
Greedy algorithms, H-olourings and aomplexity-theoreti dihotomyAntonio Puriella and Iain A. Stewart,Department of Mathematis and Computer Siene,University of Leiester, Leiester LE1 7RH, U.K.AbstratLet H be a �xed undireted graph. An H-olouring of an undireted graph G is a homo-morphism from G to H. If the verties of G are partially ordered then there is a generinon-deterministi greedy algorithm whih omputes all lexiographially �rst maximal H-olourable subgraphs ofG. We show that the omplexity of deiding whether a given vertexof G is in a lexiographially �rst maximal H-olourable subgraph of G is NP-omplete, ifH is bipartite, and �p2-omplete, if H is non-bipartite. This result omplements Hell andNe�set�ril's seminal dihotomy result that the standard H-olouring problem is in P, if His bipartite, and NP-omplete, if H is non-bipartite. Our proofs use the basi tehniquesestablished by Hell and Ne�set�ril, ombinatorially adapted to our senario.1 IntrodutionIn what is now a seminal result, Hell and Ne�set�ril [6℄ established a dihotomy forthe H-olouring problem when H is an undireted graph: the H-olouring problemis in P, if H is bipartite, and is NP-omplete otherwise. Suh a (dihotomy) re-sult an also be thought of as a generi result in that it provides a omplete, exatlassi�ation of the omputational omplexities of an in�nite lass of problems (inthis ase, the lass of H-olouring problems). Other suh generi results exist. Forexample, Miyano [8℄ proved a very general result relating to hereditary properties ofgraphs: he showed that the problem of deiding whether a given vertex of a givenundireted graph G, whose verties are linearly ordered, lies in the lexiographi-ally �rst maximal subgraph of G satisfying some �xed polynomial-time testable,non-trivial, hereditary property � is P-omplete. (Notie that the existene of anH-olouring of an undireted graph G, i.e., a homomorphism from G to H, is apartiular hereditary property of G.)A number of other dihotomy results (involving unequivoal omplexity-theoretilassi�ations) and generi results (appliable to an in�nite lass of problems) have1



sine been obtained. Examples of other dihotomy results inlude: Feder and Hell'sresult [4℄ that the list homomorphism problem for reexive graphs is solvable inpolynomial-time if the target graph is an interval graph, and NP-omplete other-wise; Feder, Hell and Huang's [5℄ result that the list homomorphism problem forirreexive graphs is solvable in polynomial-time if the omplement of the targetgraph is a irular ar graph of lique overing number two, and NP-omplete oth-erwise; D��az, Serna and Thilikos's result [2℄ that the omplexity of the list (H;C;K)-olouring problem mirrors that of the list homomorphism problem; and Dyer andGreenhill's result [3℄ that the problem of ounting the H-olourings of a graph issolvable in polynomial-time if every onneted omponent of H is a omplete re-exive graph with all loops present or a omplete bipartite irreexive graph (withno loops present), and ℄P-omplete otherwise. Examples of other generi resultsinlude: Miyano's result [9℄ that the problem of deiding whether a given vertex of agiven undireted graph G, whose verties are linearly ordered, lies in the lexiograph-ially �rst maximal onneted subgraph of G satisfying some �xed polynomial-timetestable, hereditary property � that is determined by the bloks and non-trivial ononneted graphs is �p2-omplete; and Puriella and Stewart's result [11℄ that theproblem of deiding whether a given vertex of a given undireted graph G, whoseverties are partially ordered, lies in a lexiographially �rst maximal subgraph ofG satisfying some �xed polynomial-time testable, non-trivial, hereditary property �is NP-omplete.Dihotomy and generi results suh as those highlighted above are partiularlyattrative as they give a onise and simpli�ed view of a parameterized world ofnatural problems. In this paper, we onsider the problem of deiding whether agiven vertex of a given undireted graph G, whose verties are partially ordered,lies in a lexiographially �rst maximal H-olourable subgraph of G (where theundireted graph H is �xed). In partiular, we prove that this problem is NP-omplete, if H is bipartite, and �p2-omplete, if H is non-bipartite; thus establishingyet another omplexity-theoreti dihotomy result. Our proofs use the tehniquesestablished by Hell and Ne�set�ril