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Abstract
The Eisenstein-Picard modular group PU(2, 1; Z[ω]) is defined to be the subgroup
of PU(2, 1) whose entries lie in the ring Z[ω], where ω is a cube root of unity. This
group acts isometrically and properly discontinuously on H2

C
, that is, on the unit ball

in C2 with the Bergman metric. We construct a fundamental domain for the action of
PU(2, 1; Z[ω]) on H2

C
, which is a 4-simplex with one ideal vertex. As a consequence,

we elicit a presentation of the group (see Theorem 5.9). This seems to be the simplest
fundamental domain for a finite covolume subgroup of PU(2, 1).
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1. Introduction
Lattices in rank one symmetric spaces have been studied for a long time with important
results concerning rigidity and arithmeticity. Among symmetric spaces, the complex
ball is a particularly challenging case. In particular, very few examples of lattices
have been constructed. Perhaps the first example for the complex two-dimensional
ball, the group PU(2, 1; Z[ω]) ⊂ PU(2, 1), is due to Picard [Pi1], [Pi2]; here ω =
(−1 + i

√
3)/2 is a primitive cube root of unity (see Sections 2, 3 for notation).

This group generalises the modular group PSL(2, Z) in complex dimension one. We
call PU(2, 1; Z[ω]) the Eisenstein-Picard modular group due to the important role of
Eisenstein integers Z[ω].

Our goal in this article is to obtain a fundamental domain for the Eisenstein-
Picard group along with a presentation. Of course, fundamental domains exist and
were studied in some generality (see [GR]), but the actual construction of a concrete
example is not easy. Curiously, this has not yet been done for the Eisenstein-Picard
group, maybe because the simplest way to obtain fundamental domains—namely, by
the Dirichlet method—gives rise to combinatorially complicated objects.

Studies of lattices using Dirichlet fundamental domains were made by Giraud
[G] and Mostow [M]. The calculations are difficult because bisectors are not totally
geodesic submanifolds, and, in fact, Mostow used computers. Moreover, it is not clear
whether his proof is independent of some numerical analysis (see the discussion in
[D]). Other fundamental domains for Mostow’s groups are given in [DFP].

In this article, we abandon Dirichlet domains and instead construct a remarkably
simple fundamental domain. In fact, it is the simplest possible combinatorial structure,
being a 4-simplex with one ideal vertex (the group has only one cusp) inside the two-
dimensional complex ball H2

C
(see Theorem 5.9). In fact, we construct the Ford domain

with a centre parabolic fixed point, that is, the intersection of the exteriors of isometric
spheres of all elements not fixing infinity. As is well known, the Ford domain is a
fundamental domain for the coset space of �∞ (the parabolic group stabilising the
ideal vertex; see, e.g., [L, page 58]). In order to construct a fundamental domain, we
must intersect the Ford domain with a fundamental domain for �∞. The fact that our
fundamental domain is a simplex follows from the fact that there is a single �∞-orbit of
isometric spheres with maximal radius, and the boundary of the Ford domain consists
of �∞-equivalent tetrahedral faces. This leads us to a choice of fundamental domain
for �∞, namely, the geodesic cone from the boundary of one of these tetrahedra to the
centre of the Ford domain.

This construction is completely analogous to the famous 2-simplex with one ideal
vertex which is the fundamental domain for the classical modular group PSL(2, Z)
in the hyperbolic plane H1

C
. The proofs we give, wherever possible, follow those for

PSL(2, Z) (see [L, pages 59 – 60]; readers may find it helpful to keep this example in
mind). For PSL(2, Z), the boundary of the Ford domain consists of arcs of Euclidean
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circles with radius 1 centred at the integers. These arcs are equivalent under the action
of integer translations, and so a fundamental domain for PSL(2, Z) is obtained by
intersecting the Ford domain with a strip of (Euclidean) width 1. If this strip is centred
on an integer, then the resulting domain is a hyperbolic triangle. Moreover, it is the
geodesic cone from infinity to one of the edges of the Ford domain.

The relation between the groups PSL(2, Z) and PU(2, 1; Z[ω]) is given in Propo-
sition 5.10; PU(2, 1; Z[ω]) is obtained from a representation of PSL(2, Z) by adjoining
one element (see also [FP]). Finally, we show that as well as its geometric presentation,
the Eisenstein-Picard modular group admits a presentation with two generators (see
Proposition 5.11). Furthermore, this presentation falls into the same pattern as the
family of the groups constructed by Mostow in [M] (see Corollary 5.13).

The orbifold H2
C
/PU(2, 1; Z[ω]) has volume π2/27 (this follows from the work

of Holzapfel; see [H1, page 151]). This is conjectured to be the smallest volume of
a cusped, complex hyperbolic orbifold. The fact that the Eisenstein-Picard group is
a basic lattice in complex dimension two is also shown by the fact that a smallest-
volume complex hyperbolic two-manifold can be obtained from an index 72 subgroup
of the Eisenstein-Picard group (see [P1]). These facts are again direct analogies of the
corresponding results for PSL(2, Z).

Our construction uses bisectors (see [M] and [Go]) and a version of Poincaré’s
polyhedron theorem, following [M]. It involves a careful study of a fundamental
domain for the parabolic subgroup fixing the cusp inside the Heisenberg group that is
the ideal boundary of complex hyperbolic space. The finite face of our polyhedron is
contained in an isometric sphere (that is, a vertical bisector; see [Go, Section 5.1.9]),
but all four faces containing the ideal vertex are not contained in a bisector; rather,
they are contained in the geodesic cone over a lower-dimensional face. A different
construction of a fundamental polyhedron for the Eisenstein-Picard modular group is
given in [P2]. This polyhedron consists of two simplices with a common face, and so it
has eight faces. The advantage of this construction is that all eight faces are contained
in bisectors.

The other Picard modular groups are PU(2, 1; Od ), where Od is the ring of in-
tegers in the imaginary quadratic number field Q(i

√
d) for any positive square-free

integer d. It would be interesting to find a strategy to obtain fundamental domains for
PU(2, 1; Od ), as was done by Swan [Sw] for the Bianchi groups PSL(2, Od ).

2. Complex hyperbolic space and its isometries

2.1. The Siegel domain
We consider the Hermitian form 〈z, w〉 = w∗J0z on C3 with signature (2, 1) defined
by the matrix

J0 =

0 0 1

0 1 0
1 0 0


 .
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Consider the following subspaces of C3:

V0 = {z ∈ C3 − {0} : 〈z, z〉 = 0
}
,

V− = {z ∈ C3 : 〈z, z〉 < 0
}
.

Let P : C3 − {0} → CP 2 be the canonical projection onto complex projective
space. Then H2

C
= P(V−) is a complex hyperbolic space. Using nonhomogeneous

coordinates, we obtain H2
C

as the Siegel domain


z1

z2

1


 ∈ CP 2 : 2Re (z1) + |z2|2 < 0


 .

Recall that the Heisenberg group is N = C × R with the group law

(z1, t1)(z2, t2) = (z1 + z2, t1 + t2 + 2 Im(z1z2)
)
.

Complex hyperbolic space is parametrised in horospherical coordinates by N × R+:

(z, t, u) →




−|z|2 − u+ it
2
z

1


 . (1)

The point at infinity is

q∞ =

1

0
0


 .

Then P(V0) = ∂H2
C

= (N × {0}) ∪ {q∞}.
The horosphere based at q∞ of height u is the hypersurface Hu = N×{u}, which

bounds the horoball Bu = N × (u, ∞). In horospherical coordinates, the geodesics
with endpoint q∞ are the vertical lines{

(z0, t0, u) : u ∈ (0,∞)
}
.

2.2. Complex hyperbolic isometries
The group of biholomorphic transformations of H2

C
is then PU(2, 1), the projectivi-

sation of the unitary group U(2, 1) preserving the Hermitian form given by J0. The
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general form of an element of A ∈ PU(2, 1) and its inverse are

A =

a b c

d e f

g h j


 , A−1 =


j f c

h e b

g d a


 . (2)

If A fixes q∞, then it is upper triangular. We now examine the subgroup of PU(2, 1)
fixing q∞. First, for (z0, t0) ∈ N, Heisenberg translation by (z0, t0) is given by

1 −z0
−|z0|2 + it0

2
0 1 z0

0 0 1


 .

Any Heisenberg translation by (0, t0) ∈ N is called a vertical translation.
For eiθ ∈ S1, Heisenberg rotation by θ fixing the complex line (0, t, u) ⊂ H2

C
is

given by 
1 0 0

0 eiθ 0
0 0 1


 .

All other Heisenberg rotations fixing q∞ may be obtained from such a map by conju-
gating by a Heisenberg translation.

For λ ∈ R+, Heisenberg dilation by λ fixing q∞ and qo = (0, 0, 0) ∈ ∂H2
C

is
given by 

λ 0 0
0 1 0
0 0 λ−1


 .

All other Heisenberg dilations fixing q∞ may be obtained by conjugating by a Heisen-
berg translation.

All Heisenberg rotations and translations preserve each horosphere based at q∞,
but all nontrivial Heisenberg dilations map each horosphere in H2

C
to another one. The

group generated by all Heisenberg translations, rotations, and dilations is the stabiliser
of q∞ in PU(2, 1). The Heisenberg isometry group Isom(N) is the subgroup generated
by all Heisenberg translations and rotations. We can write Isom(N) as N � U(1). In
particular, each element of Isom(N) preserves every horosphere.

We define vertical projection � : N −→ C by � : (z, t) 
−→ z. Using the exact
sequence

0 −→ R −→ N
�−→ C −→ 0,
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we obtain the exact sequence (see Scott [S, page 467])

0 −→ R −→ Isom(N)
�∗−→ Isom(C) −→ 1. (3)

Here Isom(C) is the group of orientation-preserving Euclidean isometries of C.
Observe that elements in Isom(C) can be represented by matrices in GL(2, C) of

the form [
eiθ z0

0 1

] [
z

1

]
=
[
eiθ z + z0

1

]
.

Therefore, the map �∗ can be explicitly given by

�∗ :


1 −z0e

iθ −|z0|2 + it0
2

0 eiθ z0

0 0 1


 −→

[
eiθ z0

0 1

]
. (4)

It is clear that

ker(�∗) =




1 0 it0

2

0 1 0
0 0 1


 : t0 ∈ R


 ,

the group of vertical translations fixing q∞.

