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1. Introduction

Accurate perturbative calculations beyond leading order in quantum chromodynam-

ics (QCD) are an important ingredient in improving our understanding of jet pro-

duction in current and future high energy collider experiments at the Tevatron and

LHC. At present, next-to-leading order calculations have become standard and are

used to make comparisons with experimental data. For example, the next-to-leading

order O (α3
s) predictions for jet production in pp̄ collisions [1, 2] based on the one-loop

matrix elements computed by Ellis and Sexton [3] have been successfully compared

with a wide variety of experimental observables using data from the Tevatron and

the CERN Spp̄S. To date these comparisons have been limited by both experimental

and theoretical uncertainties at the 10% level. However, improvements in detector

technology, as well as the expected large increases in the luminosity of the colliding

particles, should significantly improve the quality of the experimental data and will

require more accurate theoretical calculations either to claim new physics or to refine

our understanding of QCD.

The theoretical prediction may be improved by including the next-to-next-to-

leading order perturbative predictions. This has the effect of (a) reducing the renor-

malisation scale dependence and (b) improving the matching of the parton level

theoretical jet algorithm with the hadron level experimental jet algorithm, because

the jet structure can be modeled by the presence of a third parton. The improve-

ment in accuracy expected at next-to-next-to-leading order can be estimated using

the renormalisation group equations together with the existing leading and next-to-

leading order calculations and is at the 1-2% level for centrally produced jets with a

transverse energy, ET , of around 100 GeV.

The full next-to-next-to-leading order prediction requires the knowledge of the

two-loop 2 → 2 matrix elements as well as the contributions from the one-loop

2 → 3 and tree-level 2 → 4 processes. At large transverse energies, ET ≫ mquark,

the quark masses may be safely neglected and we therefore focus on the scattering

of massless partons. Techniques for computing multiparticle tree amplitudes for

2 → 4 processes, and the associated crossed processes, are well understood. For

example, the helicity amplitudes for the six gluon gg → gggg, four gluon-two quark

q̄q → gggg, two gluon-four quark q̄q → q̄′q′gg and six quark q̄q → q̄′q′q̄′′q′′ have been

computed in Refs. [4, 5, 6, 7]. Similarly, amplitudes for the one-loop 2 → 3 parton

sub-processes gg → ggg, q̄q → ggg, q̄q → q̄′q′g, and processes related to these by

crossing symmetry, are also known and are available in [8, 9, 10] respectively.

Although the two-loop contribution for gluon-gluon scattering in N = 4 super-

symmetric models has been known for some time [11], the evaluation of the two-loop

2 → 2 contributions for QCD processes has been a challenge for the past few years.

This was mainly due to a lack of knowledge about planar and crossed double box

integrals that arise at two-loops. In the massless parton limit and in dimensional
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regularisation, analytic expressions for these basic scalar integrals have now been

provided by Smirnov [12] and Tausk [13] as series in ǫ = (4 − D)/2, where D is

the space-time dimension, together with algorithms for reducing tensor integral to a

basis set of known scalar (master) integrals [14, 15]. This makes the calculation of

the two-loop amplitudes for 2 → 2 QCD scattering processes possible.

Following on from the pioneering work of Bern, Dixon and Ghinculov [16] who

completed the two-loop calculation of physical 2 → 2 scattering amplitudes for the

QED processes e+e− → µ+µ− and e+e− → e−e+, we have studied the O (α4
s) contri-

butions arising from the interference of two-loop and tree-level graphs for the QCD

processes of quark-quark [17, 18, 19] and quark-gluon [20] scattering. In these pa-

pers we presented analytic expressions for the infrared pole structure (that ultimately

cancels against contributions from the 2 → 3 and 2 → 4 processes), which agrees

with that anticipated by Catani [21], as well as the finite remainder.

To complete the set of two-loop contributions to parton-parton scattering re-

quires the study of (non-supersymmetric) gluon-gluon scattering. Bern, Dixon and

Kosower [22] were the first to address this process and provided analytic expressions

for the maximal-helicity-violating two-loop amplitude. Unfortunately, this amplitude

vanishes at tree level and does not contribute to 2 → 2 scattering at next-to-next-

to-leading order O (α4
s). It is therefore the goal of this paper to provide analytic

expressions for the O (α4
s) two-loop corrections to gluon-gluon scattering

g + g → g + g. (1.1)

As is in Refs. [17, 18, 19, 20], we use the MS renormalisation scheme to remove

the ultraviolet singularities and conventional dimensional regularisation, where all

external particles are treated in D dimensions. We provide expressions for the in-

terference of tree-level and two-loop graphs. The infrared-pole structure agrees with

that obtained using Catani’s general factorisation formulae [21]. The finite remain-

ders are the main new results presented in this paper and we give explicit analytic

expressions valid for the gluon-gluon scattering process in terms of logarithms and

polylogarithms that are real in the physical domain. For simplicity, we decompose

our results according to the powers of the number of colours N and the number of

light-quark flavours NF .

Our paper is organised as follows. We first establish our notation in Sec. 2.

Analytic expressions for the interference of the two-loop and tree-level amplitudes

are given in Sec. 3. In Sec. 3.1 we adopt the notation used in Ref. [21], to isolate

the infrared singularity structure of the two-loop amplitudes in the MS scheme in

terms of the one-loop bubble integral in D = 4− 2ǫ and the one-loop box integral in

D = 6 − 2ǫ. Analytic formulae connecting these integrals in the various kinematic

regions are given in Appendix A. We demonstrate that the anticipated singularity

structure agrees with our explicit calculation. The finite O (ǫ0) is given in Sec. 3.2
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in terms of logarithms and polylogarithms that have no imaginary parts. Finally we

conclude with a brief summary of the results in Sec. 4.