in [6℄ although they are ombinatorially adaptedaording to our irumstanes. However, part of Hell and Ne�set�ril's onstrutionsan be applied verbatim and this substantially shortens our exposition.2 Basi de�nitionsFor standard graph-theoreti de�nitions the reader is referred to [1℄, and for standardomplexity-theoreti de�nitions to [10℄.Let G = (V;E) be an undireted graph and suppose that the verties of V arelinearly ordered. Given a subset S = fs0; s1; s2; : : : ; skg of V , where the induedordering is s0 < s1 < : : : < sk, we an de�ne a lexiographi order on the set of allsubsets of S as follows (we all it lexiographi beause we onsider s0; s1; : : : ; sk tobe our alphabet): 2



� for subsets U = fu1; u2; : : : ; upg and W = fw1; w2; : : : ; wkg of S, where u1 <u2 < : : : < up and w1 < w2 < : : : < wk, we say that U is lexiographiallysmaller than W if:{ there is a number t, where 1 � t � p, suh that ut < wt and ui = wi, forall i suh that 1 � i < t; or{ k > p and ui = wi, for all i suh that 1 � i � p.Let � be some property of graphs (our graphs are all undireted). If we take S = Vthen we an talk about the lexiographially �rst maximal subgraph ofG that satis�es� (as Miyano does in [8℄).Now let G = (V;E) be an undireted graph, let P be a partial order on V andlet s 2 V . We assume that the partial order P is given in the form of an aylidigraph detailing the immediate predeessors, i.e., the parents, and the immediatesuessors, i.e., the hildren, of eah vertex. We think of a partial order P asenoding a olletion of linear orders of the form s = s0 < s1 < s2 < : : : < sk, wheresj+1 is a hild of sj, for 0 � j < k, and sk has no hildren. Note that a partial orderan enode an exponential number of linear orders.Let � be some property of graphs. Now we an talk of the lexiographially �rstmaximal subgraphs of G satisfying �; where we get one suh subgraph for everylinear order enoded within P . A property � on graphs is hereditary if whenever wehave a graph with the property � then the deletion of any vertex and its inidentedges does not produe a graph violating �, i.e., � is preserved by vertex-induedsubgraphs. It is straightforward to see that the sets of verties that indue theselexiographially �rst maximal subgraphs of G satisfying some hereditary property� an be obtained using the following non-deterministi algorithm GREEDY(�) (ifP is a linear order then this algorithm omputes the lexiographially �rst maximalsubgraph ofG satisfying �). The algorithmGREEDY(�) takes as input 3 arguments:an undireted graph G = (V;E), a direted ayli graph P = (V;D) and a spei�edvertex s 2 V ; and is as follows:input(G,P,s)S := ;urrent-vertex := sif �(S[furrent-vertex g,G ) then (�)S := S[furrent-vertex gfiwhile urrent-vertex has at least one hild in P dourrent-vertex := a hild of urrent-vertex in Pif �(S[furrent-vertex g,G ) then (��)S := S[furrent-vertex gfiodoutput(S ) 3



where �(S [ furrent-vertexg; G) is a prediate evaluating to `true' if, and only if,the subgraph of G indued by the verties of S [ furrent-vertexg satis�es �. Wesay that a vertex v is the urrent-vertex if we have `frozen' an exeution of thealgorithm GREEDY(�) immediately prior to exeuting either line (�) or line (��)and the value of the variable urrent-vertex at this point is v.A property � is alled non-trivial on a lass of graphs if there are in�nitely manygraphs from this lass satisfying � but � is not satis�ed by all graphs of the lass.Let C be a lass of graphs and let � be some property of graphs. The problemGREEDY(partial order, C, �) has: as its instanes tuples (G;P; s; x), where G isa graph from C, P is a partial order of the verties of G and s and x are vertiesof G; and as its yes-instanes those instanes for whih there exists an exeutionof the algorithm GREEDY(�) on input (G;P; s) resulting in the output of a set ofverties ontaining the vertex x. The problemGREEDY(linear order, C, �) is de�nedsimilarly exept that P is a linear order. As mentioned earlier, when � is polynomial-time testable, non-trivial and hereditary, Miyano [8℄ proved that GREEDY(linearorder, undireted graphs, �) is P-omplete, and Puriella and Stewart [11℄ provedthat GREEDY(partial order, undireted graphs, �) is NP-omplete.Let G and H be graphs. A homomorphism from G to H is a map f from theverties of G to the verties of H suh that if (u; v) is an edge of G then (f(u); f(v))is