2.3. Isometric spheres
Given an element A ∈ PU(2, 1) such that A(q∞) �= q∞, we define the isometric sphere
of A to be the hypersurface{

z ∈ H2
C

: |〈z, q∞〉| = |〈z, A−1(q∞)〉|}.
For example,

S0 = {(z, t, u) :
∣∣|z|2 + u + it

∣∣ = 2
}

(5)

is the isometric sphere of

R =

0 0 1

0 −1 0
1 0 0


 .

Both the isometric sphere S0 and the map R play crucial roles in our constructions.
All other isometric spheres are images of S0 by Heisenberg dilations, rotations, and
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translations. Thus the isometric sphere with radius r and centre (z0, t0, 0) is given by{
(z, t, u) :

∣∣|z − z0|2 + u + it − it0 + 2i Im(zz0)
∣∣ = r2}. (6)

(The factor r2 in this expression is because we are using the Cygan metric to measure
the radius; see, e.g., [P1].) Thus if A has the form (2), then A(q∞) �= q∞ if and only if
g �= 0. The isometric sphere of A has radius r = √

2/|g| and centre A−1(q∞), which
in horospherical coordinates is

(z0, t0, 0) =
(

h

g
, 2Im

(j

g

)
, 0

)
.

Isometric spheres are examples of bisectors and, as such, have a very nice foliation
by two different families of totally geodesic submanifold. There is a geodesic called
the spine of the bisector. Mostow [M] showed that a bisector is the preimage of the
spine under orthogonal projection onto the unique complex line containing the spine.
The fibres of this projection are complex lines called the slices of the bisector. Goldman
[Go] showed that a bisector is the union of all totally real Lagrangian planes containing
the spine. Such Lagrangian planes are called the meridians. Together the slices and
meridians give geographical coordinates on the bisector. Specifically, we begin by
writing |z|2 + u − it = 2eiθ for θ ∈ [−π/2, π/2] (this ensures that |z|2 + u ≥ 0); in
particular, |z| ≤ √

2 cos(θ ). We also write z in polar coordinates, and we choose its
argument in a way that is adapted to the decomposition of S0 into meridians. We achieve
this by writing z = reiα+iθ/2 for r ∈ [−√

2 cos(θ),
√

2 cos(θ)] and α ∈ [−π/2, π/2).
We remark that it might seem more natural to keep r nonnegative and allow α to vary
over [−π, π ). As we show in Proposition 2.1, we made this choice so that meridians
of S0 correspond to a fixed α. In geographical coordinates, S0 is given by

S0 =



 −eiθ

reiα+iθ/2

1


 : θ ∈

[
− π

2
,
π

2

]
, α ∈

[
− π

2
,
π

2

)
,

r ∈ [−
√

2 cos(θ ),
√

2 cos(θ)]


 . (7)

In horospherical coordinates, the point of S0 with geographical coordinates (r, θ, α)
is given by (reiα+iθ/2,−2 sin(θ), 2 cos(θ) − r2).

We now find the spine, slices, and meridians of S0 in terms of geographical
coordinates.
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PROPOSITION 2.1
The isometric sphere S0 with coordinates given by (7) is a bisector. Moreover,
� the spine of S0 is given by r = 0;
� the slices of S0 are given by θ = θ0 for fixed θ0 ∈ [−π/2, π/2];
� the meridians of S0 are given by α = α0 for fixed α0 ∈ [−π/2, π/2).

Proof
All isometric spheres are bisectors. The spine of S0 is given by the intersection of the
bisector with its complex spine, that is, the complex line spanned by q∞ and R(q∞).
This complex line has equation z = 0, and the first part follows.

Given a point (0, −2 sin(θ0), 2 cos(θ0)) on the spine of S0, the slice through this
point is given by the inverse image of orthogonal projection onto the complex spine.
Such points are given by 



−eiθ0

z

1


 ∈ P(V−)


 .

The second part follows immediately.
The meridians of S0 are the fixed-point loci of antiholomorphic involutions fixing

the spine. For α0 ∈ [−π/2, π/2), these maps are given by

ια0 :


z1

z2

z3


 
−→


 z3

−e2iα0z2

z1


 .

Applying ια0 to a point of S0 and taking horospherical coordinates, we obtain

ια0

(
reiα+iθ/2,−2 sin(θ), 2 cos(θ) − r2) = (re2iα0−iα+iθ/2,−2 sin(θ), 2 cos(θ) − r2).

Therefore, the meridian fixed by ια0 is given by α = α0. �

3. The Eisenstein-Picard modular group
Let Od be the ring of integers in the imaginary quadratic number field Q(i

√
d), where

d is a positive square-free integer. If d ≡ 1, 2 (mod 4), then Od = Z[i
√

d], and if
d ≡ 3 (mod 4), then Od = Z[(1 + i

√
d)/2]. The subgroup of PU(2, 1) with entries in

Od is called the Picard modular group for Od and is written PU(2, 1; Od ) (see [H2]). (In
fact, [H2] uses a different Hermitian form. However, the two Picard modular groups
are conjugate; see [P1, page 452].)

We are only interested in the case where d = 3. Let ω denote the cube root of
unity (−1 + i

√
3)/2. Then O3 = Z[ω] is the set of Eisenstein integers. Thus the Picard

modular group in this case is � = PU(2, 1; Z[ω]), which we call the Eisenstein-Picard
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modular group. The goal of this section is to prove Theorem 3.5, which gives genera-
tors for PU(2, 1; Z[ω]). In later sections, we go on to give a presentation.

3.1. The stabiliser of q∞
First, we want to analyse �∞, the stabiliser of q∞ in � = PU(2, 1; Z[ω]). Every
element of �∞ is upper triangular, and its diagonal entries are units in Z[ω]. Therefore,
�∞ contains no dilations and so is a subgroup of Isom(N); thus it fits into the exact
sequence (3) as

0 −→ R ∩ �∞ −→ �∞
�∗−→ �∗(�∞) −→ 1.

We now find the image and kernel in this exact sequence.

PROPOSITION 3.1
The stabiliser �∞ of q∞ in � = PU(2, 1; Z[ω]) satisfies

0 −→ 2
√

3 Z −→ �∞
�∗−→ 
(2, 3, 6) → 1,

where 
(2, 3, 6) denotes the triangle group comprising orientation-preserving sym-
metries of Z[ω].

Proof
From our explicit construction (4) of �∗, we see that for A ∈ �∞,

�∗(A) =
[

(−ω)m z0

0 1

]
,

where z0 ∈ Z[ω]. Thus �∗(�∞) is the group of orientation-preserving symmetries of
Z[ω] ⊂ C. This is well known to be the triangle group 
(2, 3, 6).

Likewise, the kernel of �∗ is easily seen to consist of those vertical translations
in �, that is, Heisenberg translations by (0, 2

√
3 n) ∈ N for n ∈ Z. �

This enables us to find generators for �∞.

PROPOSITION 3.2
�∞ is generated by

P =

1 1 ω

0 ω −ω

0 0 1


 , Q =


1 1 ω

0 −1 1
0 0 1


 . (8)
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Proof
The triangle group 
(2, 3, 6) is generated by

�∗(P ) : z 
−→ ωz − ω, �∗(Q) : z 
−→ −z + 1.

Hence we only need to show that P and Q generate R ∩ �∞ = 2
√

3 Z. Observe that

P 3 = Q2 =

1 0 i

√
3

0 1 0
0 0 1


 . (9)

This is precisely the generator of R ∩ �∞ = 2
√

3 Z. �

As a first step toward the construction of a fundamental domain for the Eisenstein-
Picard modular group �, we construct a fundamental domain for the parabolic sub-
group �∞ acting on the Heisenberg group. As �∞ preserves horospheres, a fundamen-
tal domain for �∞ acting on H2

C
is obtained by taking the bundle of vertical geodesics

(in horospherical coordinates) over a fundamental domain in the Heisenberg group. In
other words, the fundamental domain in H2

C
is the geodesic cone over a fundamental

domain in N.
We want to describe the action of P and Q on each horosphere. To do so, we

use the identification (1) between N × R+ = (C × R) × R+ and a subset of complex
projective space. Then using the matrices (8), we obtain the following action of P ,


1 1 ω

0 ω −ω

0 0 1






−|z|2 − u+ it
2
z

1


 =




−|z|2 − u + it
2 + z +ω

ωz − ω

1




=




−|ωz − ω|2 − u+ it + 2i Im(z) + i
√

3
2

ωz − ω

1


 ,

and Q,


1 1 ω

0 −1 1
0 0 1






−|z|2 − u+ it
2
z

1


 =




−|z|2 − u + it
2 + z + ω

−z + 1
1




=




−|− z + 1|2 − u + it + 2i Im(z) + i
√

3
2

−z + 1
1


 .
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Therefore, in horospherical coordinates,

P : (z, t, u) 
−→ (
ωz − ω, t + 2 Im(z) +

√
3, u
)

and

Q : (z, t, u) 
−→ (−z + 1, t + 2 Im(z) +
√

3, u
)
.

This action preserves each horosphere, that is, the set of points where u is constant.
Thus we may drop the dependence on u, and we obtain the action on N = C × R.

Consider T∗, the equilateral triangle in C with vertices at the points 0, 1, and −ω.
The map �∗(P ) is the rotation by 2π/3 about the centre of this triangle, and �∗(Q)
is the rotation by π around the midpoint of the side joining 0 to 1. Observe that a
fundamental domain for �∗(�∞) = 
(2, 3, 6) acting on C is one-third of T∗. Starting
from 0, one can define the vertices of T∗ as 0, �∗(P )(0) = −ω, and �∗(P 2)(0) = 1.
This action of �∗(P ) and �∗(Q) may be lifted to give a geometrical interpretation of
the action of P and Q. Specifically, writing z = (3 − i

√
3 )/6 + ζ , we see

P :
(1

2
− i

√
3

6
+ ζ, t, u

)

−→

(1

2
− i

√
3

6
+ ωζ, t + 2 Im(ζ ) + 2√

3
, u
)
.

