
PHYSICAL REVIEW B 68, 184302 ~2003!
Electrons on hexagonal lattices and applications to nanotubes
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We consider a Fro¨hlich-type Hamiltonian on a hexagonal lattice. Aiming to describe nanotubes, we choose
this two-dimensional lattice to be periodic and to have a large extension in one~x! direction and a small
extension in the other~y! direction. We study the existence of solitons in this model using both analytical and
numerical methods. We find exact solutions of our equations and discuss some of their properties.
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I. INTRODUCTION

Nanotubes have attracted a large amount of interest
since they were first discovered in 1991.1 They can be
thought of as carbon cylinders with a hexagonal grid and
thus fullerene related structures. Their mechanical, therm
optical, and electrical properties have been studied in so
detail.2 It was found that most properties depend crucially
the diameter, chirality, and length of the tube. A distortion
the lattice thus affects the energy-band gap. This distortio
the lattice can be achieved in two different ways:~a! through
an external force such as, e.g., bending, stretching,
twisting3 or ~b! through an internal excitation, which inte
acts with the lattice. It is well known that the interaction
an excitation such as an amideI vibration in biopolymers or
an electron~in the case of the Fro¨hlich Hamiltonian! with a
lattice whose distortion is initially caused by the excitati
results in the creation of a localized state which, in wh
follows, we refer to as a soliton. Such a soliton was fi
introduced by Davydov4 in 1970s to explain the dispersion
free energy transport in biopolymers~see also Ref. 5 for
further details!.

Recently, a Fro¨hlich Hamiltonian was studied on a two
dimensional, discrete, quadratic lattice.6–8 In Refs. 6 and 7,
the existence of localized states was studied numerically
it was found that their properties depend crucially on
electron-phonon coupling constant. An analytical study c
firmed these results8 by showing that in the continuum limi
the set of discrete equations reduces to a modified nonli
Schrödinger~MNLS! equation which has an additional ter
resulting from the discreteness of the lattice. Although a s
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ton of the basic NLS is unstable the extra term was show
stabilize it for appropriate choices of the coupling consta

In this paper, we extend the study of Refs. 6–8 to the c
of a hexagonal, periodic lattice with a large extension inx
and a small extension iny directions. We study the resultan
equations both analytically and numerically. In Sec. II, w
present the Hamiltonian and the equations of motion. In S
III, we discuss various properties of the equations in
stationary limit and demonstrate the existence of an ex
solution of the discrete equations. In this limit, we can th
replace the full system of equations by a modified discr
nonlinear Schro¨dinger ~DNLS! equation. In Sec. IV, we
present and compare our numerical results for the continu
MNLS equation, for the full system of equations, and for t
modified DNLS equation. Most of our numerical simulatio
are performed for the (5,5) armchair tube. Such nanot
was discussed in a recent paper by Liuet al. in the context of
nanorings.9 We also discuss briefly how nanotubes with d
ferent diameter and chirality could be constructed in o
model.

II. THE HAMILTONIAN AND EQUATIONS OF MOTION

A. Hamiltonian

The HamiltonianH of our model is a sum of four sum
which result from the special features of the hexagonal g
c i , j denotes the electron field on thei th and thej th lattice
side, whileui , j andv i , j are the displacements of thei th and
the j th lattice point from equilibrium in thex and y direc-
tions, respectively:
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r

j x is the electron field self-interaction coupling,cx couples
the electron field to the displacement fieldsu andv, andkx is
the self-coupling of the displacement fields.

B. Equations of motion

We can easily derive the equations of motion from o
HamiltonianH. As an example, we give the equations foi
5114k. The discrete Schro¨dinger equation for thec i , j field
thus becomes

i\
]c i , j

]t
5~E1W!c i , j22 j x~c i 11,j 111c i 21,j1c i 11,j 21!

1c i , jFcx

3
~ui 11,j 111ui 11,j 2122ui 21,j !

1
cx

A3
~v i 11,j 112v i 11,j 21!G , ~3!

while the equations for the displacement fieldsui , j and v i , j
are given by
18430
r

d2ui , j

dt2
5kx~3ui , j2ui 11,j 112ui 21,j2ui 11,j 21!