2. Notation

For calculational purposes, the process we consider is

g(p1) + g(p2) + g(p3) + g(p4) → 0, (2.1)

where the gluons are all incoming with light-like momenta, satisfying

pµ
1 + pµ

2 + pµ
3 + pµ

4 = 0, p2
i = 0.

The associated Mandelstam variables are given by

s = (p1 + p2)
2, t = (p2 + p3)

2, u = (p1 + p3)
2, s + t + u = 0. (2.2)

The gluons also carry colour indexes, ai, in the adjoint representation.

We work in conventional dimensional regularisation treating all external quark

and gluon states in D dimensions and renormalise the ultraviolet divergences in the

MS scheme. The renormalised four point amplitude in the MS scheme can be written

|M〉 = 4παs

[

|M(0)〉 +
(

αs

2π

)

|M(1)〉 +
(

αs

2π

)2

|M(2)〉 + O
(

α3
s

)

]

,

(2.3)

where αs ≡ αs(µ
2) is the running coupling at renormalisation scale µ and the |M(i)〉

represents the colour-space vector describing the renormalised i-loop amplitude. The

dependence on both renormalisation scale µ and renormalisation scheme is implicit.

We denote the squared amplitude summed over spins and colours by

〈M|M〉 =
∑

|M(g + g → g + g)|2 = D(s, t, u). (2.4)

which is symmetric under the exchange of s, t and u. The function D can be expanded

perturbatively to yield

D(s, t, u) = 16π2α2
s

[

D4(s, t, u) +
(

αs

2π

)

D6(s, t, u) +
(

αs

2π

)2

D8(s, t, u) + O
(

α3
s

)

]

,

(2.5)

where

D4(s, t, u) = 〈M(0)|M(0)〉

= 16 V N2(1 − ǫ)2
(

3 −
ut

s2
−

us

t2
−

st

u2

)

, (2.6)

D6(s, t, u) =
(

〈M(0)|M(1)〉 + 〈M(1)|M(0)〉
)

, (2.7)

D8(s, t, u) =
(

〈M(1)|M(1)〉 + 〈M(0)|M(2)〉 + 〈M(2)|M(0)〉
)

, (2.8)
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where N is the number of colours and V = N2 − 1. Expressions for D6 are given

in Ref. [3] using dimensional regularisation to isolate the infrared and ultraviolet

singularities.

In the following sections, we present expressions for the infrared singular and

finite two-loop contributions to D8

D8 (2×0)(s, t, u) = 〈M(0)|M(2)〉 + 〈M(2)|M(0)〉. (2.9)

We defer the self-interference of the one-loop amplitudes

D8 (1×1)(s, t, u) = 〈M(1)|M(1)〉, (2.10)

to a later paper.

As in Refs. [17, 18, 19, 20], we use QGRAF [23] to produce the two-loop Feynman

diagrams to construct |M(2)〉. We then project by 〈M(0)| and perform the summa-

tion over colours and spins. It should be noted that when summing over the gluon

polarisations, we ensure that the polarisations states are transversal (i.e. physical)

by the use of an axial gauge

∑

spins

ǫµ
i ǫ

ν∗
i = −gµν +

nµ
i pν

i + nν
i p

µ
i

ni · pi

(2.11)

where pi is the momentum, ǫi is the polarisation vector and ni is an arbitrary light-

like 4-vector for gluon i. For simplicity, we choose nµ
1 = pµ

2 , nµ
2 = pµ

1 , nµ
3 = pµ

4 and

nµ
4 = pµ

3 . Finally, the trace over the Dirac matrices is carried out in D dimensions

using conventional dimensional regularisation. It is then straightforward to identify

the scalar and tensor integrals present and replace them with combinations of the

basis set of master integrals using the tensor reduction of two-loop integrals described

in [14, 15, 24], based on integration-by-parts [25] and Lorentz invariance [26] identi-

ties. The final result is a combination of master integrals in D = 4 − 2ǫ for which

the expansions around ǫ = 0 are given in [12, 13, 14, 15, 24, 27, 28, 29, 30].

3. Two-loop contribution

We further decompose the two-loop contributions as a sum of two terms

D8 (2×0)(s, t, u) = Poles(s, t, u) + F inite(s, t, u). (3.1)

Poles contains infrared singularities that will be analytically canceled by those oc-

curring in radiative processes of the same order (ultraviolet divergences are removed

by renormalisation). F inite is the remainder which is finite as ǫ → 0.
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3.1 Infrared Pole Structure

Following the procedure outlined in Ref. [21], we can write the infrared pole structure

of the two loop contributions renormalised in the MS scheme in terms of the tree

and unrenormalised one-loop amplitudes, |M(0)〉 and |M(1,un)〉 respectively, as

Poles = 2 Re

[

−
1

2
〈M(0)|I(1)(ǫ)I(1)(ǫ)|M(0)〉 −

2β0

ǫ
〈M(0)|I(1)(ǫ)|M(0)〉

+ 〈M(0)|I(1)(ǫ)|M(1,un)〉

+e−ǫγ Γ(1 − 2ǫ)

Γ(1 − ǫ)

(

β0

ǫ
+ K

)

〈M(0)|I(1)(2ǫ)|M(0)〉

+ 〈M(0)|H(2)(ǫ)|M(0)〉

]

(3.2)

where the Euler constant γ = 0.5772 . . .. The first coefficient of the QCD beta

function, β0, for NF (massless) quark flavours is

β0 =
11CA − 4TRNF

6
, CA = N, TR =

1

2
, (3.3)

and the constant K is

K =

(

67

18
−

π2

6

)

CA −
10

9
TRNF . (3.4)

Note that the unrenormalised one-loop amplitude |M(1,un)〉 is what is obtained by

direct Feynman diagram evaluation of the one-loop graphs.