Hence the action of the parabolic element P is a (Heisenberg) rotation by 2π/3 around
the vertical line that projects to (3 − i

√
3 )/6, the centre of T∗, followed by an upward

vertical translation by 2/
√

3. From the Euclidean point of view, P also involves a
shear. Likewise, writing z = 1/2 + ζ , we see that

Q :
(1

2
+ ζ, t, u

)

−→

(1

2
− ζ, t + 2 Im(ζ ) +

√
3, u
)
.

Thus the action of the parabolic element Q is a (Heisenberg) rotation by π about the
vertical line that projects to 1/2 followed by an upward vertical translation by

√
3.

The map PQ−1 is

PQ−1 =

1 0 0

0 −ω 0
0 0 1


 . (10)

In horospherical coordinates, this action is just

PQ−1 : (z, t, u) 
−→ (−ωz, t, u).

This is just rotation about the vertical axis by −π/3 = arg(−ω). In particular,
(PQ−1)6 = 1.
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p1 = (–w, 0)

p0 = (0, –√3)

p2 = (1, 0)

p3 = (0, –√3)

Figure 1. The tetrahedron T in the Heisenberg group

Let T be the affine tetrahedron, shown in Figure 1, in N with vertices at p0 =
(0, −√

3), p1 = P (p0) = (−ω, 0), p2 = P 2(p0) = (1, 0), and p3 = P 3(p0) =
(0,

√
3).

Observe that PQ−1 fixes p0, p3 and that p1 = PQ−1(p2). Denoting the faces of
T by the ordered triples of their vertices, this gives the following side-pairing maps
for T:

P : (p0, p1, p2) 
−→ (p1, p2, p3),

PQ−1 : (p0, p2, p3) 
−→ (p0, p1, p3).

Similarly, denoting the edges of T by the ordered pairs of their endpoints, the edge
cycles given by these side-pairings are

(p0, p3)
PQ−1

−→ (p0, p3),

(p0, p1)
P−→ (p1, p2)

P−→ (p2, p3)
PQ−1

−→ (p1, p3)
P −1−→ (p0, p2)

PQ−1

−→ (p0, p1).
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T

P3(T)

P2(T)
P(T)

p0 p0

p1 p2

p3 p3 p3

p1 p2 p1 p2

p0

Figure 2. Tessellating the Heisenberg group with T

This has used all the edges of T. The first of these cycles gives the relation (PQ−1)6 =
1, and the second gives the relation Q−2P 3 = 1. These relations follow from equations
(9) and (10).

We now show that the images of T under �∞ tessellate N (see Fig. 2).

LEMMA 3.3
The images of T under 〈P 〉 are disjoint except for common faces and fill the
prism whose vertical projection under � is T∗, the equilateral triangle with vertices
0, 1, −ω.

Proof
It is clear that the vertical sides of T, namely, (p0, p1, p3) and (p0, p2, p3), are
contained in the vertical sides of the prism. Moreover, P (T) is an affine tetrahedron
with vertices p1, p2, p3, and p4 = P (p3) = (−ω, 2

√
3). The vertical sides of this

tetrahedron are contained in the vertical sides of the prism. The two tetrahedra T and
P (T) share a common face (p1, p2, p3). Otherwise, they are disjoint. A similar result
holds for P 2(T), which shares a face with P (T). The three tetrahedra T, P (T), and
P 2(T) together form a finite piece of the prism with parallel top and bottom faces
(p0, p1, p2) and P 3(p0, p1, p2). Since P 3 is a vertical translation, the result follows
immediately. �
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PROPOSITION 3.4
The images of T under �∞ tessellate N. Moreover, �∞ has the presentation

�∞ = 〈P, Q | (PQ−1)6 = 1, P 3 = Q2〉.

Proof
Let T∗ be the equilateral triangle with vertices 0, 1, and −ω in C. The complex plane
is tessellated by images of this equilateral triangle, each of which consists of three
copies of a fundamental domain for 
(2, 3, 6) = �∗(�∞). The preimage of T∗ under
� is tessellated by images of T. Applying an appropriate word in �∞, we see that the
preimages under � of each of the other equilateral triangles are also tessellated by
images of T. Hence the images of T under �∞ cover N.

It remains to check which words in �∞ give rise to the same tetrahedron. Suppose
that A and B are two such words. Then the words �∗(A) and �∗(B) give the same
element of 
(2, 3, 6). In other words, �∗(AB−1) is in the normal closure of the group
generated by �∗(P 3), �∗(Q2), �∗((PQ−1)6). Because ker(�∗) = 〈P 3〉 is central, we
see that AB−1 is the corresponding word in the normal closure of P 3, Q2, (PQ−1)6

times a power of P 3. Since P 3 = Q2 and (PQ−1)6 = 1, we see that AB−1 is a power
of P 3. (We have again used the fact that P 3 is central.) Since A and B gave rise to
the same tetrahedron and since P 3 is a translation, we see that AB−1 = 1. Hence the
images of T under �∞ have disjoint interiors, and so they tessellate N. �

3.2. Generators for PU(2, 1; Z[ω])
As in Section 2.3, let R be given by

R =

0 0 1

0 −1 0
1 0 0


 . (11)

Recall that R has isometric sphere S0 given by (5), which we equip with geographical
coordinates. Observe that R maps S0 to itself, sending the point with coordinates
(r, θ, α) to the point with coordinates (r, −θ, α), fixing the slice of S0 corresponding
to θ = 0. Moreover, R swaps the inside and the outside of S0. Similarly, PQ−1

maps S0 to itself and sends the point (r, θ, α) to (r, θ, α − π/3), fixing the spine of
S0.

We now show that adjoining R to �∞ gives the full Eisenstein-Picard modular
group.

THEOREM 3.5
The Eisenstein-Picard modular group PU(2, 1; Z[ω]) is generated by P , Q, and R.
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Proof
We first show that 〈P, Q, R〉 has only one cusp. (The fact that PU(2, 1; Z[ω]) has
only one cusp is already known; see [H2, page 30].) Our fundamental domain for
�∞ = 〈P, Q〉 is an affine simplex T whose vertices all lie inside the Heisenberg
sphere ||z|2 + it | = 2. Since this Heisenberg sphere is convex, the whole of T lies
inside the sphere. There is a fundamental domain for 〈P, Q, R〉 lying outside the
isometric sphere of R and inside the fundamental domain (in H2

C
) for 〈P,Q〉. This

intersection meets ∂H2
C

only in q∞. Hence 〈P, Q, R〉 has only one cusp.
Clearly, the group generated by P , Q, R is a subgroup of PU(2, 1; Z[ω]). As

both groups have cofinite volume, 〈P, Q, R〉 must have finite index, say, d , in � =
PU(2, 1; Z[ω]). Hence the stabiliser of q∞ in 〈P, Q, R〉 must have index d in �∞ as
well. Since the stabiliser of q∞ in both groups is 〈P, Q〉, we must have d = 1, and so
〈P, Q, R〉 = PU(2, 1; Z[ω]). �

We remark that in [Pi2, page 181], Picard gave generators for the congruence subgroup
of � comprising those T ∈ � such that the entries of T − I lie in i

√
3 Z[ω] (see [H2,

Proposition 6.3.13]). In terms of our generators, matrices corresponding to Picard’s
generators are

(P −1QP −1)2 =

1 ω − ω ω − 1

0 ω 1 − ω

0 0 1


 ,

(Q−1P )2 =

1 1 − ω ω − 1

0 ω 1 − ω

0 0 1


 ,

(QP −1)2 =

1 0 0

0 ω 0
0 0 1


 ,

(RPQ)2 =

 1 0 ω − ω

0 ω 0
ω − ω 0 −2


 ,

RPQ−1(P −1QP −1)2QP −1R =

 1 0 0

ω − ω ω 0
ω − 1 1 − ω 1


 .
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4. A fundamental domain for PU(2, 1; Z[ω])
We now construct a fundamental domain of PU(2, 1; Z[ω]). A priori, there is no reason
to expect that the fundamental domain is the intersection of the outside of the isometric
sphere S0 of R with the fundamental domain we have already constructed for �∞.
Indeed, this is not the case.

For example, consider the map P 2Q−1RP and, for small δ, the point

zδ =

 −1 − δ

1 − ω − iω

1


 .

Then, after scaling so that its last coordinate is 1, the point P 2Q−1RP (zδ) is
 ω −1 1

−ω 1 − ω ω

1 1 ω




 −1 − δ

1 − ω − iω

1


 ≈


 −1 + iδ

1 − ω − iω + δ + iωδ

1


+ O(δ2).

(O(δ2) denotes a vector in C3 whose entries have absolute values bounded by a constant
multiple of δ2 for small δ.) For sufficiently small δ, both zδ and P 2Q−1RP (zδ) lie
outside S0 and inside the fundamental domain we constructed for �∞.

In fact, we show that by making suitable modifications to the fundamental domain
of �∞, it is possible to produce a fundamental domain for � that is the intersection
of a fundamental domain for �∞ with the outside of S0. If this is the case, then it is
clearly necessary that the points of S0 in the boundary of our fundamental domain lie
outside every other isometric sphere.

The modifications consist of introducing totally geodesic skeletons whenever
possible. The vertices of the fundamental domain are the same as those for the in-
tersection of S0 (the isometric sphere of R) with the fundamental domain we have
already constructed for �∞. The edges are geodesics joining the vertices (the point q∞
is an ideal vertex). The 2-faces are totally geodesic whenever possible. In our case, as
all 2-faces are triangles, they are totally geodesic if and only if their three vertices are
contained in a totally geodesic subspace. The triangles containing the ideal vertex are
foliated by geodesics starting at the ideal vertex and arriving at the opposite edge.

To determine the remaining 2-faces and 3-faces, we observe that the finite edges
(those not containing the ideal vertex) are all contained in the isometric sphere S0.
Two of the 2-faces are meridians of S0, and the two remaining 2-faces are defined as
intersections of S0 with appropriate images of themselves by elements of �∞. In this
way, we guarantee the pairing between the faces.

One of the 3-faces (the finite one) is contained in S0. The other four 3-faces are
cones based at the 2-faces of that 3-face with the cone point the ideal vertex.
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To this end, we begin by investigating the intersection of S0 with its neighbouring
isometric spheres.