an edge of H. The H-olouring problem is the problem whose instanes are graphsG and whose yes-instanes are those graphs G for whih there is a homomorphismfrom G to H.If U is a subset of verties of the graph G then hUiG is the subgraph of G induedby the set of verties U . A graph is 3-olourable if the verties an be oloured witha unique olour from red, white and blue so that two adjaent verties are oloureddi�erently; and the 3-olouring problem has as an instane a graph G and as ayes-instane a graph G that is 3-olourable.3 A omplete problemOur proof of our main result in the next setion follows the strategy adopted byHell and Ne�set�ril. Essentially, we assume that H is a non-bipartite graph for whihthe problem GREEDY(partial order, undireted graphs, H-olouring) is not �p2-omplete and apply a sequene of onstrutions to yield that a known �p2-ompleteproblem is not omplete, thereby obtaining a ontradition. Our `known' problem�p2-omplete is GREEDY(partial order, undireted graphs, 3-olourable).Theorem 1 The problem GREEDY (partial order, undireted graphs, 3-olourable)is �p2-omplete.Proof Throughout this proof, the problem GREEDY(partial order, undiretedgraphs, 3-olourable) shall be denoted G. We shall prove ompleteness by redu-ing from the problem NOT CERTAIN 3-COLOURING OF BOOLEAN EDGE-LABELLED GRAPHS, heneforth to be abbreviated as problem N . An instane4



of N of size n onsists of an undireted graph H on n verties, some of whoseedges are labelled with the disjuntion of two (possibly idential) literals over theset of Boolean variables fXi;j : i; j = 1; 2; : : : ; ng (the same literal may appearin more than one disjuntion). A truth assignment t on the Boolean variables offXi;j : i; j = 1; 2; : : : ; ng makes some of the labels on the edges of H true and somefalse. Form the graph t(H) by retaining the edges labelled true, as well as anyunlabelled edges, and dispensing with the edges labelled false. A yes-instane is aninstane H for whih there exists a truth assignment t resulting in a graph t(H)that annot be 3-oloured. This problem was proven to be �p2-omplete in [12℄.Given an instane H of the problemN , we shall onstrut an instane (G;P; s; x)of the problem G where G is an undireted graph, P is a partial order on these sameverties and s and x are two distinguished verties. Moreover, H will be a yes-instane of N if, and only if, (G;P; s; x) is a yes-instane of G; and the onstrutionwill be suh that it an be ompleted using logspae.Let H = (U; F ) and suppose that U = f1; 2; : : : ; ng. We build the undiretedgraph G from H as follows.(a) For eah vertex i 2 U , `attah' a opy of K4 by identifying vertex i withone of the verties of the lique. Denote the other three verties by ai, b1iand b2i . We refer to the original verties of U as H-verties, the verties offai : i = 1; 2; : : : ; ng as a-verties and the verties of fb1i ; b2i : i = 1; 2; : : : ; ngas b-verties.(b) Retain any unlabelled edge (i; j) of F (between H-verties i and j).() For any labelled edge (i; j) of F (between H-verties i and j), where i < j andwhere the label is L1i;j_L2i;j, replae the edge with a opy of the graph G1 shownin Fig. 1. We use, for example, L1i;j to refer to the �rst literal labelling edge (i; j)and also a vertex within a graph G1: this auses no onfusion. The vertiesof fL1i;j; L2i;j; �L1i;j; �L2i;j : (i; j) 2 F; where i < jg are alled L-verties. Every L-vertex of any G1 has an assoiated literal, e.g., if the literal L14;6 = :X3;2 thenthe assoiated literal of vertex L14;6 is :X3;2 and the assoiated literal of vertex�L14;6 is X3;2. So, an L-vertex of some G1 might have the same assoiated literalas an L-vertex of some otherG1. Finally, the verties of fi;j : i; j = 1; 2; : : : ; ngare alled -verties, the verties of fdi;j : i; j = 1; 2; : : : ; ng are alled d-vertiesand the verties of fe1i;j; e2i;j : i; j = 1; 2; : : : ; ng are alled e-verties.(d) Inlude a disjoint opy of K4, whose verties are fy; z; w; xg and join vertiesy, z and w to every a-vertex. Inlude the vertex s as an independent vertex.Our partial ordering P is de�ned as follows. First, order the Boolean variablesfXi;j : i; j = 1; 2; : : : ; ng lexiographially asX1;1; X1;2; X1;3; : : : ; X1;n; X2;1; X2;2; : : : ; Xn;n5