It is convenient to decompose |M(0)〉 and |M(1,un)〉 in terms of SU(N) matrices

in the fundamental representation, T a, so that the tree amplitude may be written

as [31, 32, 33]

|M(0)〉 =
∑

P (2,3,4)

Tr (T a1T a2T a3T a4)Atree
4 (1, 2, 3, 4), (3.5)

while the one-loop amplitude has the form [34, 35]

|M(1,un)〉 = N
∑

P (2,3,4)

Tr (T a1T a2T a3T a4)A
[1]
4;1(1, 2, 3, 4)

+
∑

Q(2,3,4)

Tr (T a1T a2) Tr (T a3T a4)A
[1]
4;3(1, 2, 3, 4)

+ NF

∑

P (2,3,4)

Tr (T a1T a2T a3T a4)A
[1/2]
4;1 (1, 2, 3, 4). (3.6)

In these expressions
∑

P (2,3,4) runs over the 6 permutations of indices of gluons 2, 3

and 4 while
∑

Q(2,3,4) includes the three choices of pairs of indices, as it is further

detailed in Eq. (3.9). We note that the tree subamplitudes are further related by
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cyclic and reflection properties as well as by the dual Ward identity [32, 36] and

more general identities [37], while the subleading-colour loop amplitudes A
[1]
4;3 are

related to the leading-colour amplitudes A
[1]
4;1 [34, 35]. Some of these relationships

are made explicit using an alternative basis in terms of SU(N) matrices in the adjoint

representation [38].

To evaluate Eq. (3.2) we find it convenient to express |M(0)〉 and |M(1,un)〉 as

nine-dimensional vectors in colour space

|M(0)〉 = (T1, T2, T3, T4, T5, T6, 0, 0, 0)T , (3.7)

|M(1,un)〉 = (L1, L2, L3, L4, L5, L6, L7, L8, L9)
T , (3.8)

where ()T indicates the transpose vector. Here the Ti and Li are the components of

|M(0)〉 and |M(1,un)〉 in the colour space spanned by the (non-orthogonal) basis

C1 = Tr (T a1T a2T a3T a4) ,

C2 = Tr (T a1T a2T a4T a3) ,

C3 = Tr (T a1T a4T a2T a3) ,

C4 = Tr (T a1T a3T a2T a4) ,

C5 = Tr (T a1T a3T a4T a2) ,

C6 = Tr (T a1T a4T a3T a2) ,

C7 = Tr (T a1T a2) Tr (T a3T a4) ,

C8 = Tr (T a1T a3) Tr (T a2T a4) ,

C9 = Tr (T a1T a4) Tr (T a2T a3) . (3.9)

The tree and loop amplitudes Ti and Li are directly obtained in terms of Atree
4 ,

A
[1]
4;1, A

[1]
4;3 and A

[1/2]
4;1 by reading off from Eqs. (3.5) and (3.6). As we will see, the

amplitudes themselves are not required since we compute the interference of tree and

loop amplitudes directly.

In the same colour basis, the infrared-singularity operator I
(1)(ǫ) introduced by

Catani [21] has the form

I
(1)(ǫ) = −

eǫγ

Γ(1 − ǫ)

(

1

ǫ2
+

β0

Nǫ

)

×





































N(S + T) 0 0 0 0 0 (T − U) 0 (S− U)

0 N(S + U) 0 0 0 0 (U − T) (S− T) 0

0 0 N(T + U) 0 0 0 0 (T− S) (U− S)

0 0 0 N(T + U) 0 0 0 (T− S) (U− S)

0 0 0 0 N(S + U) 0 (U − T) (S− T) 0

0 0 0 0 0 N(S + T) (T − U) 0 (S− U)

(S− U) (S− T) 0 0 (S− T) (S − U) 2NS 0 0

0 (U− T) (U− S) (U − S) (U− T) 0 0 2NU 0

(T− U) 0 (T− S) (T − S) 0 (T − U) 0 0 2NT





































(3.10)

6



where

S =

(

−
µ2

s

)ǫ

, T =

(

−
µ2

t

)ǫ

, U =

(

−
µ2

u

)ǫ

. (3.11)

The matrix I
(1)(ǫ) acts directly as a rotation matrix on |M(0)〉 and |M(1,un)〉 in colour

space, to give a new colour vector |X〉, equal to I
(1)(ǫ)|M(0)〉, I

(1)(ǫ)I(1)(ǫ)|M(0)〉 or

I
(1)(ǫ)|M(1,un)〉.

The contraction of the colour vector |X〉 with the conjugate tree amplitude obeys

the rule

〈M(0)|X〉 =
∑

spins

∑

colours

9
∑

i,j=1

T ∗

i Xj C
∗

i Cj . (3.12)

In evaluating these contractions, we typically encounter
∑

colours C
∗

i Cj which is given

by the ij component of the symmetric matrix CC

CC =
V

16N2









































C1 C2 C2 C2 C2 C3 NV −N NV

C2 C1 C2 C2 C3 C2 NV NV −N

C2 C2 C1 C3 C2 C2 −N NV NV

C2 C2 C3 C1 C2 C2 −N NV NV

C2 C3 C2 C2 C1 C2 NV NV −N

C3 C2 C2 C2 C2 C1 NV −N NV

NV NV −N −N NV NV N2V N2 N2

−N NV NV NV NV −N N2 N2V N2

NV −N NV NV −N NV N2 N2 N2V









































, (3.13)

with

C1 = N4 − 3N2 + 3, C2 = 3 − N2, C3 = 3 + N2. (3.14)

Similarly, we find that the interference of the tree-level amplitudes
∑

spins T
∗

i Tj is

given by TT ij , where

TT =
64(1 − ǫ)2(t2 + ut + u2)2

s2t2u2
VTV, (3.15)

and the vector V is

V = (u, t, s, s, t, u, 0, 0, 0) , (3.16)

while the interference of the tree-level amplitudes with one-loop amplitudes
∑

spins T
∗

i Lj

is given by TLij, where

TL = VTW, (3.17)

and the vector W is

W =
(

F(s, t), F(s, u), F(u, t), F(u, t), F(s, u), F(s, t), G, G, G
)

. (3.18)
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Here the function F(s, t) is symmetric under the exchange of s and t, while G is

symmetric under the exchange of any two Mandelstam invariants, so that

F(s, t) = f1(s, t, u) + f1(t, s, u), (3.19)

G = f2(s, t, u) + f2(s, u, t) + f2(t, s, u) + f2(t, u, s) + f2(u, s, t) + f2(u, t, s).