4.1. The intersection of S0 and its neighbours
We have already considered the points pn ∈ N for n = 0, . . . , 3. Consider the geodesic
γn through pn with one end q∞, and let zn be the intersection of γn with S0. Then

z0 =

ω

0
1


 , z1 =


−1

−ω

1


 , z2 =


−1

1
1


 , z3 =


ω

0
1


 .

In horospherical coordinates, these fixed points are given by

z0 = (0, −
√

3, 1), z1 = (−ω, 0, 1), z2 = (1, 0, 1), z3 = (0,
√

3, 1).

We see that these points all lie in the horosphere H1. Making the canonical identifi-
cation between H1 and N identifies zn with pn for n = 0, 1, 2, 3. Instead of joining
these vertices with affine subspaces to form the simplex T in N as we did before, we
now join them with subspaces reflecting the geometry of complex hyperbolic space
to obtain a simplex T0 contained in S0.

In terms of the geographical coordinates on S0, these points are given by the
following.
� The point z0 has r = 0, so it lies on the spine of S0 and on the slice of S0 with

θ = π/3.
� The point z1 has r = 1 and lies on the slice of S0 with θ = 0 and the meridian

with α = −π/3.
� The point z2 has r = 1 and lies on the slice of S0 with θ = 0 and the meridian

with α = 0.
� The point z3 has r = 0, so it lies on the spine of S0 and on the slice of S0 with

θ = −π/3.
We observe that since pn = P n(p0) for n = 0, . . . , 3 and since the points zn

all lie on a horosphere, we immediately have zn = P n(z0). Alternatively, we could
have verified this directly. This means that P −m(zn) = zn−m lies on P −m(S0) for each
n − 3 ≤ m ≤ n. This immediately gives the following lemma.

LEMMA 4.1
We have

z0 ∈ S0 ∩ P −1(S0) ∩ P −2(S0) ∩ P −3(S0), z1 ∈ P (S0) ∩ S0 ∩ P −1(S0) ∩ P −2(S0),

z2 ∈ P 2(S0) ∩ P (S0) ∩ S0 ∩ P −1(S0), z3 ∈ P 3(S0) ∩ P 2(S0) ∩ P (S0) ∩ S0.



266 FALBEL and PARKER

For each pair of distinct m, n ∈ {0, 1, 2, 3}, let γmn = γnm be the geodesic arc joining
zn and zm.

LEMMA 4.2
We have

γ01 ⊂ S0 ∩ P −1(S0) ∩ P −2(S0), γ12 ⊂ P (S0) ∩ S0 ∩ P −1(S0),
γ23 ⊂ P 2(S0) ∩ P (S0) ∩ S0, γ02 ⊂ S0 ∩ P −1(S0),
γ13 ⊂ P (S0) ∩ S0, γ03 in the spine of S0.

Proof
As z0 and z3 lie on the spine of S0, then, by definition, so does the geodesic arc joining
them. Hence z0 and z3 must lie on every meridian.

The points z0, z3, and z1 all lie on the meridian of S0 with α = −π/3. Since
meridians are totally geodesic, this implies that γ01 and γ13 both lie on this meridian.
Applying P , we see that z1 = P (z0) and z2 = P (z1) lie on a meridian of P (S0). Hence
γ12 lies on this meridian. Similarly, γ23 lies on a meridian of P 2(S0). Applying P −1,
we see that z0 = P −1(z1) and z2 = P −1(z3) lie on the same meridian of P −1(S0).
Hence γ02 lies on this meridian.

Likewise, γ02 and γ23 lie on the meridian of S0 with α = 0. Applying powers of
P , we see that γ13 lies on a meridian of P (S0), γ12 lies on a meridian of P −1(S0), and
γ01 lies on a meridian of P −2(S0).

Observe that z1 and z2 lie on the slice of S0 with θ = 0. Since slices are totally
geodesic, we see that γ12 lies on this slice. Applying P , we see that γ23 lies on a slice
of P (S0); likewise, γ01 lies on a slice of P −1(S0).

Putting all this together gives the result. �

We now investigate the intersection of S0 and S−1 = P −1(S0) a little more closely. A
brief computation shows that S−1 is given by

S−1 = {(z, t, u) ∈ H2
C

:
∣∣|z|2 + u − it − 2z − 2ω

∣∣ = 2
}
. (12)

LEMMA 4.3
A point (r, θ, α) of S0 written in geographical coordinates with −π/3 ≤ α ≤ 0 does
not intersect the interior of S−1, provided that

r ≤ 2 cos
(θ

2
+ π

6

)
cos
(
α + π

6

)
−
√

1 − 4 cos2
(θ

2
+ π

6

)
sin2

(
α + π

6

)
with equality if and only if the point lies in S0 ∩ S−1.
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Proof
Changing to geographical coordinates in (12), we see that a point of S0 does not
intersect the interior of S−1 if and only if

1 ≤ |eiθ − rei(α+θ/2) + e−iπ/3| =
∣∣∣rei(α+π/6) − 2 cos

(θ

2
+ π

6

)∣∣∣ (13)

with equality if and only if the point lies on S0 ∩ S−1. Expanding out the right-hand
side, we see that this is equivalent to

0 ≤ r2 − 4r cos
(θ

2
+ π

6

)
cos
(
α + π

6

)
+ 4 cos2

(θ

2
+ π

6

)
− 1.

This is satisfied for all points of S0 with

r ≤ 2 cos
(θ

2
+ π

6

)
cos
(
α + π

6

)
−
√

1 − 4 cos2
(θ

2
+ π

6

)
sin2

(
α + π

6

)
or

r ≥ 2 cos
(θ

2
+ π

6
) cos

(
α + π

6

)
+
√

1 − 4 cos2
(θ

2
+ π

6

)
sin2

(
α + π

6

)
.

We claim that when −π/3 ≤ α ≤ 0, the second of these solutions is always greater
than

√
2 cos(θ ) and so does not correspond to a point of S0. In order to see this, observe

that −π/3 ≤ α ≤ 0 implies 2 cos(α + π/6) ≥ √
3 and 4 sin2(α + π/6) ≤ 1. Thus

2 cos
(θ

2
+ π

6

)
cos
(
α + π

6

)
+
√

1 − 4 cos2
(θ

2
+ π

6

)
sin2

(
α + π

6

)

≥
√

3 cos
(θ

2
+ π

6

)
+ sin

(θ

2
+ π

6

)
= 2 cos

(θ

2

)
=
√

2 cos(θ ) + 2

>
√

2 cos(θ ).

This proves the result. �

We can now characterise the geodesic arcs γmn in terms of geographical coordinates.

LEMMA 4.4
In terms of geographical coordinates, we have the following.
� The geodesic arc γ01 consists of those points of S0 with α = −π/3, r =

2 cos(θ/2 + π/3), and 0 ≤ θ ≤ π/3.
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� The geodesic arc γ12 consists of those points of S0 with θ = 0, −π/3 ≤ α ≤ 0,
and

r =
√

3 cos
(
α + π

6

)
−
√

1 − 3 sin2
(
α + π

6

)
;

that is, reiα lies on the circle centred at 1 − ω of radius 1.
� The geodesic arc γ02 consists of those points of S0 with r = 2 cos(θ/2 + π/3),

α = 0, and 0 ≤ θ ≤ π/3.
� The geodesic arc γ23 consists of those points of S0 with r = 2 cos(θ/2 − π/3),

α = 0, and −π/3 ≤ θ ≤ 0.
� The geodesic arc γ13 consists of those points of S0 with r = 2 cos(θ/2 − π/3),

α = −π/3, and −π/3 ≤ θ ≤ 0.
� The geodesic arc γ03 consists of those points of S0 with −π/3 ≤ θ ≤ π/3 and

r = 0.

Proof
Since γ03 lies in the spine of S0, its expression in geographical coordinates follows
immediately.

We have already seen that γ01, γ12, and γ02 all lie in S0 ∩ S−1. We know that α =
−π/3 for each point of γ01. Substituting into Lemma 4.3 and requiring equality gives

r =
√

3 cos
(θ

2
+ π

6

)
−
√

1 − cos2
(θ

2
+ π

6

)
= 2 cos

(θ

2
+ π

3

)
.

We know that θ = π/3 at z0 and θ = 0 at z1. This gives the first part.
The coordinates for γ02 follow similarly, using α = 0.
The geodesic arc γ12 lies in the slice of S0 given by θ = 0. We know that

α = −π/3 at z1 and α = 0 at z0, and so −π/3 ≤ α ≤ 0 on γ12. Using Lemma 4.3
and setting θ = 0 gives

r =
√

3 cos
(
α + π

6

)
−
√

1 − 3 sin2
(
α + π

6

)
.

Recall that, as in Section 3.2, R acts on S0 by R : (r, θ, α) 
−→ (r, −θ, α), and
so R(z0) = z3 and R fixes z1 and z2. Thus to find γ13 and γ23, we should replace θ

with −θ in the expressions for γ01 and γ02, respectively. This gives the result. �

4.2. The basic tetrahedron
We are now ready to define the tetrahedron T0.
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z1

z0

z2

z3

Figure 3. A schematic view of the 1-skeleton of the basic tetrahedron T0.
The fundamental domain D has a boundary that is a union of five tetrahedra: T0 and four

tetrahedra constructed as cones at ∞ over the four faces of T0.

Definition 4.5
Using geographical coordinates from (7), the tetrahedron T0 comprises those points
of S0 for which −π/3 ≤ θ ≤ π/3, −π/3 ≤ α ≤ 0, and

0 ≤ r ≤ 2 cos
( |θ |

2
+ π

6

)
cos
(
α + π

6

)

−
√

1 − 4 cos2
( |θ |

2
+ π

6

)
sin2

(
α + π

6

)
. (14)

A schematic view of T0 is given in Figure 3, and a realistic view is given in Figure 4.
The faces of T0 are defined as follows.
� The face F1 of T0 is its intersection with the meridian given by α = 0.

Therefore, its points are parametrised by −π/3 ≤ θ ≤ π/3 and

0 ≤ r ≤ 2 cos
( |θ |

2
+ π

3

)
.