1
cx

3M
~2uc i 21,j u22uc i 11,j 11u22uc i 11,j 21u2!,

~4!

and

d2v i , j

dt2
5kx~3v i , j2v i 11,j 112v i 21,j2v i 11,j 21!

2
cx

A3M
~ uc i 11,j 11u22uc i 11,j 21u2!. ~5!

We perform the following rescalings:

t5
j xt

\
, U53Cxu, V53Cxv, E05

E

j x
, W05

W

j x
~6!

and introduce the following rescaled coupling constants:
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Cx5
cx

9 j x
, Kx5

kx\
2

j x
2

, g5
2Cx

2

Es
, Es5

M j x

9\2
. ~7!

The equations then read

i
]c i , j

]t
5~E01W0!c i , j22~c i 11,j 111c i 21,j1c i 11,j 21!
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1
g

2
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and
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dt2
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2
A3g

2
~ uc i 11,j 11u22uc i 11,j 21u2!. ~10!

III. STATIONARY LIMIT

In the stationary limit, we have

lc i , j12~3c i , j2c i 11,j 112c i 21,j2c i 11,j 21!

1c i , j@Ui 11,j 111Ui 11,j 2122Ui 21,j

1A3~Vi 11,j 112Vi 11,j 21!#

50, ~11!

wherel5E01W026 and

3Ui , j2Ui 11,j 112Ui 21,j2Ui 11,j 21

52
g̃

2
~2uc i 21,j u22uc i 11,j 11u22uc i 11,j 21u2!,

~12!

3Vi , j2Vi 11,j 112Vi 21,j2Vi 11,j 21

5
A3g̃

2
~ uc i 11,j 11u22uc i 11,j 21u2!, ~13!

whereg̃5g/Kx .

A. Discrete equation

In contrast to the square grid, we find that the discr
equations of the hexagonal grid in the stationary limit
have anexactsolution. We can thus replace the system
18430
e

f

coupled equations~3!–~5! by just one modified DNLS equa
tion. We again look at the casei 5114k for which we have

D~1!Ui j 5
g̃

2
~2uc i 21,j u22uc i 11,j 11u22uc i 11,j 21u2!,

where D(1)Ui j 5Ui 11,j 111Ui 21,j1Ui 11,j 2123Ui , j .
Analogously, we have

D~1!Vi j 5
A3g̃

2
~ uc i 11,j 21u22uc i 11,j 11u2!,

where D(1)Vi j 5Vi 11,j 111Vi 21,j1Vi 11,j 2123Vi , j . Next
we note that for the three nearest neighbors we have sim
relations, namely,

D~1!Ui 11,j 115
g̃

2
~ uc i , j u21uc i , j 12u222uc i 12,j 11u2!,

D~1!Ui 11,j 215
g̃

2
~ uc i , j 22u21uc i , j u222uc i 12,j 21u2!,

D~1!Ui 21,j5
g̃

2
~ uc i 22,j 21u21uc i 22,j 11u222uc i , j u2!

for the U field and

D~1!Vi 11,j 115
A3g̃

2
~ uc i j u22uc i , j 12u2!,

D~1!Vi 11,j 215
A3g̃

2
~ uc i , j 22u22uc i j u2!

for the V field.
Defining

Za5Ui 11,j 111Ui 11,j 2122Ui 21,j

1A3~Vi 11,j 112Vi 11,j 21!

@i.e., the lattice terms in Eq.~11!# we find that the following
discrete equation holds:

D~1!Za5g̃~6uc i j u22uc i , j 12u22uc i 12,j 11u22uc i , j 22u2

2uc i 12,j 21u22uc i 22,j 21u22uc i 22,j 11u2!.

The right-hand side of Eq.~14! is a seven-point Laplacian
D(2)uc i j u2, thus we find

D~1!Za52g̃D~2!uc i j u2. ~14!