and denote this ordering by <X ; so X1;1 <X X1;2 <X X1;3 <X : : :. Next, onsiderthe L-verties. We obtain the notions of a positive L-vertex, where the vertex hasan assoiated positive literal, and a negative L-vertex, where the vertex has anassoiated negative literal. Order the positive L-verties so that if vertex �i is lessthan vertex �j in this ordering then the assoiated literal of �i is less than or equalto the assoiated literal of �j with respet to the ordering <X (note that there maybe a number of suh orderings on the positive L-verties: it does not matter whihof them we use). We obtain an analogous ordering of the negative L-verties bytaking omplements (note that for every positive L-vertex Lmi;j or �Lmi;j with label l,the vertex �Lmi;j or Lmi;j, respetively, is a negative L-vertex with label :l; and vieversa). As we walk down these two orderings in a synhronous fashion, the pairsof L-verties are always omplementary as is the pair of assoiated literals. Denotethese orderings as �1 < �2 < : : : < �k and �1 < �2 < : : : < �k;respetively, where f�i; �i : i = 1; 2; : : : ; kg = fL1i;j; L2i;j; �L1i;j; �L2i;j : (i; j) 2 F; wherei < jg.
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The onstrution of (G;P; s; x) from H is illustrated in Fig. 2 (note that to avoidluttering the �gure, not all verties are named; and the bold edges orrespond tothe struture of H). Clearly, this onstrution an be ompleted using logspae.
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Unroll the exeution of GREEDY(3-olourable) until every d-vertex and e-vertexhas been onsidered. Note that every e-vertex is output regardless. Let us freezethe exeution for a seond time at this point.Our next task in the exeution is to onsider the H-verties as to whether theyare output or not. Let (i; j) be some edge of F whih is either unlabelled or whoselabel has been made true by t. It may or may not be the ase that the verties i andj are output; but if they are both output then at the point after the seond of theseverties is output, the subgraph indued by the verties of S an be 3-oloured butnot so that i and j have the same olour. This is so beause eah of the verties di;j,e1i;j and e2i;j is in S. Hene, as we know that t(H) annot be 3-oloured, there must besome H-vertex that is not output; and, onsequently, there is at least one a-vertexoutput. Having an a-vertex output means that not all of fy; z; wg are output whihin turn means that x is output. Hene, (G;P; s; x) is a yes-instane of problem G.Conversely, suppose that (G;P; s; x) is a yes-instane of problem G. Fix anaepting exeution of the algorithm GREEDY(3-olourable) on input (G;P; s; x)and denote the linear order hosen within P by �. This exeution gives rise to atruth assignment t on the literals labelling the edges of the graph H: if � is suhthat a positive L-vertex, with assoiated literal Xi;j, say, is hosen then set t(Xi;j)to be true; and if � is suh that a negative L-vertex, with assoiated literal :Xi;j,say, is hosen then set t(Xi;j) to be false (note that this truth assignment is well-de�ned). As before, every L-vertex on � is output by GREEDY(3-olourable); and,by arguing as we did earlier, for any i; j 2 f1; 2; : : : ; ng with i < j and where (i; j)is a labelled edge of H, the truth assignment t makes L1i;j _ L2i;j true if, and only if,the verties di;j, e1i;j and e2i;j are output.At various points in the exeution of GREEDY(3-olourable), a hek is madeto see whether the verties of S indue a 3-olourable graph. Consider suh a hekand suppose that the verties of fdi;j; e1i;j; e2i;jg have been plaed in S. Consider thesubgraph K of G indued by those verties that are both in S and in the opy of G1pertaining to the labelled edge (i; j) of H. In partiular, onsider the role of K whenit omes to attempting to olour the subgraph of G indued by the verties of S. Asimple ombinatorial veri�ation yields that the role of the verties of K is to allow iand j to be oloured with any pair of distint olours but not with idential olours.Hene, any hek to see whether the subgraph of G indued by the verties of S anbe 3-oloured is equivalent to a hek of whether the subgraph of t(H) indued by(verties orresponding to) the H-verties of S an be 3-oloured. We know thatour aepting omputation on (G;P; s; x) outputs x. This an only happen if notall of fy; z; wg are output, i.e., if at least one a-vertex, am, say, is output, i.e., if theH-vertex m is not output, i.e., if the graph t(H) an not be 3-oloured. The resultfollows.