� The face F2 of T0 is its intersection with the meridian given by α = −π/3.
Thus its points are parametrised by −π/3 ≤ θ ≤ π/3 and

0 ≤ r ≤ 2 cos
( |θ |

2
+ π

3

)
.
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� The face F3 of T0 is its intersection with S−1 = P −1(S0). Therefore, its points
are parametrised by 0 ≤ θ ≤ π/3, −π/3 ≤ α ≤ 0, and

r = 2 cos
(θ

2
+ π

6

)
cos
(
α + π

6

)

−
√

1 − 4 cos2
(θ

2
+ π

6

)
sin2

(
α + π

6

)
.

� The face F4 of T0 is its intersection with P (S0). Therefore, its points are
parametrised by −π/3 ≤ θ ≤ 0, −π/3 ≤ α ≤ 0, and

r = 2 cos
(θ

2
− π

6

)
cos
(
α + π

6

)

−
√

1 − 4 cos2
(θ

2
− π

6

)
sin2

(
α + π

6

)
.

It is clear that the edges of T0 are the geodesic arcs γmn for distinct m, n ∈
{0, 1, 2, 3} as defined, and its vertices are the points z0, z1, z2, z3. In particular, we
have

γ01 = F2 ∩ F3, γ12 = F3 ∩ F4, γ02 = F1 ∩ F3, γ03 = F1 ∩ F2,

γ13 = F2 ∩ F4, γ23 = F1 ∩ F4, z0 = F1 ∩ F2 ∩ F3, z1 = F2 ∩ F3 ∩ F4,

z2 = F1 ∩ F3 ∩ F4, z3 = F1 ∩ F2 ∩ F4.

PROPOSITION 4.6
The involution R maps T0 to itself. Moreover, (PQ−1)−1(T0) ∩ T0 = F1, and PQ−1

maps F1 to F2; likewise, P −1(T0) ∩ T0 = F3, and P maps F3 to F4.

Proof
This follows from the formulae (11) for R, (10) for PQ−1, and (8) for P . �

In Figure 4, we see the edges γmn using isometric coordinates; that is, we parametrise
the S0 by (z, t), so that u = √

4 − t2 − |z|2.

LEMMA 4.7
All points of T0 satisfy r ≤ 2 cos(|θ |/2 + π/3) with equality only when α = 0 or
−π/3.

Proof
The result follows by examining how inequality (14) varies with α for −π/3 ≤
α ≤ 0. �
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z1

z0

z2

z3

Figure 4. A realistic view of the 1-skeleton of the basic tetrahedron T0 inside
the isometric sphere S0 of R in adapted coordinates

LEMMA 4.8
All points of T0 satisfy u ≥ 1 with equality only at the vertices.

Proof
From (7), we see that u = 2 cos(θ) − r2. Using the bound r ≤ 2 cos(|θ |/2 + π/3)
from Lemma 4.7, we see that

u ≥ 2 cos(|θ |) − 4 cos2
( |θ |

2
+ π

3

)

= 2 cos(|θ |) − 2 cos
(
|θ | + 2π

3

)
− 2

= 2
√

3 sin
(
|θ | + π

3

)
− 2

≥ 1,

where equality in the first line happens only when α = 0 or −π/3 and where equality
in the last line is attained for θ = 0 or θ = +−π/3. The result follows. �

LEMMA 4.9
If (r, θ, α) ∈ T0, then for each k = 0, . . . , 5,

|rei(α+θ/2) −
√

3e−i(π/6+kπ/3)| ≥ 1.
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Proof
When θ = 0, we have

|reiα −
√

3e−i(π/6+kπ/3)| ≥ |reiα −
√

3e−iπ/6| ≥ 1

by putting θ = 0 in (13).
Fix 0 < θ ≤ π/3, and consider the reiα plane. The intersection of this plane with

T0 is the region

T0(θ ) =
{
reiα : − π

3
≤ α ≤ 0, 0 ≤ r ≤ 2 cos

(θ

2
+ π

3

)
,

∣∣∣reiα − 2 cos
(θ

2
+ π

6

)
e−iπ/6

∣∣∣ ≥ 1
}
.

(We have used Lemma 4.7.) We need to show that points in T0(θ ) satisfy

|reiα −
√

3e−i(θ/2+π/6+kπ/3)| ≥ 1.

Let Ck be the circle defined by {|reiα − √
3e−i(θ/2+π/6+kπ/3)| = 1}. An easy

calculation shows that∣∣∣2 cos
(θ

2
+ π

3

)
−

√
3e−i(θ/2+π/6+kπ/3)

∣∣∣ = |eiθ + e2iπ/3 + i
√

3e−ikπ/3| > 1.

Since π/6 < θ/2 + π/6 ≤ π/3, we see that Ck intersects the disc of radius 2 cos(θ/2 +
π/3) in the interval where −(k + 1)/3 < α < −kπ/3. In particular, for k = 1, . . . , 5,
the circle Ck does not intersect the sector where 0 ≤ r ≤ 2 cos(θ/2 + π/3) and
−π/3 ≤ α ≤ 0 and, hence, does not intersect T0(θ ).

We now consider the circle C0. It intersects the circle {|reiα − 2 cos(θ/2 +
π/6)e−iπ/6| = 1} in the points e−i(θ/2+π/3) and 2 cos(θ/2) + e−i(θ/2+π/3). Both points
have modulus greater than 2 cos(θ/2 + π/3), and therefore, points of C0 either have
|reiα − 2 cos(θ/2 + π/6)e−iπ/6| < 1 or r > 2 cos(θ/2 + π/3). Hence, C0 does not
intersect T0. This gives the result for each 0 ≤ θ ≤ π/3.

When −π/3 ≤ θ < 0,

T0(θ ) =
{
reiα : −π

3
≤ α ≤ 0, 0 ≤ r ≤ 2 cos

(θ

2
− π

3

)
,

∣∣∣reiα − 2 cos
(θ

2
− π

6

)
e−iπ/6

∣∣∣ ≥ 1
}
.

The result follows in this case by applying the arguments above but replacing α with
−α − π/3 and θ with −θ . �

LEMMA 4.10
The tetrahedron T0 is a three-dimensional simplex embedded in H2

C
.
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Proof
Points of S0 with distinct geographical coordinates correspond to distinct points of
H2

C
. Since T0 is a three-dimensional simplex in the space of geographical coordinates,

the result follows. �

LEMMA 4.11
The only elements of �∞ mapping S0 to itself are powers of PQ−1.

Proof
If T ∈ �∞ maps S0 to itself, then T must fix (0, 0, 0), the centre of S0. Thus T is
diagonal. Using the fact that T is in PU(2, 1) and that the entries of T lie in Z[ω], we
immediately see that T is a power of PQ−1. �

PROPOSITION 4.12
The interior of T0 is disjoint from all images of S0 under �∞ − 〈PQ−1〉.

Proof
Suppose that (z, t, u) lies both on T0 and on an isometric sphere of radius

√
2 with

centre (z0, t0, 0) �= (0, 0, 0). That is,

(|z|2 + u)2 + t2 = (|z − z0|2 + u)2 + (t − t0 + 2 Im (zz0)
)2 = 4,

or, using geographical coordinates,

1 =
∣∣∣eiθ − rei(θ/2+α)z0 + (|z0|2 + it0)

2

∣∣∣.
Moreover, z0 and (|z0|2 + it0)/2 must both lie in Z[ω].

Since (|z|2 + u)2 + t2 = 4 and u ≥ 1 (from Lemma 4.8), we have |z| ≤ 1 and
|z|4 + t2 ≤ 3 − 2|z|2. Similarly, |z − z0| ≤ 1 and |z − z0|4 + (t − t0 + 2 Im(zz0)

)2 ≤
3 − 2|z − z0|2. Thus∣∣|z0|2 + it0

∣∣ = ∣∣|z − z0|2 − it + it0 − 2i Im(zz0) + |z|2 + it − 2z(z − z0)
∣∣

≤ ∣∣|z − z0|2 − it + it0 − 2i Im(zz0)
∣∣+ ∣∣|z|2 + it

∣∣+ 2|z| |z − z0|
≤
√

3 − 2|z − z0|2 +
√

3 − 2|z|2 + 2|z| |z − z0|
≤ 4

with equality in the last line if and only if |z| = |z − z0| = 1. Thus we need to
investigate the intersection of S0 with isometric spheres centred at (z0, t0, 0), where
z0 and (|z0|2 − it0)/2 are both in Z[ω] and ||z0|2 − it0| ≤ 4. This immediately implies
that ||z0|2 − it0| equals 2, 2

√
3, or 4.
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First, suppose that ||z0|2 − it0| = 2. Therefore, (|z0|2 − it0)/2 is a power of −ω.
This implies that z0 = (−ω)k for k = 0, . . . , 5 and t0 = +−

√
3. Suppose that (r, θ, α)

lies on both S0 and the image of S0 with centre z0 = (−ω)k , t0 = +−
√

3. Then

1 = |eiθ + e
+−iπ/3 − rei(α+θ/2+πk/3)| =

∣∣∣reiα − 2 cos
(θ

2
∓ π

6

)
e−i(πk/3∓π/6)

∣∣∣.
If (r, θ, α) ∈ T0, then we must have

1 ≤
∣∣∣reiα − 2 cos

(θ

2
+−

π

6

)
e−iπ/6

∣∣∣
for both choices of sign. Combining these, we see that reiα is at least as close
(with respect to the Euclidean metric on C) to 2 cos(θ/2 ∓ π/6)e−i(πk/3∓iπ/6) as to
2 cos(θ/2 ∓ π/6)e−iπ/6. Since −π/3 ≤ α ≤ 0, we must have k = 1/2 +− 1/2, and so
(z0, t0, 0) = (1, −√

3, 0) = P −1(0, 0, 0) or (−ω,
√

3, 0) = P (0, 0, 0). Hence (r, θ, α)
lies on F3 or F4. In particular, it does not lie in the interior of T0.