(3.20)

Here f1 and f2 are given in terms of the one-loop box integral in D = 6−2ǫ dimensions

and the one-loop bubble graph in D = 4 − 2ǫ,

f1(s, t, u) =
16N(1 − 2ǫ)

s2t2

[

2(1 − ǫ)2
(

s4 + s3t + st3 + t4
)

+ 3(1 − 5ǫ)s2t2
]

Box6(s, t)

+
8NF (1 − 2ǫ)

st

[

(1 − ǫ)2
(

s2 + t2
)

+ ǫ(1 + 3ǫ)st
]

Box6(s, t)

−
16N(1 − ǫ)

s2t2uǫ(3 − 2ǫ)

[(

12 − 22ǫ + 12ǫ2 + 2ǫ3
)

s4 +
(

24 − 58ǫ + 50ǫ2 − 6ǫ3 − 2ǫ4
)

s3t

+
(

36 − 99ǫ + 93ǫ2 − 24ǫ3 − 2ǫ4
)

s2t2 + (1 − ǫ)
(

24 − 50ǫ + 23ǫ2
)

st3

+4(1 − ǫ)(1 − 2ǫ)(3 − 2ǫ)t4
]

Bub(t)

+
16NF

st2u(3 − 2ǫ)

[(

4 − 12ǫ + 16ǫ2 − 4ǫ3
)

s3 +
(

3 − 10ǫ + 23ǫ2 − 8ǫ3
)

s2t

+
(

6 − 15ǫ + 21ǫ2 − 8ǫ3
)

st2 + (1 − ǫ)
(

5 − 6ǫ + 2ǫ2
)

t3
]

Bub(t), (3.21)

f2(s, t, u) =
32(1 − 2ǫ)

u2

[

−4(1 − ǫ)2st + 3(1 − 5ǫ)u2
]

Box6(u, t)

+
32(1 − ǫ)

ǫsu2

[

4(1 − 2ǫ)(1 − ǫ)t2 + (8 − 17ǫ)(1 − ǫ)ut

+
(

6 − 20ǫ + 15ǫ2 + ǫ3
)

u2
]

Bub(s). (3.22)

Series expansions around ǫ = 0 for the one-loop integrals are given in Appendix A.

Finally, the last term of Eq. (3.2) that involves H
(2)(ǫ) produces only a single

pole in ǫ and is given by

〈M(0)|H(2)(ǫ)|M(0)〉 =
eǫγ

4 ǫ Γ(1 − ǫ)
H(2)〈M(0)|M(0)〉 (3.23)

where the constant H(2) is

H(2) =
(

2ζ3 +
5

3
+

11

36
π2
)

N2 +
20

27
N2

F +

(

−
π2

18
−

89

27

)

NNF −
NF

N
, (3.24)

and ζn is the Riemann Zeta function with ζ2 = π2/6 and ζ3 = 1.202056 . . . We note

that H(2) is renormalisation-scheme dependent and Eq. (3.24) is valid in the MS

scheme. We also note that Eq. (3.24) differs from the corresponding expressions found

in the singularity structure of two-loop quark-quark and quark-gluon scattering. This
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is due to double emissions from the gluons. In fact, we note that H(2) for quark-

gluon scattering is the average of the H(2) for gluon-gluon scattering and quark-quark

scattering, as may be expected by counting the number of different types of radiating

partons.

It can be easily noted that the leading infrared singularity in Eq. (3.2) is O (1/ǫ4).

It is a very stringent check on the reliability of our calculation that the pole structure

obtained by computing the Feynman diagrams directly and introducing series expan-

sions in ǫ for the scalar master integrals agrees with Eq. (3.2) through to O (1/ǫ).

We therefore construct the finite remainder by subtracting Eq. (3.2) from the full

result.

3.2 Finite contributions

The finite two-loop contribution to D8(s, t, u) is defined as

F inite(s, t, u) = D8 (2×0)(s, t, u) − Poles(s, t, u), (3.25)

where we subtract the series expansions of both D8 (2×0)(s, t, u) and Poles(s, t, u) and

set ǫ → 0. As usual, the polylogarithms Lin(w) are defined by

Lin(w) =
∫ w

0

dt

t
Lin−1(t) for n = 2, 3, 4

Li2(w) = −
∫ w

0

dt

t
log(1 − t). (3.26)

Using the standard polylogarithm identities [39], we retain the polylogarithms with

arguments x, 1 − x and (x − 1)/x, where

x = −
t

s
, y = −

u

s
= 1 − x, z = −

u

t
=

x − 1

x
. (3.27)

For convenience, we also introduce the following logarithms

X = log
(

−t

s

)

, Y = log
(

−u

s

)

, S = log

(

s

µ2

)

, (3.28)

where µ is the renormalisation scale.