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4 The onstrutionWe now prove our main result using the tehniques originating with Hell andNe�set�ril. Of ourse, these tehniques have to be adapted to our senario.Theorem 2 The problem GREEDY (partial order, undireted graph, H-olourable)is NP-omplete, if H is bipartite, and �p2-omplete, if H is non-bipartite.Proof Throughout the proof we shall denote the problem GREEDY(partial order,undireted graphs, H-olourable) by GH . Clearly, GH an be solved in �p2, if H isnon-bipartite, and in NP, if H is bipartite (the latter beause the H-olourabilityproblem, for H-bipartite, an be solved in polynomial-time [6℄). Moreover, beausethe property of being H-olourable, for H bipartite, is non-trivial on graphs, hered-itary, satis�ed by all sets of independent edges and polynomial-time testable, by[11℄ we have that GH is NP-omplete if H is bipartite1. Atually, note that if His bipartite then GH and the problem GREEDY(partial order, undireted graphs,bipartite) are one and the same.To prove that for any non-bipartite graph H, the problem GH is �p2-omplete, wewill modify the proof of Theorem 1 of [6℄ whih states that: `If H is bipartite thenthe H-olouring problem is in P. If H is non-bipartite then the H-olouring problemis NP-omplete.' The proof begins by detailing three ways of onstruting a graphH 0 from a graph H suh that if the H 0-olouring problem is NP-omplete then theH-olouring problem is NP-omplete as well. We will show that suh onstrutionsan be used to prove that the problem GH is �p2-omplete.Constrution A: The indiator onstrution.Let I be a �xed graph and let i and j be distint verties of I suh that someautomorphism of I maps i to j and j to i. The indiator onstrution (with respetto (I; i; j)) transforms a given graph H into a graph H� de�ned to be the subgraphof H indued by all edges (h; h0) for whih there is a homomorphism of I to Hmapping i to h and j to h0. Beause of our assumptions on I, the edges of H� willbe undireted. The onstrution is illustrated in Fig. 3.
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i j

Figure 3. The indiator onstrution.1Atually, the result proven in [11℄ insists that the property should be non-trivial on planarbipartite graphs, but it is straight-forward to weaken this assumption and still obtain our applia-tion. 9



Lemma 3 If the problem GH� is �p2-omplete then so is GH .Proof Assume that GH� is �p2-omplete; and so, in partiular, H� has at least oneedge (otherwise H� would be the empty graph and GH� would not be �p2-omplete).We will redue GH� to GH (via a logspae redution). Let (G�; P �; s�; x�) be aninstane of GH�. From it, we shall onstrut an instane (G;P; s; x) of GH .Graph G is obtained from G� as follows. For any vertex i of G�, there is aorresponding vertex i of G: we will refer to suh verties of G as G�-verties (notehow we onsider the G�-verties of G and the verties of G� as being identiallynamed). For any edge (u; v) of G�, we add a opy of graph I to G by identifyingthe G�-vertex u with vertex i in I and the G�-vertex v with vertex j in I (all addedopies of I are disjoint).The partial order P onsists of a linear order L (any one will do) on the vertiesof G whih are not G�-verties, and we onatenate on to this linear order thepartial order P � (of the G�-verties). Vertex s is the �rst vertex of the linear orderL and vertex x is the G�-vertex x�. An illustration of this onstrution is depitedin Fig. 4 (where the graphs I, H and H� are as in Fig. 3).