It is easy to see that one possible solution of this equatio
of the form

Za52g̃~ uc i 11,j 11u21uc i 11,j 21u21uc i 21,j u213uc i j u2!.
~15!

This is quite remarkable since on a square lattice a sim
equation has no simple solution. Inserting Eq.~15! into Eq.
~11! we have
2-3
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lc i , j12~3c i , j2c i 11,j 112c i 21,j2c i 11,j 21!

2g̃c i , j@ uc i 11,j 11u21uc i 11,j 21u21uc i 21,j u213uc i j u2#

50

or

lc i , j22D~1!c i j 2g̃c i , j~D~1!uc i , j u216uc i j u2!50.
~16!

This equation constitutes our DNLS equation.

B. Continuum limit

Next we look at the continuum limit of Eq.~16!. To do
this we introduce the following expansions:
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2
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1
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and
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1

1

2
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2
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2
1

8
~dy6!3

]3c

]y3
6•••, ~18!

where fori 5114k and i 5314k we havedx151/2, dx2

51, while for i 5214k and i 5414k we havedx151,
dx251/2. Moreover,dy5A3/2. Inserting this into Eq.~16!,
we obtain

lc2
3

2
Dc2g̃cS 3

4
Ducu216ucu2D50 ~19!

or, equivalently,

l̃c1Dc14g̃cS ucu21
1

8
Ducu2D50. ~20!

We thus have, in analogy to what was found in Refs. 6
the MNLS equation with an extra term, which can stabili
the soliton:
18430
,

i
]c

]t
1Dc14g̃cS ucu21

1

8
Ducu2D50. ~21!

Following Refs. 6–8 we see that the conserved energy in
case is given by

E5E S u¹W cu222g̃ucu41
g̃

4
~¹W ucu2!2D dxdy. ~22!

Approximating the soliton solution of Eq.~21! by a Gaussian
of the form c(x,y)5k/Ap exp„2k2/2(x21y2)… we find
that the value ofk that minimizes the energy is

kmin
2 52S 12

p

g̃
D ~23!

and thus we have an estimate of the criticalg̃, namely,g̃cr
;p.

IV. NUMERICAL RESULTS

A. Continuous, modified nonlinear Schrödinger equation

First, we have considered the continuous, modified n
linear Schro¨dinger equation~21!. For this, we have taken th
radially symmetric ansatz

c~r ,t !5eiatR~r !, ~24!

and put this into Eq.~21!. Then we have solved the ordinar
differential equation~ODE! using a collocation method fo
the boundary value ODEs10 and choosing the boundary con
ditions:

]R~r !

]r
ur 5050, R~r 5`!50. ~25!

Our results are shown in Fig. 1. For a fixedg̃ we have de-
termined the value of the functionR(r ) at the origin,R(r
50), as well as the value ofa for which the norm of the
solution is equal to unity. As can be seen from Fig. 1,
have found that for a critical value ofg̃5g̃cr'2.94 the value
of R(0) tends to zero. Since our construction is such that
maximum of the solution is located atr 50, the value of the
height of the solution tends to zero and thus the solut
ceases to exist. We thus find that the critical value ofg̃ from
our numerical construction agrees with the upper-bou
value obtained from the variational approach based on
Gaussian, namely,g̃cr5p.

Note that the solutions cease to exist when the value oa
tends to zero. Since we can interpreta as the frequency of an
internal rotation, the solutions apparently cease to exist w
there is no internal rotation. This can be compared to
so-called ‘‘Q-balls’’ which are nontopological solitons cha
acterized also by a complex scalar field11 of the form similar
to Eq.~24!. For them it is known11 that there exist upper an
lower positive-valued bounds on the frequency of the int
nal rotation in order forQ-balls to be stable. In comparison
our solutions exist for all values ofa.0. This is probably
due to the fact that while the dynamical part of our action
2-4
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similar to that forQ-balls, we have an extra term involvin
derivatives as compared to an ‘‘ordinary’’c6-potential in the
case ofQ-balls.

