cannot be

presented as a connected sum of two non-trivial closed 3-manifolds. A
closed 3-manifold is irreducible if every embedded 2-sphere bounds a 3-
ball. It is known that, with the exception of manifolds homeomorphic to
S3, S1 × S2 or S1×̃S2 (the non-trivial 2-sphere bundle over S1), a closed
3-manifold is prime if and only if it is irreducible (see [14, Lem. 3.13]).
Since S1×S2 and S1×̃S2 are geometric, one can think of the geometriza-
tion of sufficiently collapsed prime Riemannian 3-manifolds as a result
pertaining to irreducible 3-manifolds. Therefore, in seeking a generaliza-
tion to Alexandrov spaces, one may focus on the irreducible case. This
leads to the following definition of irreducibility for this more general
class of spaces.

Definition 13.4.6 Let X be a closed Alexandrov 3-space. We say that
X is irreducible if every embedded 2-sphere in X bounds a 3-ball, and, in
the case that the set of topologically singular points of X is non-empty,
it is further required that every 2-sided RP 2 bounds a K(RP 2), a cone
over RP 2.

With this definition in hand, we may now state the geometrization of
sufficiently collapsed Alexandrov spaces.
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Theorem 13.4.7 ([9, Thm. A]) For any D > 0 there exists ε =

ε(D) > 0 such that, if X is a closed, irreducible Alexandrov 3-space with
curv ≥ −1, diamX ≤ D, and volX < ε, then X admits a geomet-
ric structure modeled on one of the seven geometries R3, S3, S2 × R,
H2 × R, S̃L2(R), Nil and Sol.

Here, the volume of an Alexandrov 3-space is its 3-dimensional Haus-
dorff measure, normalized so that the volume of 3-dimensional Rieman-
nian manifolds agrees with the usual Riemannian volume. As in the
Riemannian case, one can rule out hyperbolic geometry by combining
the fact that the simplicial volume of a collapsing Alexandrov space is
zero (see [19, Cor. 1.7]) with the fact that the simplicial volume of a
hyperbolic manifold must be bounded below by the Riemannian volume
(see [30, Thm. 6.2]).
Theorem 13.4.7 is proven by carefully studying the metric and topo-

logical structure of collapsed irreducible Alexandrov 3-spaces and their
orientable double branched covers (in the case where the space is not
a manifold). Combining Theorems 13.4.1–13.4.5 with the irreducibility
hypothesis, one obtains fairly explicit topological descriptions of closed,
collapsed, irreducible Alexandrov 3-spaces, exhibiting them as geometric
3-manifolds or their quotients by orientation-reversing involutions with
only isolated fixed points. Classification results of Alexandrov spaces
with (local) circle actions (see [10, 20]) and classical results on involu-
tions on 3-manifolds (see [15, 16]) also play an important role in the
proof. We refer the reader to [9] for precise details, as the proof is based
on a case-by-case analysis and is of a rather technical nature.
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