Second, suppose that ||z0|2 − it0| = 2
√

3. Then either |z0| = √
3 and t0 = +−

√
3

or else z0 = 0 and t0 = +−2
√

3.
In the former case, z0 = (1 −ω)(−ω)k = √

3e−i(π/6+kπ/3) for some k = 0, . . . , 5.
Using Lemmas 4.9 and 4.8, we see that if (z, t, u) lies in T0, then |z − z0| ≥ 1 and
u ≥ 1. In the latter case, we only have equality at the vertices. This implies

(|z − z0|2 + u)2 ≥ 4

with strict inequality except at the vertices. Thus the interiors of the tetrahedra are
disjoint.

If z0 = 0 and t0 = +−2
√

3, then we have

(|z|2 + u)2 + t2 = (|z|2 + u)2 + (t ∓ 2
√

3)2 = 4.

The only solutions with u ≥ 1 are (0, +−
√

3, 1), that is, the points z0 and z3.
Finally, suppose that ||z0|2 − it0| = 4. Since z0 and (|z0|2 + it0)/2 are both

in Z[ω], the only possibility in this case is |z0| = 2, t0 = 0. However, we know
that |z| ≤ 1 and |z − z0| ≤ 1 with equality only when u = 1. Using the triangle
inequality, we see that u = 1, and the interior of T0 does not intersect this isometric
sphere. �

4.3. The four-dimensional simplex
We now define tetrahedra T1, T2, T3, and T4. Each of these is the geodesic cone from
q∞ over the union of faces F1, F2, F3, and F4 of T0. To be precise, the tetrahedron T1

is defined to be the union over all points p of F1 of the geodesic arc joining p to q∞,
and it is likewise for T2, T3, and T4.
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PROPOSITION 4.13
The tetrahedra T1, T2, T3, and T4 are three-dimensional simplices embedded in
H2

C
∪ {q∞}.

Proof
It suffices to show that vertical projection � maps each face of T0 bijectively
onto its image. Equivalently, given a point on ∂T0 with horospherical coordinates
(z, t, u), u is then specified by z and t . Since T0 is contained in S0, we have
u = √

4 − t2 − |z|2. �

By construction, the intersection of T0 with each of the tetrahedra T1, T2, T3, T4

is nothing other than the corresponding face of T0. Similarly, each pair of tetrahedra
from T1, T2, T3, and T4 intersects in a two-dimensional subset formed by the geodesic
cone from q∞ of the edges γ12, . . . , γ03. Finally, each triple of T1, T2, T3, and T4

intersects in the geodesic arc joining the appropriate vertex of T0 with q∞.
We define the four-dimensional simplex D to be the geodesic cone from q∞ of

the tetrahedron T0. By the same argument given in Proposition 4.13, we see that D
is an embedded 4-simplex in H2

C
∪ {q∞}. Moreover, D has five three-dimensional

faces, namely, T0, T1, T2, T3, and T4. The goal of this section is to show that D is a
fundamental domain for the Eisenstein-Picard modular group.

PROPOSITION 4.14
The interior of the domain D lies outside all isometric spheres of elements of � −�∞.

Proof
Let A ∈ � − �∞ be written in the form (2). By definition, the radius of the isometric
sphere of A is

√
2/|g|. Since g ∈ Z[ω], we see that |g| is 1,

√
3, or at least 2.

Suppose that (z, t, u) is on an isometric sphere with centre (z0, t0, 0) and radius
at most 1 (that is, |g| ≥ 2). Then∣∣|z − z0|2 + u − it + it0 − 2iIm(zz0)

∣∣ ≤ 1.

It is clear that u ≤ 1, and so (z, t, u) cannot lie in the interior of T0.
Second, suppose that A ∈ � − �∞ has isometric sphere of radius

√
2. That is,

|g| = 1. Then g = (−ω)k . So as a vector in CP 2,

A−1(∞) =




j

h

g


 .
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We see that j/g and h/g both lie in Z[ω]. That is, A−1(∞) lies in the �∞-orbit
of R(q∞), and so our isometric sphere is the image of S0 under an element of �∞.
Suppose that (z, t, u) lies in the interior of D. Then there exists u1 ≤ u, so that (z, t, u1)
lies in the interior of T0. But we know from Proposition 4.12 that T0 lies outside all
�∞-images of S0 other than S0. Since u > u1, we see that (z, t, u) lies outside all
isometric spheres of radius

√
2.

Finally, suppose that A ∈ � − �∞ has isometric sphere with radius
√

2/
√

3 and

centre (z0, t0, 0) (that is, |g| = √
3). Again, we write A−1(∞) as a vector in CP 2, as

in the previous equation, and observe that g = i
√

3(−ω)k for some integer k. As A is
in PU(2, 1), we have

0 = jg + |h|2 + gj,

and so we see that |h|2 is divisible by 3. Thus h ∈ i
√

3Z[ω]. In other words, h/g ∈
Z[ω]. Because h and g are both in i

√
3 Z[ω] and since |det(A)| = 1, we see that

j +−1 ∈ i
√

3 Z[ω]. Thus j/g∓i/
√

3 is in Z[ω]. Hence (|z0|2 − it0 +−2i/
√

3)/2 ∈ Z[ω].
In other words, (z0, t0 ∓ 2/

√
3) is in the �∞-orbit of R(q∞) = (0, 0, 0).

We have

(|z − z0|2 + u)2 + (t − t0 + 2 Im(zz0)
)2 = 4

3
.

If u > 1, then

(
t − t0 + 2 Im(zz0)

)2
<

4

3
− 1 = 1

3
.

Therefore,

(|z − z0|2 + u)2 +
(

t − t0 + 2 Im
(
zz0 +−

2√
3

))2

= (|z − z0|2 + u)2 + (t − t0 + 2 Im(zz0)
)2 +−

4√
3

(
t − t0 + 2 Im(zz0)

)+ 4

3

<
4

3
+ 4

3
+ 4

3
.

Thus (z, t, u) lies inside the isometric sphere of radius
√

2 with centre (z0, t0 ∓2/
√

3),
that is, inside the image of S0 under some element of �∞. Using Proposition 4.12, we
see that (z, t, u) is not in T0. �

THEOREM 4.15
The simplex D is a fundamental domain for PU(2, 1; Z[ω]).
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Proof
The proof follows the standard proof for the standard fundamental domain of PSL(2, Z)
(see, e.g., [L, pages 57 – 60]).

First, we show that every orbit has a point inside D. Let (z, t, u) be any point in H2
C

.
By applying elements of �∞, we may assume that (z, t, u) lies inside the fundamental
domain for �∞ obtained by extending the vertical geodesic arcs in D to ∂H2

C
−{q∞}. If

(z, t, u) also lies outside or on S0, then it is already in D. Otherwise, (z, t, u) lies inside
S0, and applying R gives a point in the orbit of (z, t, u) whose horospherical height is
strictly greater than u. We iterate this procedure. Using the proper discontinuity of the
action of PU(2, 1; Z[ω]), we see that this process terminates after finitely many steps.
The final point is in the orbit of (z, t, u), lies in a fundamental domain for �∞, and
has horospherical height maximal among all points in the orbit of (z, t, u). It must,
therefore, lie outside or on S0 and so be in D.

We now show that if two points in D differ by an element of A of PU(2, 1; Z[ω]),
then they must lie in ∂D and be identified by a side-pairing map. By construction, all
points of ∂D are the image of a point of ∂D under a side-pairing map.

Suppose that (z, t, u) lies in the interior of D. Since D lies in a fundamental domain
for �∞, all images of (z, t, u) under nontrivial elements of �∞ lie outside D. From
Proposition 4.14, we see that (z, t, u) lies outside all isometric spheres of elements of
� − �∞.

Now consider A(z, t, u) = (z′, t ′, u′), where A ∈ � − �∞. We know that A maps
the exterior of the isometric sphere of A to the interior of the isometric sphere of A−1.
Hence we see that A(z, t, u) cannot lie in the interior of D. This gives the result. �

5. Poincaré polyhedra
In this section, we review Poincaré’s polyhedron theorem. Since we already know
both that the Eisenstein-Picard modular group is discrete and that D is a fundamental
domain, we do not need the full strength of Poincaré’s theorem. In fact, we use it only
to establish the connection between the geometry of the action of � and the algebra of
a presentation for �. Specifically, the generators of � are the side-pairing maps, and
the relations are generated by reflection and cycle relations. However, direct use of
Poincaré’s theorem yields another proof that � is discrete with fundamental domain D.
We follow the general formulation of Poincaré’s polyhedron theorem given in Mostow
[M], and we refer to that article for details of the proof. An excellent account of
Poincaré’s theorem in the case of constant curvature is given in [EP] by Epstein and
Petronio.

5.1. Poincaré’s polyhedron theorem
A polyhedron is a combinatorial object specified by its vertices, edges, and other
faces of higher dimension. We assume that it is a cellular complex homeomorphic to
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a polytope, possibly with an infinite number of faces. In particular, there exists only
one cell of highest-dimension n, and the interior of each cell of codimension two is
contained in precisely two codimension-one cells. Its realisation as a cell complex in a
manifold X is also referred to as a polyhedron. Let D be the (closed) polyhedron, and
let Ek(D) denote the codimension k faces of the polyhedron D. We say a polyhedron
is smooth if its faces are smooth.

Definition 5.1
A Poincaré polyhedron is a smooth polyhedron in X with codimension-one faces Ti

such that we have following.
� The codimension-one faces are paired by a set 
 of homeomorphisms Aij :

Ti −→ Tj of X called the side-pairing transformations, which respect the cell
structure. We assume that if Aij ∈ 
, then A−1

ij = Aji ∈ 
.
� For every Aij ∈ 
 such that Ti = Aij (Tj ), then Aij (D) ∩ D = Ti .

Remark. If Ti = Tj (that is, a side-pairing maps one side to itself), then we impose
the restriction that Aii : Ti −→ Ti is of order two, and we call it a reflection. In this
case, the relation Aii

2 = 1 is called a reflection relation.