B. Discrete equations

1. Full system of equations

For our numerical study of the full equations~3!–~5! we
have found it convenient to ‘‘squeeze’’ the lattice as in
cated in Figs. 2~a! and 2~b!. The Hamiltonian and the corre
sponding equations are given in the Appendix. For our
merical calculations, we have used mainly a periodic g
with N15160 andN2520. We have in addition chosen th
boundary conditions such that the fields at (i 50,j ) are iden-
tified with those at (i 5 i max, j ). Thus the type of nanotub
we are studying here is a (5,5) armchair tube which
metallic.2 Nanotubes can also be semiconducting and
make a brief comment about the possibility of construct
semiconducting tubes in our model in the last paragraph
this section.

In this work, the C—C bond length, 0.1415 nm,12 is nor-
malized to unity. Therefore, the tube diameter is 0.6756 n
Tubes with different diameter can also be constructed in
model. We discuss this together with different chiralities
the last paragraph of this section.

As starting configuration we have used an exponent
like excitationc i , j extended typically over the lattice poin
i 578–83 andj 53 –7 with the lattice at equilibrium every
where, i.e.,ui , j50 and v i , j50 for all i , j . We are mainly
interested in the existence of solitons and their depende
on the value of the coupling constantcx . We have setj x
5kx51, M520, andE50.142 312. The main goal of thi

FIG. 1. The results obtained with the ansatzc(r ,u)5eiatR(r )
to solve the continuous modified NLS equation. In this figure,
value of the functionR(r ) at the originR(0), which in our con-
struction is equal to the maximum ofR, Rmax is shown as function

of g̃. The values ofa are also shown. The solutions shown ha
normal one.
18430
-
d

s
e
g
of

.
r

l-

ce

work is to study the dependence oncx . So the exact values
of j x andkx play a minor role. Hence, we have set them
one. The choice ofM520 is a reflection of the physical fac
that the mass of the carbon atom is'20310224g.

To absorb the energy thus allowing the initial configur
tion to evolve into the stationary solutions of Eqs.~3!–~5!,
i.e., of Eqs. ~11!–~13! we have additionally introduced
damping termsn(dui , j /dt) and n(dv i , j /dt), respectively,
into Eqs. ~4! and ~5!. We have typically chosenn50.25
20.75. For this choice of the coupling constants, we ha
performed several numerical calculations using a four
order Runge-Kutta method for simulating the time evolutio
We have found that solitons exist in this system forcx
.'20. For larger values ofcx , the soliton forms very
quickly, while decreasingcx the time increases at which

e

FIG. 2. ~a! The hexagonal lattice is shown. The arrows indica
the method of ‘‘squeezing’’ the lattice for the numerical evaluatio
~b! The ‘‘squeezed’’ hexagonal lattice for the numerical constru
tion. The HamiltonianHn corresponding to this lattice is given i
the Appendix of the paper.
2-5
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soliton forms. This is of course due to the weaker coupl
between the dynamics of the lattice itself and the excitati
For cx519, we have waited untilt'8000 and have no
found a soliton. Moreover, in all cases we have found o
little displacement of the lattice from the equilibrium. W
have found that at the location of the soliton the lattice
comes squeezed~i.e., the lattice sites move towards the sit
at which the soliton is located!. This is demonstrated in Fig
3 for cx525, where we show the lattice distortion aftert
54000. The point at which the center of the soliton is
cated does not move, while the sites in its close neighb
hood all move towards the center of the soliton.

We have also studied the effects of perturbations of
solitons. We have found that after perturbing the soliton
obtain a new solution with a different height of the solito
maximum. Even after introducing a perturbation whi
keeps the maximal height fixed, the new solution diffe
from the starting one. We thus come to the conclusion t
the full system of Eqs.~3!–~5! has a large number of solu
tions for each choice of coupling constants. We believe th
conserved quantity exists in this system which picks out
specific solution. However, so far we have not been able
determine this conserved quantity.