We choose to present our results by grouping terms according to the power of

the number of colours N and the number of light quarks NF , so that

Finite(s, t, u) = V

(

N4A + N2B + N3NFC + NNF D + N2N2
F E + N2

F F

)

, (3.29)

where

A =

{(

48Li4(x) − 48Li4(y) − 128Li4(z) + 40Li3(x) X − 64Li3(x)Y −
98

3
Li3(x)

9



+64Li3(y)X − 40Li3(y)Y + 18Li3(y) +
98

3
Li2(x) X −

16

3
Li2(x) π2 − 18Li2(y)Y

−
37

6
X4 + 28X3 Y −

23

3
X3 − 16X2 Y 2 +

49

3
X2 Y −

35

3
X2 π2 −

38

3
X2 −

22

3
S X2

−
20

3
X Y 3 − 9 X Y 2 + 8 X Y π2 + 10X Y −

31

12
X π2 − 22 ζ3 X +

22

3
S X +

37

27
X

+
11

6
Y 4 −

41

9
Y 3 −

11

3
Y 2 π2 −

22

3
S Y 2 +

266

9
Y 2 −

35

12
Y π2 +

418

9
S Y +

257

9
Y

+18 ζ3 Y −
31

30
π4 −

11

9
S π2 +

31

9
π2 +

242

9
S2 +

418

9
ζ3 +

2156

27
S

−
11093

81
− 8 S ζ3

)

t2

s2

+

(

− 256Li4(x) − 96Li4(y) + 96Li4(z) + 80Li3(x) X + 48 Li3(x) Y −
64

3
Li3(x)

−48 Li3(y)X + 96Li3(y)Y −
304

3
Li3(y) +

64

3
Li2(x) X −

32

3
Li2(x) π2 +

304

3
Li2(y)Y

+
26

3
X4 −

64

3
X3 Y −

64

3
X3 + 20X2 Y 2 +

136

3
X2 Y + 24X2 π2 + 76X2 −

88

3
S X2

+
8

3
X Y 3 +

104

3
X Y 2 −

16

3
X Y π2 +

176

3
S X Y −

136

3
X Y −

50

3
X π2 − 48 ζ3 X

+
2350

27
X +

440

3
S X + 4 Y 4 −

176

9
Y 3 +

4

3
Y 2 π2 −

176

3
S Y 2 −

494

9
Y π2 +

5392

27
Y

−64 ζ3 Y +
496

45
π4 −

308

9
S π2 +

200

9
π2 +

968

9
S2 +

8624

27
S −

44372

81

+
1864

9
ζ3 − 32S ζ3

)

t

u

+

(

88

3
Li3(x) −

88

3
Li2(x) X + 2 X4 − 8 X3 Y −

220

9
X3 + 12 X2 Y 2 +

88

3
X2 Y +

8

3
X2 π2

−
88

3
S X2 +

304

9
X2 − 8 X Y 3 −

16

3
X Y π2 +

176

3
S X Y −

77

3
X π2 +

1616

27
X

+
968

9
S X − 8 ζ3 X + 4 Y 4 −

176

9
Y 3 −

20

3
Y 2 π2 −

176

3
S Y 2 −

638

9
Y π2 − 16 ζ3 Y

+
5392

27
Y −

4

15
π4 −

308

9
S π2 − 20π2 − 32S ζ3 +

1408

9
ζ3 +

968

9
S2 −

44372

81

+
8624

27
S

)

t2

u2

+

(

44

3
Li3(x) −

44

3
Li2(x) X − X4 +

110

9
X3 −

22

3
X2 Y +

14

3
X2 π2 +

44

3
S X2

−
152

9
X2 − 10X Y +

11

2
X π2 + 4 ζ3 X −

484

9
S X −

808

27
X +

7

30
π4 −

31

9
π2

+
11

9
S π2 −

418

9
ζ3 −

242

9
S2 −

2156

27
S + 8 S ζ3 +

11093

81

)

ut

s2

10



+

(

− 176Li4(x) + 88 Li3(x) X − 168Li3(x) Y −
206

3
Li3(x) +

206

3
Li2(x) X

+
65

6
X4 −

40

3
X3 Y −

295

9
X3 − 15X2 Y 2 +

115

3
X2 Y +

29

3
X2 π2 −

670

9
X2

−
242

3
S X2 +

64

3
X Y π2 +

209

3
X Y + 44S X Y −

1811

36
X π2 +

8983

27
X

+
1870

9
S X − 18 ζ3 X +

31

20
π4 −

361

18
π2 −

517

18
S π2 +

1331

9
S2 +

12452

27
S

+
1543

9
ζ3 −

129475

162
− 44S ζ3

)}

+

{

u ↔ t

}

, (3.30)

B =

{(

− 288Li4(x) + 480Li4(y) − 288Li4(z) + 240Li3(x) X − 144Li3(x) Y

+224Li3(x) + 144Li3(y)X − 432Li3(y)Y − 224Li3(y) + 48Li2(x)X2

−224Li2(x) X − 176Li2(x) π2 + 48Li2(y)Y 2 + 224Li2(y)Y − 16X4 + 112X3 Y

−
556

3
X3 − 48X2 Y 2 + 180X2 Y − 40X2 π2 + 220X2 − 32X Y 3 − 92X Y 2

−16 X Y π2 −
376

3
X Y − 16X π2 − 80X + 96 ζ3 X + 8 Y 4 +

292

3
Y 3 − 32Y 2 π2

−
284

3
Y 2 + 16Y π2 + 80Y − 96 ζ3 Y +

38

5
π4 − 18π2

)

t2

s2

+

(

− 576Li4(x) + 384Li4(y) − 1152Li4(z) + 1056Li3(x) X − 768Li3(x) Y

+448Li3(x) + 768Li3(y)X − 768Li3(y)Y + 896Li3(y) − 192Li2(x) X2

−448Li2(x) X − 544Li2(x) π2 − 384Li2(y)X Y − 896Li2(y)Y − 28X4 + 144X3 Y

+
320

3
X3 − 336X2 Y 2 − 224X2 Y − 40X2 π2 − 64X2 − 32X Y 3 + 128X Y 2

−64 X Y π2 +
1888

3
X Y − 288X π2 + 160X − 1248 ζ3 X − 240Y 2 π2 − 928Y π2

+768 ζ3 Y +
1216

15
π4 −

1912

3
π2 − 448 ζ3

)