Let T1 ∈ E1(D) be a codimension-one face, and let F1 ∈ E2(D) be a codimension-two
face contained in T1. Let T ′

1 be the other codimension-one face containing F1. Let
T2 be the codimension-one face paired to T ′

1 by A1 ∈ 
 and F2 = A1(F1). Again,
there exists only one other codimension-one face containing F2, which we call T ′

2. We
define recursively Ai and Fi , so that Ai−1 ◦ · · · ◦ A1(F1) = Fi .

Definition 5.2 (Cyclic)
Cyclic is the condition that for each pair (F1, T1) (a codimension-two face contained
in a codimension-one face), there exists r ≥ 1 such that, in the construction in the
previous paragraph, Ar ◦ · · · ◦ A1(T1) = T1 and Ar ◦ · · · ◦ A1 restricted to F1 is the
identity. Moreover, writing A = Ar ◦ · · · ◦ A1, there exists a positive integer m such
that Am = 1 and

A1
−1(D) ∪ (A2 ◦ A1)−1(D) ∪ (A3 ◦ A2 ◦ A1)−1(D) · · · ∪ A−1(D) ∪ (A1 ◦ A)−1(D)

∪ (A2 ◦ A1 ◦ A)−1(D) · · · (Ar−1 · · · ◦ A1 ◦ Am−1)−1(D) ∪ (Am)−1(D)

is a cover of a closed neighbourhood of the interior of F1 by polyhedra with disjoint
interiors.

The relation Am = (Ar ◦ · · · ◦ A1)m = 1 is called a cycle relation.
In order to prove Poincaré’s theorem, we need a more general version of tiling,

which allows, a priori, for ramifications.
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Definition 5.3 (Abutted family [M, Section 6.1, page 198])
An abutted family in a topological manifold X is a family of polyhedra D together
with the set of adjacency N ⊂ D × D such that
� if (D,D′) ∈ N, then D �= D′ and (D′,D) ∈ N;
� if (D,D′) ∈ N, then D ∩ D′ ∈ E1(D) ∩ E1(D′);
� if (D,D′), (D,D′′) ∈ N and D ∩ D′ = D ∩ D′′, then D′ = D′′;
� for each T ∈ E1(D), there exists D′ with D ∩ D′ = e.

Definition 5.4
The joined D-space is the quotient topological space of the subspace of X × D,

Ỹ =
⋃
D∈D

D × {D},

by the equivalence relation

(x, D) ≡ (x ′,D′) if and only if x = x ′, x ∈ E1(D) ∩ E1(D′).

Let Y denote the joined D-space. The projection

π : Y → X

is continuous. In general, Y may not be a manifold, and even if it is a manifold, π

may be branched. The following definition allows us to use induction arguments by
intersecting abutted families with spheres.

Definition 5.5
A smooth abutted family is an abutted family such that for each codimension k face
e ∈ Ek(D) and x ∈ e, there exists a tubular neighbourhood of the form Bk × Bn−k ,
where Bn−k ⊂ e is a neighbourhood in e. For each y ∈ Bn−k , Bk × y is transversal to
e such that for Sk × y, where Sk = ∂Bk , the family D induces (by intersections) an
abutted family De which is combinatorially independent of y ∈ Bn−k .

We need the following simple result, which we call the uniformity condition.

LEMMA 5.6
If π : Y → X (X complete, connected) is a local isometry and there exists r > 0 such
that for every y ∈ Y there exists a neighbourhood homeomorphic under π to a ball of
radius r in X, then π is a covering.

Observe that the hypotheses imply that Y is complete.
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THEOREM 5.7
Let D be a Poincaré polyhedron with side-pairing transformations 
 ⊂ Isom(X) in
a simply connected Riemannian manifold X satisfying the cyclic condition. Let � be
the group generated by 
. Then D = �D is a smooth abutted family with adjacency
defined by the side-pairings. If there exists a positive number r such that every point
in the joined space Y has a neighbourhood homeomorphic under π to a ball of radius
r , then � is a discrete subgroup of Isom(X) and D is a fundamental domain. A
presentation is given by

� = 〈
 | reflection relations, cycle relations〉.

Remark
� One first observes that the side-pairings of a Poincaré polyhedron generate a

smooth abutted family. The adjacency is given by N = {(γD, γ δD) | γ ∈
� , δ ∈ 
}. That follows from the smoothness of the polyhedron and the
fact that the cycles are finite. The main point is then to prove that the map
π : Y → X is a homeomorphism. That is where the cyclic condition and the
uniformity condition, Lemma 5.6, are used.

� If D is compact, the uniformity condition for the joined space is automatic
when the cyclic condition is verified.

� The typical noncompact Poincaré polyhedron that we are interested in is the
situation where X is the complex hyperbolic space and D has a cusp. The
uniformity condition, Lemma 5.6, has to be verified in this case. One has to
prove that the joined space around that cusp contains (the inverse image by
π of) a horoball. That amounts to covering a whole horoball by carefully
chosen translates of the polyhedron D (see [EP, Figure 12] for an example not
satisfying the condition).

Proof (Sketch; see [M], [EP] for more details)
We prove Theorem 5.7 by induction on the dimension. In dimension two, that is the
classical Poincaré polyhedron theorem. Suppose that the result is true in dimensions
less than n. We want to show first that Y is a manifold. Faces of codimensions one
and two are glued nicely by hypothesis. Let e ∈ Ek(D) for k > 2. Consider a
small neighbourhood of a point x ∈ e of the form Bk × Bn−k , where Bn−k ⊂ e is
a neighbourhood of x in e and where, for each y ∈ Bn−k , Bk × y is transversal to
e. Using the side-pairings, we obtain tubular neighbourhoods around each point in
the equivalence class of x. At each Sk = ∂Bk , we thus obtain an abutted family. By
induction, we prove that the family is a tiling of Sk , and by smoothness, we prove that
the tiling is the same for each Sk . Therefore, Y is a manifold.
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The map π : Y → X is a local isometry. In order to prove that it is a home-
omorphism, it suffices to prove that it is a covering map. But that follows from the
hypothesis of uniformity. �

5.2. A presentation for �

In this section, we use Poincaré’s theorem on D to give a presentation for �. We begin
by showing that the generators of � are side-pairing maps for D.

PROPOSITION 5.8
The following maps are side-pairings of the simplex D:

R : T0 −→ T0,

PQ−1 : T1 −→ T2,

P : T3 −→ T4.

Proof
We have already verified that R is a side-pairing map. As PQ−1 and P are complex
hyperbolic isometries fixing q∞, it suffices to show that PQ−1 maps F1 to F2 and that
P maps F3 to F4. This follows from Proposition 4.6. �

THEOREM 5.9
The simplex D is a fundamental domain for the group generated by R, PQ−1, and P .
Moreover, a presentation for this group is given by

〈P, Q, R | R2 = (QP −1)6 = PQ−1RQP −1R = P 3Q−2 = (RP )3 = 1〉.

Since we have already shown that PU(2, 1; Z[ω]) is generated by P , Q, and R, Theo-
rem 5.9 gives both an alternative proof that D is a fundamental domain and also a pre-
sentation for the Eisenstein-Picard modular group PU(2, 1; Z[ω]). Other presentations
are given in [A] and [H3].

Proof
By the argument of Theorem 3.5, the intersection of the exterior of S0 with a funda-
mental domain for �∞ = 〈P, Q〉 contains a fundamental domain for 〈P, Q, R〉 = �.
Let D̂ be the subset of H2

C
comprising (complete) geodesics with one endpoint q∞ and

passing through D. (Thus D̂ is obtained from D by extending the geodesic segments
used to define D to meet the boundary.) Then it is clear from Section 3.1 that D̂ is a
fundamental domain for �∞. Intersecting D̂ with the exterior of S0 just gives us D.

For each two-dimensional face F of D, we find the face cycle given by the
side-pairing maps.
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The faces with one vertex q∞ are sent to other faces with vertex at q∞ by maps
in 〈P,Q〉 = �∞. Since the simplex D and its faces containing q∞ are cones over T0

and its edges, the edge cycles are the same as those for T0 obtained in Section 3.1.
By construction, any horoball not intersecting S0 is covered by the images of D under
�∞. The face cycles from faces containing q∞ are the same as the edge cycles from
T0, namely,

(PQ−1)6 = 1 and P 3 = Q2.

Similarly, the (one-dimensional) edges of D having one vertex at q∞ each have a
neighbourhood covered by images of D.

Now consider the face F1 with vertices the ordered triple (z2, z0, z3). The face
cycle is

(z2, z0, z3)
PQ−1

−→ (z1, z0, z3)
R−→ (z1, z3, z0)

(PQ−1)−1

−→ (z2, z3, z0)
R−→ (z2, z0, z3).

Therefore, R(PQ−1)−1RPQ−1 is the identity on F1. In fact, R(PQ−1)−1RPQ−1

is the identity in �, as we may easily verify. We must show that D, (PQ−1)−1(D),
(PQ−1)−1R(D) = R(PQ−1)−1(D), and (PQ−1)−1RPQ−1(D) = R(D) cover a neigh-
bourhood of F1. This also shows that a neighbourhood of PQ−1(F1) = F2.

The map PQ−1 maps S0 to itself. (It is just a rotation of S0 about its spine.)
Therefore, (PQ−1)−1(T0) is also contained in S0. The image of D under (PQ−1)−1

is the geodesic cone of (PQ−1)−1(T0). Hence D ∪ (PQ−1)−1(D) covers that part of
a neighbourhood of Tα exterior to S0. Applying R, we see that D ∪ (PQ−1)−1(D) ∪
R(D) ∪ R(PQ−1)−1(D) covers a neighbourhood of F1, as claimed.

Next, consider the face F3 with vertices the ordered triple (z2, z0, z1). The face
cycle on this face is

(z2, z0, z1)
P−→ (z3, z1, z2)

R−→ (z0, z1, z2).

Therefore, RP maps F3 to itself but with a rotation of order 3. Hence (RP )3 is the
identity on F3. In fact, (RP )3 is the identity. We must show that D, P −1(D), P −1R(D),
P −1RP −1(D), P −1RP −1R(D) = RP (D), and P −1RP −1RP −1(D) = R(D) cover a
neighbourhood of F3. This also shows that a neighbourhood of P (F3) = F4.