2. Modified, discrete nonlinear Schro¨dinger equation

In addition to the full system of equations, we have a
studied the dynamical analog of Eq.~16!. Using a similar
starting configuration withc i , j being exponential and non
zero overi 578–83 andj 53 –7, we have determined th
value of g̃ for which a soliton exists. Our results are show
in Fig. 4, where we present the height of the soliton’s ma
mum (cc* )max as function ofg̃. We find that the value ofg̃
at which the soliton disappearsg̃cr'2.295. The height of the
soliton at this critical coupling is (c i , jc i , j* )max'0.227. Our
numerical study of the continuous MNLS equation gave

FIG. 3. The distortion of the lattice close to the location of t
soliton is shown. The squares indicate the undistorted lattice, w
the circles indicate the distorted lattice aftert54000; cx525. The
corresponding soliton’s maximum (cc* )max'0.6145.
18430
g
.

y

-

-
r-

e
e

s
at

a
e
to

o

-

s

g̃cr'2.94, while the analytical study led tog̃cr5p. Both
values are not a bad approximation for the value found
merically for the discrete equation.

To test the independence of our results from the form
the initial settings, we have used a different starting confi
ration with two exponential-like excitations being located
i 578–83, j 53 –7 andi 5138–143 andj 513–17, respec-

tively. We have found that for valuesg̃.'3, the results
agree. For both types of initial configurations, the minim
energy configuration corresponds to one soliton. Howe
having said this, the time to reach this minimal energy co
figurations is significantly smaller for the initial configura
tion with one excitation than for that with two excitatio
~typically one order of magnitude smaller!. We have also
tested our results as to the dependence on the size of the
For this, we have chosen two excitations on three differ
grid sizes:~a! a grid with N15160, N2520, and two expo-
nential excitations extended overi 578–83, j 53 –7 andi
5138–143, j 513–17, respectively,~b! a grid with N1
5320 andN2540 with the excitations located at the sam
places as in~a!, and finally ~c! a grid with N1560, N2
510, and two exponential excitations extended ovei
518–23, j 52 –4 andi 538–43, j 57 –9, respectively. We
have found that forg̃53, the results of cases~a! and ~c!
agree. For the case~a! the soliton forms att'300, while for
the case~c! it forms att'100. This is not surprising since in
the case~c!, the two excitations are located nearer to ea
other than in the case~a!. To test the dependence on th
actual lattice size we have compared the cases~a! and ~b!.
We have found that the larger the lattice the longer it ta
for the soliton to form. Forg̃53 a soliton forms aftert
'300 in the case~a!, while for ~b! it forms at t.700. We
have thus found that, in comparison with the case of the
system of equations, the solutions of the DNLS equation
unique for each choice of the coupling constant.

le

FIG. 4. The height of the soliton’s maximum (c i , jc i , j* )max is

shown as a function of the parameterg̃.
2-6
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3. Comparison of results

Since we have found that in the stationary limit the f
system of equations can be replaced by the DNLS equa
the minimal energy solutions we have obtained for b
types of equations should be in agreement.

Comparing the two systems, we see that the valueg̃ is
given in terms of the coupling constants of the full system

g̃5
2

9

cx
2

M j xkx
, ~26!

which, for the choice of coupling constants we have used
our numerical simulations, gives

g̃5
cx

2

90
. ~27!

Thus a critical value ofcx'20 would imply g̃cr'4.4. First,
we remark that the values of the critical electron-phon
coupling we obtained from all our simulations~including
those for the continuous MNLS equation! are of the same
order of magnitude. However, there is a slight discrepa
between the results for the full system and the DNLS eq
tion. We believe that this is due to the fact that there mi
exist additional termsA in Eq. ~15! for which D(1)A50
and/or D(2)A50. These terms would then appear in E
~16! and would change the comparison of the solutio
However, it is difficult to determine these additional term
and so this is left as a future work.13

4. Tubes with different diameter, chirality, and lengths

Since most of our results are for a (5,5) armchair tube
since it is well known that the properties of nanotubes
pend strongly on the diameter, chirality, and lengths of
tube, we will discuss briefly how different tubes could
constructed in our model. We have not constructed th
tubes yet, but we aim to do so in a future publication
which we intend to extend our approach to a more reali
three-dimensional model.13

Labeling the first carbon atom in they direction by j
50, we have chosenj max such that it is divisible by 4. Thus
the length of the tube in they direction isl y5 3

4 j max. Since
we identify the fields labeled by (i 50,j ) with those at (i
5 i max, j ), the diameter of the tube is given byd5 l y /p.
Thus increasing/decreasingj max by 4n, n51,2,3, . . . , we
can construct armchair nanotubes with diametersd
5 (3/4p) ( j max64n). Similarly, we can construct longe
tubes by increasing the number of atoms in thex direction.