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Figure 4. Building (G;P; s; x) from (G�; P �; s�; x�).Consider the algorithm GREEDY(H-olourable) on the input (G;P; s). As H�ontains at least one edge, there is a homomorphism from I to H. Hene, as thelinear order L onsists of disjoint opies of Infi; jg, GREEDY(H-olourable) outputs10



every vertex of L. After onsideration of the verties of L, GREEDY(H-olourable)is working with essentially the same partial order as is the algorithm GREEDY(H�-olourable) initially on input (G�; P �; s�); so onsider exeutions of these algorithmswith respet to the same subsequent linear order.Our indution hypothesis is as follows: `The urrent-vertex in both exeutionsis s0; GREEDY(H-olourable) has so far output the verties of L[ fs1; s2; : : : ; smg,where vertex si is a G�-vertex, for i = 1; 2; : : : ; m; and GREEDY(H�-olourable)has so far output the verties of fs1; s2; : : : ; smg.'Suppose that the indution hypothesis holds at some point (it ertainly holdswhen s0 = s�).Suppose that GREEDY(H�-olouring) outputs the vertex s0. This means thatthere exists an homomorphism f � : hfs0; s1; : : : ; smgiG� ! H�. By onstrutionof H�, there must exist a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H, wheref(si) = f �(si), for i = 0; 1; : : : ; m, and f(v) is the `natural' map for v 2 L (derivedfrom the de�nition of H� from H). Hene, GREEDY(H-olourable) outputs thevertex s0.Conversely, suppose that GREEDY(H-olourable) outputs the vertex s0. Thismeans that there exists a homomorphism f : hL[fs0; s1; : : : ; smgiG ! H. Again byonstrution of H�, there must exist a homomorphism f � : hfs0; s1; : : : ; smgiG� !H�, where f �(si) = f(si), for i = 0; 1; : : : ; m. Hene, GREEDY(H�-olouring)outputs the vertex s0. The result follows by indution.Constrution B : The sub-indiator onstrution.Let J be a �xed graph with spei�ed (distint) verties j and k1; k2; : : : ; kt, forsome t � 1. The sub-indiator onstrution (with respet to J; j; k1; k2; : : : ; kt)transforms a given graph H with t (distint) spei�ed verties h1; h2; : : : ; ht to itssubgraph ~H indued by the vertex set ~V de�ned as follows. A vertex v of H belongsto ~V just if there exists a homomorphism of J to H taking ki to hi, for i = 1; 2; : : : ; t,and taking j to v. An illustration of this onstrution is depited in Fig. 5 (where,for larity, we have shown the verties of H exluded from ~H).Lemma 4 If the problem G ~H is �p2-omplete then so is GH .Proof Assume that G ~H is �p2-omplete; and so, in partiular, ~H has at least onevertex. We will redue G ~H to GH (via a logspae redution). Let ( ~G; ~P; ~s; ~x) be aninstane of G ~H . From it, we shall onstrut an instane (G;P; s; x) of GH .The graph G is built from: a opy of ~G, of size n; a opy of H; and n opies ofJ (with J and H prior to the statement of the lemma), by identifying the vertexki in any opy of J with the vertex hi of H, for i = 1; 2; : : : ; t, and identifyingthe vertex j in the ith opy of J with the ith vertex of ~G, for i = 1; 2; : : : ; n. Theverties of G orresponding to the verties of ~G (and the verties j of the opies ofJ) are alled ~G-verties, the verties of G orresponding to the verties of the opiesof J but di�erent from j; k1; k2; : : : ; kt are alled J-verties, and the verties of Gorresponding to the verties of H are alled H-verties.11
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h2Figure 5. Building ~H from H and J .The partial order P onsists of any linear ordering of the H-verties, onate-nated onto any linear ordering of the J-verties onatenated onto the ordering ~P ofthe ~G-verties. The vertex s is the �rst H-vertex in the ordering P and the vertexx is the vertex ~x of ~P . The whole onstrution an be pitured in Fig. 6. Clearly,this onstrution an be undertaken using logspae.We begin by showing that any exeution of GREEDY(H-olourable) on input(G;P; s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex isoutput. Consider some opy of J (used in the formation of G). As ~H has at leastone vertex, there is a homomorphism from J to H taking ki to hi, for i = 1; 2; : : : ; t.Hene, every J-vertex is output. Denote the set of H-verties and J-verties of Gby L.Consider the algorithm GREEDY(H-olourable) on the input (G;P; s), wherethe urrent-vertex is ~s (with