t

u

+

(

− 384Li4(y) − 384Li4(z) + 384Li3(x) X − 384Li3(x) Y + 384Li3(y)X

−192Li2(x) X2 − 192Li2(x) π2 − 384Li2(y)X Y − 8 X4 − 32X3 Y − 176X3

−192X2 Y 2 + 352X2 Y − 80X2 π2 +
752

3
X2 − 32X Y π2 − 176X π2 − 384 ζ3 X

−96 Y 2 π2 − 352Y π2 + 384 ζ3 Y + 56π4 −
968

3
π2

)

t2

u2

+

(

− 192Li4(x) + 192Li3(x) X − 96Li2(x) X2 − 4 X4 − 32X3 Y + 88X3

+12X2 Y 2 − 88X2 Y + 48X2 π2 −
376

3
X2 − 48X Y π2 +

376

3
X Y

11



+
64

15
π4 + 18 π2

)

ut

s2

+

(

48Li3(x) X + 144Li3(x) Y + 672Li3(x) − 48Li2(x) X2 − 672Li2(x) X + 16X4

−32 X3 Y −
4

3
X3 + 24X2 Y 2 + 12X2 Y − 192X2 π2 +

1444

3
X2 + 72X Y π2

+
80

3
X Y − 624X π2 + 80X − 288 ζ3 X +

509

15
π4 − 707π2 − 36 − 2800 ζ3

)}

+

{

u ↔ t

}

, (3.31)

C =

{(

− 24Li4(x) + 24Li4(y) + 112Li4(z) − 44Li3(x) X + 56Li3(x) Y +
74

3
Li3(x)

−56Li3(y)X + 44 Li3(y)Y − 22Li3(y) −
74

3
Li2(x) X +

32

3
Li2(x) π2 + 22Li2(y)Y

+
25

4
X4 − 26X3 Y + 4 X3 + 14X2 Y 2 −

37

3
X2 Y + 7 X2 π2 +

27

2
X2 + 5 S X2

+
22

3
X Y 3 + 11X Y 2 − 4 X Y π2 − 11X Y +

31

6
X π2 + 12 ζ3 X −

637

27
X −

26

3
S X

−
19

12
Y 4 −

16

9
Y 3 +

7

3
Y 2 π2 −

221

18
Y 2 −

7

3
S Y 2 −

25

6
Y π2 +

175

9
Y − 12 ζ3 Y

−
98

9
S Y +

1

5
π4 +

2

9
S π2 +

203

54
π2 −

4

9
ζ3 −

88

9
S2 +

4849

162
−

386

27
S

)

t2

s2

+

(

224Li4(x) + 48Li4(y) − 48Li4(z) − 88Li3(x) X − 24Li3(x) Y +
124

3
Li3(x)

+24Li3(y)X − 48 Li3(y)Y +
280

3
Li3(y) −

124

3
Li2(x)X +

64

3
Li2(x) π2

−
280

3
Li2(y)Y −

31

6
X4 + 6 X3 Y −

4

3
X3 − 3 X2 Y 2 −

56

3
X2 Y −

55

3
X2 π2 − 2 S X2

−
70

3
X2 − 6 X Y 3 − 26X Y 2 −

2

3
X Y π2 + 4 S X Y +

148

3
X Y −

22

3
X π2

−
124

3
S X +

938

27
X + 64 ζ3 X +

32

9
Y 3 − 3 Y 2 π2 +

32

3
S Y 2 −

4

9
Y π2 −

1096

27
Y

+24 ζ3 Y −
829

90
π4 −

10

9
S π2 −

356

27
π2 −

352

9
S2 −

1544

27
S −

388

9
ζ3 +

9698

81

)

t

u

+

(

−
16

3
Li3(x) +

16

3
Li2(x) X +

40

9
X3 −

16

3
X2 Y +

22

9
X2 +

16

3
S X2 −

32

3
S X Y

+
14

3
X π2 −

224

27
X −

352

9
S X +

32

9
Y 3 +

32

3
S Y 2 +

116

9
Y π2 −

1096

27
Y +

56

9
S π2

+
340

27
π2 −

1544

27
S +

9698

81
+

32

9
ζ3 −

352

9
S2

)

t2

u2

12



+

(

−
8

3
Li3(x) +

8

3
Li2(x) X −

20

9
X3 +

4

3
X2 Y −

11

9
X2 −

8

3
S X2 + 11X Y − X π2

+
112

27
X +

176

9
S X −

2

9
S π2 −

203

54
π2 +

88

9
S2 −

4849

162
+

386

27
S +

4

9
ζ3

)

ut

s2

+

(

136Li4(x) − 68Li3(x) X + 120Li3(x) Y +
206

3
Li3(x) −

206

3
Li2(x) X −

71

12
X4

+
14

3
X3 Y −

68

9
X3 + 15X2 Y 2 +

5

3
X2 Y −

29

3
X2 π2 +

973

18
X2 +

77

3
S X2

−
62

3
X Y π2 −

139

6
X Y − 8 S X Y −

317

18
X π2 −

1375

27
X −

626

9
S X + 4 ζ3 X

−
47

30
π4 +

3799

108
π2 +

47

9
S π2 −

484

9
S2 −

2825

27
S +

932

9
ζ3 +

70025

324

)}

+

{

u ↔ t

}

, (3.32)