As far as chirality is concerned, there are two things
modify in our model in order to be able to construct tub
with different chirality. One is to change the number
points in they direction so thatj max is nondivisible by 4. The
other is to adjust the periodic boundary conditions in thy
direction appropriately. If we, e.g., choosej max518, we
have to identify the fields at (i 50,j ) with those at (i
5 i max, j 11). This then would give us a (5,4) nanotub
18430
n,
h

y

in

n

y
-
t

.
.

d
-
e

se

ic

o
s

which would be semiconducting.
In this work, we have concentrated our attention on

existence of localized structures. These structures ex
over large parts of our grids, but are negligible at boundar
Hence, we expect these to hold for systems with differ
boundary conditions, i.e., different chiralities.

V. CONCLUSIONS

Motivated by a large amount of research done in the a
of nanotubes, we have studied solitons on a two-dimensio
hexagonal lattice. We have chosen our lattice to be perio
in both thex andy directions and to be of large extension
one ~x! direction and of small extension in the other~y! di-
rection. In the stationary limit, we have found that the fu
system of equations in which the electron excitation
coupled to the displacement fields of the lattice can be
placed by a modified discrete nonlinear Schro¨dinger~DNLS!
equation. This discovery of an exact solution of the full sy
tem of equations is remarkable since for the similar quadr
lattice such a simple solution does not exist.

In our numerical studies we have mainly concentrated
attention on determining the value of the critical phono
electron coupling constant. For the DNLS we have fou
that unique solutions exist and that the value of the criti
coupling is in good agreement with both the analytical a
numerical values found for the continuous analog of
DNLS. For the full system of equations, we believe tha
large number of solutions exist for each choice of the c
pling constants and that a conserved quantity exists in
system. The critical value of the electron-phonon coupling
of the same order of magnitude as in the case of the DN
however, we believe that this small discrepancy results fr
the fact that possible ‘‘boundary’’ terms appear when repl
ing the full system by the DNLS. These boundary terms
that which are annihilated by either the four-point Laplaci
D(1) and/or by the seven-point LaplacianD(2). To find
these terms is nontrivial and since this seems an interes
topic by itself, we leave this as a future work.13

Finally let us mention that a possible extension of t
results given here would involve the study of the correspo
ing three-dimensional equations and/or of the influence
external forces.
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APPENDIX: HAMILTONIAN AND EQUATIONS OF
MOTION FOR THE NUMERICAL STUDIES

To simplify the numerical construction of the solutions w
have squeezed the lattice as indicated in Figs. 2~a! and 2~b!.
This reduces the memory requirements and so speeds u
calculations. The HamiltonianHn for the numerical con-
struction thus takes the form
2-7
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Hn5(
j 51

N2

(
( i 21)/450

(N1/4)23 F ~E1W!c i , jc i , j* 2 j xc i , j* ~c i 11,j1c i 21,j1c i 11,j 21!

2 j xc i , j~c i 11,j* 1c i 21,j* 1c i 11,j 21* !1c i , jc i , j* S cx

3
~ui 11,j1ui 11,j 2122ui 21,j !2

cx

A3
~v i 11,j 212v i 11,j !D G

1(
j 51

N2

(
( i 22)/450

(N1/4)22 F ~E1W!c i , jc i , j* 2 j xc i , j* ~c i 11,j1c i 21,j1c i 21,j 11!