the verties of L having been output so far), andthe algorithm GREEDY( ~H-olourable) on the input ( ~G; ~P; ~s) where the urrent-vertex is ~s (note how we onsider the ~G-verties of G and the verties of ~G asbeing identially named). Essentially, these two algorithms work with the samepartial order; so onsider exeutions of these algorithms with respet to the samesubsequent linear order.Our indution hypothesis is as follows: `The urrent-vertex in both exeutionsis s0; GREEDY(H-olourable) has so far output the verties of L[ fs1; s2; : : : ; smg,where eah si is a ~G-vertex, for i = 1; 2; : : : ; m; and GREEDY( ~H-olourable) has sofar output the verties of fs1; s2; : : : ; smg.'Suppose that the indution hypothesis holds at some point (it ertainly holdswhen s0 = ~s).Suppose that s0 is output by GREEDY(H-olourable). That is, there is a ho-momorphism f : hL [ fs0; s1; : : : ; smgiG ! H. In partiular: f(si) is a vertex of ~H,for i = 0; 1; : : : ; m; and if (si; sj) is an edge of ~G then (f(si); f(sj)) is an edge of ~H,for i; j = 0; 1; : : : ; m. Hene, we have a homomorphism ~f : hfs0; s1; : : : ; smgi ~G ! ~H,and so s0 is output by GREEDY( ~H-olourable).12
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Figure 6. Building G from H, opies of J and ~G.Conversely, suppose that s0 is output by GREEDY( ~H-olourable). That is,there is a homomorphism ~f : hfs0; s1; : : : ; smgi ~G ! ~H. Consider the opy of Jorresponding to the ~G-vertex si of G. As ~f(si) is a vertex of ~H, ~f an be extendedto a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H. Hene, s0 is output byGREEDY(H-olourable). The result follows by indution.Constrution C : The edge-sub-indiator onstrution.Let J be a �xed graph with a spei�ed edge (j; j 0) and t spei�ed vertiesk1; k2; : : : ; kt, suh that all verties j; j 0; k1; k2; : : : ; kt are distint and some auto-morphism of J keeps k1; k2; : : : ; kt �xed while exhanging the verties j and j 0. Theedge-sub-indiator onstrution transforms a given graph H with t (distint) spe-i�ed verties h1; h2; : : : ; ht into its subgraph Ĥ indued by those edges (h; h0) of Hfor whih there is a homomorphism of J to H taking ki to hi, for i = 1; 2; : : : ; t, andj to h and j 0 to h0. The onstrution an be visualised as in Fig. 7.Lemma 5 If the problem GĤ is �p2-omplete then so is GH .Proof Assume that GĤ is �p2-omplete; and so, in partiular, Ĥ has at least oneedge. We will redue GĤ to GH (via a logspae redution). Let (Ĝ; P̂ ; ŝ; x̂) be aninstane of GĤ . From it, we shall onstrut an instane (G;P; s; x) of GH .13



H
h1

Ĥ
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Figure 7. Building Ĥ from H and J .The graph G is onstruted from: a opy of Ĝ, with e edges; a opy of H; and eopies of J (with H and J as prior to the statement of this lemma), by identifyingevery vertex ki in any opy of J with the vertex hi of H, for i = 1; 2; : : : ; t, andeah edge e of Ĝ with the edge (j; j 0) of a unique opy of J . The verties of Gorresponding to the verties of Ĝ (and the verties j and j 0 of the opies of J)are alled Ĝ-verties, the verties of G orresponding to the verties of the opiesof J but di�erent from j; k1; k2; : : : ; kt are alled J-verties, and the verties of Gorresponding to the verties of H are alled H-verties.The partial order P onsists of any linear ordering of the H-verties, onate-nated onto any linear ordering of the J-verties onatenated onto the ordering P̂ ofthe Ĝ-verties. The vertex s is the �rst H-vertex in the ordering P and the vertexx is the vertex x̂ of P̂ . The whole onstrution an be pitured in Fig. 8. Clearly,this onstrution an be undertaken using logspae.We begin by showing that any exeution of GREEDY(H-olourable) on input(G;P; s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex isoutput. Consider some opy of J (used in the formation of G). As Ĥ has at leastone edge, there is a homomorphism from J to H taking ki to hi, for i = 1; 2; : : : ; t.Hene, every J-vertex is output. Denote the set of H-verties and J-verties of Gby L.Consider the algorithm GREEDY(H-olourable) on the input (G;P; s), wherethe urrent-vertex is ŝ (with the verties of L having been output so far), andthe algorithm GREEDY(Ĥ-olourable) on the input (Ĝ; P̂ ; ŝ) where the urrent-vertex is ŝ (note how we onsider the Ĝ-verties of G and the verties of ~G asbeing identially named). Essentially, these two algorithms work with the samepartial order; so onsider exeutions of these algorithms with respet to the samesubsequent linear order.Our indution hypothesis is as follows: `The urrent-vertex in both exeutionsis s0; GREEDY(H-olourable) has so far output the verties of L[ fs1; s2; : : : ; smg,where eah si is a Ĝ-vertex, for i = 1; 2; : : : ; m; and GREEDY(Ĥ-olourable) has sofar output the verties of fs1; s2; : : : ; smg.'14