D =

{(

24Li4(x) − 24Li4(y) + 88Li4(z) − 52Li3(x) X + 36Li3(x) Y −
46

3
Li3(x)

−36 Li3(y)X + 52Li3(y)Y +
46

3
Li3(y) − 4 Li2(x) X2 +

46

3
Li2(x) X +

44

3
Li2(x) π2

−16 Li2(y)X Y + 4 Li2(y)Y 2 −
46

3
Li2(y)Y +

79

12
X4 −

82

3
X3 Y +

817

18
X3 + 3 X2 Y 2

−
184

3
X2 Y +

13

3
X2 π2 −

545

6
X2 +

38

3
X Y 3 +

136

3
X Y 2 +

4

3
X Y π2 +

155

3
X Y

−10 X π2 − 32 ζ3 X +
76

3
X −

35

12
Y 4 −

529

18
Y 3 + 3 Y 2 π2 +

235

6
Y 2 + 10Y π2 −

76

3
Y

+32 ζ3 Y −
11

30
π4 +

7

2
π2 + 8 ζ3 + 2 S −

55

6

)

t2

s2

+

(

176Li4(x) − 48Li4(y) + 48 Li4(z) − 104Li3(x) X + 32Li3(x) Y −
92

3
Li3(x)

−32 Li3(y)X + 64Li3(y)Y −
184

3
Li3(y) − 8 Li2(x) X2 +

92

3
Li2(x) X +

160

3
Li2(x) π2

+16 Li2(y)X Y − 16Li2(y)Y 2 +
184

3
Li2(y)Y −

23

6
X4 − 10X3 Y −

385

9
X3 + 19 X2 Y 2

+
161

3
X2 Y − 17X2 π2 +

80

3
X2 −

14

3
X Y 3 − 87X Y 2 −

26

3
X Y π2 − 260X Y

+
215

3
X π2 −

152

3
X + 168 ζ3 X + 7 Y 2 π2 +

545

3
Y π2 + 8 Y − 32 ζ3 Y −

571

90
π4

+
742

3
π2 +

188

3
ζ3 −

110

3
+ 8 S

)

t

u

+

(

32X3 − 64X2 Y −
310

3
X2 + 32 X π2 + 64Y π2 + 8 Y +

352

3
π2 + 8 S

13



−
110

3
+ 32 ζ3

)

t2

u2

+

(

− 16 X3 + 16X2 Y +
155

3
X2 −

155

3
X Y −

7

2
π2 − 8 ζ3 − 2 S +

55

6

)

ut

s2

+

(

64 Li4(x) − 20Li3(x) X − 108Li3(x)Y − 46Li3(x) − 12Li2(x) X2

+46 Li2(x) X +
5

12
X4 − 10X3 Y −

401

18
X3 −

21

2
X2 Y 2 −

34

3
X2 Y −

1

3
X2 π2

−
1303

6
X2 −

16

3
X Y π2 −

11

6
X Y +

340

3
X π2 + 104 ζ3 X −

52

3
X −

67

20
π4

+
2981

12
π2 + 11 S +

1166

3
ζ3 −

461

12

)}

+

{

u ↔ t

}

, (3.33)

E =

{(

−
1

3
X3 −

2

3
S X2 +

2

3
X2 −

2

3
X π2 +

4

3
S X −

2

3
X +

1

3
Y 3 +

2

9
Y 2 +

2

3
S Y 2

+
2

3
Y π2 +

4

9
S Y +

2

3
Y +

2

27
π2 +

8

9
S2

)

t2

s2

+

(

2

3
X3 −

2

3
X2 Y +

4

3
X2 +

4

3
S X2 −

2

3
X Y 2 −

8

3
S X Y +

2

3
X π2 +

8

3
S X

+
4

3
X −

2

3
Y π2 −

52

27
π2 +

4

3
S π2 +

32

9
S2

)

t

u

+

(

16

9
X2 +

32

9
S X −

40

27
π2 +

32

9
S2

)

t2

u2

+

(

−
8

9
X2 −

16

9
S X −

2

27
π2 −

8

9
S2

)

ut

s2

+

(

− X3 − 2 S X2 +
26

9
X2 − 2 X π2 +

10

3
X +

52

9
S X −

43

27
π2 +

44

9
S2

+
1

2
+ 4 S

)}

+

{

u ↔ t

}

, (3.34)

F =

{

2

3

(

− X + Y

)(

3 X2 − 4 X Y − 14X + 3 Y 2 − 6 Y + 2 π2 + 4

)

t2

s2

+

(

4 X3 −
8

3
X2 Y −

8

3
X2 +

8

3
X Y 2 +

80

3
X Y − 4 X π2 +

16

3
X −

8

3
Y π2 − 24π2

)

t

u

−
32

3

(

− X2 + π2

)

t2

u2
+

(

−
16

3
X2 +

16

3
X Y

)

ut

s2

+

(

2

3
X3 + 2 X2 Y + 20X2 +

4

3
X Y −

16

3
X π2 +

8

3
X −

64

3
π2

)}

+

{

u ↔ t

}

.

(3.35)
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4. Summary

In this paper we presented analytic expressions for the O (α4
s) QCD corrections to

the 2 → 2 gluon-gluon scattering process due to the interference of the tree-level

diagrams with the two-loop graphs in the MS scheme. Throughout we employed

conventional dimensional regularisation.

The renormalised matrix elements are infrared divergent and contain poles down

to O (1/ǫ4). The singularity structure of one- and two-loop diagrams has been thor-

oughly studied by Catani [21] who provided a procedure for predicting the infrared

behaviour of renormalised amplitudes. The anticipated pole structure agrees exactly

with that obtained by direct Feynman diagram evaluation. In fact Catani’s method

does not determine the 1/ǫ poles exactly, but expects that the remaining unpre-

dicted 1/ǫ poles are non-logarithmic and proportional to constants (colour factors,

π2 and ζ3). We find that this is indeed the case, and the constant H(2) is given in

Eq. (3.24). Its origin is in double emissions from the final state partons. It is related

to that found for quark-gluon and quark-quark scattering in a straightforward way

and therefore provides a very strong check on the reliability of our results.