2 j xc i , j~c i 11,j* 1c i 21,j* 1c i 21,j 11* !1c i , jc i , j* S cx

3
~2ui 21,j2ui 21,j 1112ui 11,j !1

cx

A3
~v i 21,j 112v i 21,j !D G

1(
j 51

N2

(
( i 23)/450

(N1/4)21 F ~E1W!c i , jc i , j* 2 j xc i , j* ~c i 11,j1c i 21,j1c i 11,j 11!2 j xc i , j~c i 11,j* 1c i 21,j* 1c i 11,j 11* !

1c i , jc i , j* S cx

3
~ui 11,j1ui 11,j 1122ui 21,j !1

cx

A3
~v i 11,j 112v i 11,j !D G

1(
j 51

N2

(
i /451

N1/4 F ~E1W!c i , jc i , j* 2 j xc i , j* ~c i 11,j1c i 21,j1c i 21,j 21!2 j xc i , j~c i 11,j* 1c i 21,j* 1c i 21,j 21* !

1c i , jc i , j* S cx

3
~ui 21,j1ui 21,j 2122ui 11,j !1

cx

A3
~v i 21,j2v i 21,j 21!D G ~A1!
with the phonon energyWn,

Wn5
1

2
M (

j 51

N2

(
i 51

N1 S S du

dt D
2

1S dv
dt D

2

1kx@~ui j 2ui 21,j !
21~v i j

2v i 21,j !
2# D1

1

2
M (

j 51

N2

(
( i 22)/450

(N1/4)22

~kx@~ui j 2ui 21,j 11!2

1~v i j 2v i 21,j 11!2# !1
1

2
M (

j 51

N2

(
( i 23)/450

(N1/4)21

~kx@~ui j

2ui 11,j 11!21~v i j 2v i 11,j 11!2# !. ~A2!

The equations of motion are then given by
For i 5114k, k51,2, . . . ,

i\
]c i , j

]t
5~E1W!c i , j22 j x~c i 11,j1c i 21,j1c i 11,j 21!

1c i , jFcx

3
~ui 11,j1ui 11,j 2122ui 21,j !

1
cx

A3
~v i 11,j2v i 11,j 21!G , ~A3!
18430
d2ui , j

dt2
52kx~3ui , j2ui 11,j2ui 21,j2ui 11,j 21!

2
cx

3M
~2c i 21,jc i 21,j* 2c i 11,jc i 11,j*

2c i 11,j 21c i 11,j 21* !, ~A4!

d2v i , j

dt2
52kx~3v i , j2v i 11,j2v i 21,j2v i 11,j 21!

2
cx

A3M
~c i 11,j 21c i 11,j 21* 2c i 11,jc i 11,j* !.

~A5!

For i 5214k, k51,2, . . . ,

i\
]c i , j

]t
5~E1W!c i , j22 j x~c i 11,j1c i 21,j1c i 21,j 11!

1c i , jFcx

3
~2ui 21,j2ui 21,j 1112ui 11,j !

1
cx

A3
~v i 21,j 112v i 21,j !G , ~A6!
2-8
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d2ui , j

dt2
52kx~3ui , j2ui 11,j2ui 21,j2ui 21,j 11!

1
cx

3M
~2c i 11,jc i 11,j* 2c i 21,jc i 21,j*

2c i 21,j 11c i 21,j 11* !, ~A7!

d2v i , j

dt2
52kx~3v i , j2v i 11,j2v i 21,j2v i 21,j 11!

1
cx

A3M
~c i 21,j 11c i 21,j 11* 2c i 21,jc i 21,j* !.

~A8!

For i 5314k, k51,2, . . . ,

i\
]c i , j

]t
5~E1W!c i , j22 j x~c i 11,j1c i 21,j1c i 11,j 11!

1c i , jFcx

3
~ui 11,j1ui 11,j 1122ui 21,j !

1
cx

A3
~v i 11,j 112v i 11,j !G , ~A9!

d2ui , j

dt2
52kx~3ui , j2ui 11,j2ui 21,j2ui 11,j 11!

2
cx

3M
~2c i 21,jc i 21,j* 2c i 11,jc i 11,j*

2c i 11,j 11c i 11,j 11* !, ~A10!
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