In order to see this, first observe that the image of S0 under P −1 is S−1; therefore,
D ∪ P −1(D) covers a neighbourhood of F3 exterior to both S0 and S−1. Now S0 and
S−1 are the isometric spheres of P −1R and (P −1R)−1 = RP . Therefore, the common
exterior of S0 and S−1 form a fundamental domain (the Ford domain) for the group
〈P −1R〉 with three elements. Hence D ∪ P −1(D) and its images under P −1R and RP

cover a neighbourhood of F3.
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By Poincaré’s theorem, we conclude that the 4-simplex is a fundamental domain,
and the presentation is obtained by the reflection and cycle relations. �

Observe that ϒ = 〈P, R〉 ∈ PU(2, 1, Z[ω]) is a representation of the triangle group
of type (2, 3, ∞) = PSL(2, Z) (the modular group). P is parabolic, R has order 2, and
RP has order 3. But observe that this representation is not faithful. For example, RP 3

has order 6. We see that PU(2, 1, Z[ω]) = 〈ϒ, PQ−1〉, where (PQ−1)6 = 1. We can
also view PU(2, 1, Z[ω]) = 〈ϒ, T 〉 with relations

[T , R] = T 6 = PT −1P −1T P = 1

by setting T = PQ−1. Thus PU(2, 1, Z[ω]) is obtained by adjoining to ϒ one el-
liptic element of order 6 commuting with R. To summarise, we have the following
proposition.

PROPOSITION 5.10
The group PU(2, 1, Z[ω]) is obtained from a representation of PSL(2, Z) (discrete but
not faithful) in PU(2, 1) by adjoining one elliptic element of order 6.

Observe that the representation of PSL(2, Z) in PU(2, 1) is contained in the family
obtained in [FK] and [FP]. It corresponds, in their notation, to the representation
A(

√
3/2).

5.3. Relation with Mostow’s groups
In [M], Mostow constructed a family of groups. Some of his groups are nonarithmetic
and, in fact, were the first examples of such groups. In his notation, all of Mostow’s
examples are generated by three complex reflections, R1, R2, and R3, having orders
3, 4, or 5. Moreover, these groups have an extra cubic symmetry in the sense that
there is a map J of order 3, so that Rk+1 = JRkJ

−1, where k is defined mod 3. That
map J may not be in the group, and in that case, the group generated by the Rk is a
subgroup of index three of the group generated by J and R1. Mostow used Dirichlet
domains to show that those groups were discrete and to obtain presentations. But the
combinatorics of those domains are very complicated.

We now show that the Eisenstein-Picard modular group admits a presentation of
a similar type. In fact, we show that it is generated by complex reflections of order
6 having a cubic symmetry. We begin by showing that � admits a presentation with
two generators. Our notation reflects that of Mostow. Other sets of generators and
presentations for the Eisenstein-Picard group are investigated in [A] and [H3]. The
Eisenstein-Picard modular group fits into a family of lattices first investigated by
Livné [Li]. Similar results about their presentations are given in [P2].
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PROPOSITION 5.11
The maps J = RP and R1 = QP −1 generate �. Moreover, a presentation on these
generators is

〈J, R1 | J 3 = R1
6 = (JR1

−1J )4 = R1(JR1
−1J )2R1

−1(JR1
−1J )−2 = 1〉.

Proof
We begin by showing that the relations involving J and R1 follow from the relations
involving P , Q, and R. First, J 3 = (RP )3 = 1 and R1

6 = (QP −1)6 = 1 follow
immediately. Also,

(JR1
−1J )2 = RPPQ−1(RP )2PQ−1RP

= RPPQ−1P −1R−1PQ−1RP

= RP 2Q−1P −1PQ−1R−1RP

= RP 2Q−2P

= R,

where we have used the relations (RP )3 = 1, R−1QP −1 = QP −1R−1, and Q2 = P 3

on the second, third, and fifth lines. Thus (JR1
−1J )4 = R2 = 1 and

R1(JR1
−1J )2R1

−1(JR1
−1J )−2 = (QP −1)R(QP −1)−1R−1 = 1.

Using R = (JR1
−1J )2, we obtain

P = R−1J = J−1R1JR1 and Q = R1P = R1J
−1R1JR1.

Hence 〈P, Q, R〉 = 〈J, R1〉.
Finally, we show that the relations involving P , Q, and R are a consequence

of those involving J and R1. First, R2 = (JR1
−1J )4 = 1, (RP )3 = J 3 = 1,

(QP −1)6 = R1
6 = 1, and

(QP −1)R(QP −1)−1R−1 = R1(JR1
−1J )2R1

−1(JR1
−1J )−2 = 1

follow immediately. Finally,

P 3Q−2 = (J−1R1JR1)3(R1
−1J−1R1

−1JR1
−1)2

= (JR1
−1J )−2R1(JR1

−1J )2R1
−1

= 1.

This completes the proof. �
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As in Proposition 5.11, we write R1 = QP −1 and J = RP . Define R2 = JR1J
−1 =

RPQ−1P −2R and R3 = J−1R1J = P −1Q. These are all complex reflections of
order 6 with a reflection factor −ω = e2iπ/6 (see [M, page 174]). We now show that
R1, R2, and R3 generate �. We also give relations involving the Rk . The form of
these relations is motivated by [M, Theorem 20.1]. We make the connection explicit
in Corollary 5.13.

PROPOSITION 5.12
The maps R1, R2, and R3 generate �. Moreover, a presentation on these generators
is (with indices taken mod 3)〈

R1, R2, R3

∣∣∣ Rk
6 = 1, RkRk+1Rk = Rk+1RkRk+1, k ∈ {1, 2, 3},

(R1R2R3)4 = 1, (R1R2R3)−2R1R2 = (R2R3R1)−2R2R3

〉
.

Proof
First, observe that 〈R1, R2, R3〉 is a subgroup of 〈J, R1〉. Thus we need to show that
J is contained in 〈R1, R2, R3〉. We have

J = J (JR1
−1J )4 = (J−1R1

−1J )(JR1
−1J−1)R1

−1(J−1R1
−1J ) = (R1R2R3)−2R1R2.

We now show the equivalence of the presentations. We begin by assuming the
relations involving R1, R2, and R3 and showing that these imply the relations in-
volving J and R1. We already have the fact that R1

6 = 1. Moreover, the relation
(R1R2R3)−2R1R2 = (R2R3R1)−2R2R3 may be written as R3R1R2R3 = R1R2R3R1.
Thus

J−1 = ((R2R3R1)−2R2R3
)−1

= R1R2R3R1

= R1R2R1R1
−1R3R1

= R2R1R2R3R1R3
−1

= R2R3R1R2.

Thus we have

J−1 = R1R2R3R1 = R2R3R1R2 = R3R1R2R3.

Hence R2 = JR1J
−1 and R3 = J−1R1J . Also, we have

J−3 = (R1R2R3R1)(R2R3R1R2)(R3R1R2R3) = (R1R2R3)4 = 1.

Observe that

(JR1
−1J )−2 = (R3R1R2R3R1R2R3R1R2)2 = (R3R1R2)6 = (R3R1R2)2.
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Thus (JR1
−1J )4 = (R3R1R2)4 = 1 and

R1(JR1
−1J )−2 = R1R3R1R2R3R1R2

= R3R1R3R2R3R1R2

= R3R1R2R3R2R1R2

= R3R1R2R3R1R2R1

= (JR1
−2J )−2R1.

Now we assume the relations involving J and R1. Again, we know Rk
6 = 1.

Next,

R1R2R1 = J (JR1
−1J )−2R1 = JR1(JR1

−1J )−2 = R2R1R2.

As above,

(R3R1R2)2 = (J−1R1JR1JR1J
−1)2 = (JR1

−1J )−6 = (JR1
−1J )−2,

and so we have (R3R1R2)4 = 1 and

(R1R2R3)−2R1R2 = R1R2(R3R1R2)−2

= R1JR1J
−1(JR1

−1J )2

= J

= (JR1
−1J )2J−1R1JR1

= (R3R1R2)−2R3R1.
�

Following [M], let ek be the polar vector of Rk . Then

e1 =

0

1
0


 , e2 =


 0

−ω

1


 , e3 =


 ω

−ω

0


 .

Define ϕ by (see [M, Section 9.1])

ϕ = exp
(
i arg

−〈e1, e2〉〈e2, e3〉〈e3, e1〉
3

)

= exp
(
i arg

−(−ω)(ω + ω)(−ω)

3

)
= ω1/3

= e2iπ/9.
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COROLLARY 5.13
Using the notation of [M, Theorem 20.1], let p = 6 and ϕ = e2iπ/9. Then � satisfies
the relations R′ and R′′ with µ = −1.

Proof
We have

ρ = order e−iπ/6iϕ3 = order e−iπ/6+iπ/2+2iπ/3 = order eiπ = 2,

σ = order e−iπ/6iϕ3 = order e−iπ/6+iπ/2−2iπ/3 = order e−iπ/3 = 6.

Therefore, r = ρ = 2 and s = σ/3 = 2. Then the relations R′ are{
Rk

6=RkRk+1RkRk+1
−1Rk

−1Rk+1
−1 = (R1R2R3)4 = (R3R2R1)4 = 1 : k=1, 2, 3

}
.

Taking µ = −1, the relations R′′ become{
(R1R2R3)−2R1R2 = (R2R3R1)−2R2R3

}
.

Each of these relations follows from Proposition 5.12 except (R3R2R1)4 = 1. We now
show that this is a consequence of the other relations.

First, observe that repeated use of the braid relations RkRk+1Rk = Rk+1RkRk+1

gives

(R2R1R3)2R1 = R1(R2R1R3)2.

Therefore,

(R3R2R1)4 = R3R1
6R3

−1(R3R2R1)4

= (R3R1
3R2R1R3R2R1)2

= (R3R1R2R1R2R3R2R3R1)2

= (R2
−1(R2R3R1R2)R1R2R3(R2R3R1R2)R2

−1
)2

= (R2
−1(R3R1R2R3R1R2R3R1R2R3R1)R2

−1
)2

= R2
−6

= 1.

We have made use only of the relations Rk
6 = 1, RkRk+1Rk = Rk+1RkRk+1,

(R1R2R3)4 = 1, and

R1R2R3R1 = R2R3R1R2 = R3R1R2R3.
�
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modulaires, Acta Math. 2 (1883), 114 – 135.

[Pi2] ———, Sur des formes quadratiques ternaires indéfinies indéterminées conjuguées et
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