The pole structure of the two-loop contribution is described by Eq. (3.2) while an-

alytic formulae for the finite part according to the colour decomposition of Eq. (3.29)

are given in Eqs. (3.30) to (3.35). The one-loop contributions to the two-loop pole

structure are expressed in terms of the one-loop bubble graph in D = 4 − 2ǫ di-

mensions and the one-loop box graph in D = 6 − 2ǫ dimensions for which series

expansions around ǫ = 0 are provided in Appendix A.

The results presented here, together with those previously computed for quark-

quark scattering [17, 18, 19] and quark-gluon scattering [20] form a complete set

of two-loop hard scattering matrix elements for parton-parton scattering at O (α4
s).

They are vital ingredients for the next-to-next-to-leading order predictions for jet

cross sections in hadron-hadron collisions. However, they are insufficient to make

physical predictions and much work remains to be done. A major task is to establish

a systematic procedure for analytically cancelling the infrared divergences between

the tree-level 2 → 4, the one-loop 2 → 3 and the 2 → 2 processes for semi-inclusive

jet cross sections. Recent progress in determining the singular limits of tree-level

matrix elements when two particles are unresolved [40, 41] and the soft and collinear

limits of one-loop amplitudes [42, 35, 43], together with the analytic cancellation of

the infrared singularities in the somewhat simpler case of e+e− → photon + jet at

next-to-leading order [44], suggest that the technical problems will soon be solved

for generic 2 → 2 scattering processes.

A further complication is due to initial state radiation. Factorization of the

collinear singularities from the incoming partons requires the evolution of the parton

density functions to be known to an accuracy matching the hard scattering matrix

element. This entails knowledge of the three-loop splitting functions. At three-

15



loop order, the even moments of the splitting functions are known for the flavour

singlet and non-singlet structure functions F2 and FL up to N = 12 while the odd

moments up to N = 13 are known for F3 [45, 46]. The numerically small N2
F non-

singlet contribution is also known [47]. Van Neerven and Vogt have provided accurate

parameterisations of the splitting functions in x-space [48, 49] which are now starting

to be implemented in the global analyses [50].

Finally, and most importantly for phenomenological applications, a numerical

implementation of the various contributions must be developed. The next-to-leading

order programs for three jet production that have already been written provide a first

step in this direction [51, 52]. We are confident that the problem of the numerical

cancellation of residual infrared divergences will soon be addressed thereby enabling

the construction of numerical programs to provide next-to-next-to-leading order QCD

estimates of jet production in hadron collisions.

Acknowledgements

M.E.T. acknowledges financial support from CONACyT and the CVCP. We grate-

fully acknowledge the support of the British Council and German Academic Ex-

change Service under ARC project 1050. This work was supported in part by the

EU Fourth Framework Programme ‘Training and Mobility of Researchers’, Network

‘Quantum Chromodynamics and the Deep Structure of Elementary Particles’, con-

tract FMRX-CT98-0194 (DG-12-MIHT), in part by the U.S. Department of Energy

under Grant No. DE-FG02-95ER40896 and in part by the University of Wisconsin

Research Committee with funds granted by the Wisconsin Alumni Research Foun-

dation.

A. One-loop master integrals

In this appendix, we list the expansions for the one-loop box integrals in D = 6−2ǫ.

We remain in the physical region s > 0, u, t < 0, and write coefficients in terms of

logarithms and polylogarithms that are real in this domain. More precisely, we use

the notation of Eqs. (3.27) and (3.28) to define the arguments of the logarithms and

polylogarithms. The polylogarithms are defined as in Eq. (3.26).

We find that the box integrals have the expansion

Box6(u, t) =
eǫγΓ (1 + ǫ) Γ (1 − ǫ)2

2sΓ (1 − 2ǫ) (1 − 2ǫ)

(

µ2

s

)ǫ {
1

2

[

(X − Y )2 + π2
]

+2ǫ

[

Li3(x) − XLi2(x) −
1

3
X3 −

π2

2
X

]

−2ǫ2

[

Li4(x) + Y Li3(x) −
1

2
X2Li2(x) −

1

8
X4 −

1

6
X3Y +

1

4
X2Y 2
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−
π2

4
X2 −

π2

3
XY −

π4

45

]

+ (u ↔ t)

}

+ O
(

ǫ3
)

, (A.1)

and

Box6(s, t) =
eǫγΓ(1 + ǫ)Γ(1 − ǫ)2

2uΓ(1− 2ǫ)(1 − 2ǫ)

(

−
µ2

u

)ǫ {
(

X2 + 2iπX
)

+ǫ

[

(

−2Li3(x) + 2XLi2(x) −
2

3
X3 + 2Y X2 − π2X + 2ζ3

)

+iπ

(

2Li2(x) + 4Y X − X2 −
π2

3

)]

+ǫ2

[(

2Li4(z) + 2Li4(y) − 2Y Li3(x) − 2XLi3(y) + (2XY − X2 − π2)Li2(x)

+
1

3
X4 −

5

3
X3Y +

3

2
X2Y 2 +

2

3
π2X2 − 2π2XY + 2Y ζ3 +

1

6
π4

)

+iπ
(

−2Li3(x) − 2Li3(y) + 2Y Li2(x) +
1

3
X3 − 2X2Y + 3XY 2

−
π2

3
Y + 2ζ3

)

]}

+ O
(

ǫ3
)

. (A.2)

Box6(s, u) is obtained from Eq. (A.2) by exchanging u and t.

Finally, the one-loop bubble integral in D = 4 − 2ǫ dimensions is given by

Bub(s) =
eǫγΓ (1 + ǫ) Γ (1 − ǫ)2

Γ (2 − 2ǫ) ǫ

(

−
µ2

s

)ǫ

. (A.3)
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