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Figure 8. Building G from H, opies of J and Ĝ.Suppose that the indution hypothesis holds at some point (it ertainly holdswhen s0 = ŝ).Suppose that s0 is output by GREEDY(H-olourable). That is, there is a ho-momorphism f : hL [ fs0; s1; : : : ; smgiG ! H. In partiular, if (si; sj) is an edgeof Ĝ then (f(si); f(sj)) is an edge of Ĥ, for i; j = 0; 1; : : : ; m. Hene, we have ahomomorphism f̂ : hfs0; s1; : : : ; smgiĜ ! Ĥ, and so s0 is output by GREEDY(Ĥ-olourable).Conversely, suppose that s0 is output by GREEDY(Ĥ-olourable). That is,there is a homomorphism f̂ : hfs0; s1; : : : ; smgiĜ ! Ĥ. Consider the opy of Jorresponding to the Ĝ-vertex si of G. As f̂(si) is a vertex of Ĥ, there must be aĜ-vertex sj of G suh that (f̂(si); f̂(sj)) is an edge of Ĥ, and so f̂ an be extendedto a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H. Hene, s0 is output byGREEDY(H-olourable). The result follows by indution.Now we an proeed as Hell and Ne�set�ril did in [6℄. Assume that there exists anon-bipartite graph H for whih the problem GH is not �p2-omplete. Choose H sothat it is non-bipartite and the problem GH0 is �p2-omplete for any non-bipartitegraph H 0:(i) with fewer verties than H; or 15



(ii) with the same number of verties as H but with more edges.It is straightforward to see that, under the assumption above, suh an H must exist.In [6℄, working from a similar hypothesis and graph H, the proof proeeds byusing the indiator, sub-indiator and edge-sub-indiator onstrutions, in tandemwith lemmas analogous to Lemmas 3, 4 and 5, to show that H must be a 3-lique;and hene that the 3-olouring problem is not NP-omplete, thus yielding a ontra-dition. The setions of the proof of the main theorem of [6℄ entitled `The struture oftriangles' and `The struture of squares' an be applied verbatim to our graph H (asthe onstrutions we use are idential and we have our analogous Lemmas 3, 4 and 5).Hene, we may assume that H is 3-olourable, i.e., that H is a 3-lique. However,Theorem 1 yields a ontradition as the problem GREEDY(partial order, undiretedgraphs, H-olourable) is none other than GH when H is a 3-lique, and the resultfollows.5 ConlusionIn this paper, we have exhibited a omplexity-theoreti dihotomy result onerningthe non-deterministi omputation of lexiographially �rst maximal H-olourablesubgraphs of graphs. Our dihotomy result is di�erent from other dihotomy resultsin that it is onerned with NP-ompleteness and �p2-ompleteness, as opposed toomputability in polynomial-time and NP-ompleteness as is more often the ase.There are natural diretions in whih to extend this researh.Can we obtain a onstrutive proof of our main result?Can we obtain a similar result in the ase of direted graphs or other stru-tures?Of ourse, it is open as to whether there is a onstrutive proof of Hell and Ne�set�ril'sresult and also whether it an be extended to direted graphs; but it may be thease that these questions might be easier in our senario.What is the omplexity of ounting the number of distint sets of verties outputby GREEDY (�) (on a given instane and for some appropriate property �)that ontain a given vertex v?This question is motivated by the results of Dyer and Greenhill [3℄.What is the omplexity of the analogously de�ned lexiographially last maximalsubgraph problem (again, with respet to an appropriate property �), in theases when a graph is linearly ordered and partially ordered?The only result we know of as regards omputing lexiographially last subgraphs isthat of [7℄ where it is proven that deiding whether a given set of verties of a givenlinearly ordered graph is the lexiographially last suh maximal independent set iso-NP-omplete. 16
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