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Electrons on hexagonal lattices and applications to nanotubes
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We consider a Fiidich-type Hamiltonian on a hexagonal lattice. Aiming to describe nanotubes, we choose
this two-dimensional lattice to be periodic and to have a large extension ir(xprdirection and a small
extension in the othely) direction. We study the existence of solitons in this model using both analytical and
numerical methods. We find exact solutions of our equations and discuss some of their properties.
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I. INTRODUCTION ton of the basic NLS is unstable the extra term was shown to

. stabilize it for appropriate choices of the coupling constant.
Nanotubes have attracted a large amount of interest ever" .. paper, we extend the study of Refs. 6—8 to the case

since they were first cﬁscovergd in 199They can be of a hexagonal, periodic lattice with a large extensiorxin
thought of as carbon cylinders with a hexagonal grid and arg 4 3 small extension in directions. We study the resultant
thu_s; fullerene rela_ted structur_es. Their mechanlc_al, t_hermalequations both analytically and numerically. In Sec. II, we
optical, and electrical properties have been studied in SOMgresent the Hamiltonian and the equations of motion. In Sec.
detail? It was found that most properties depend crucially onjjj, we discuss various properties of the equations in the
the diameter, chirality, and length of the tube. A distortion ofstationary limit and demonstrate the existence of an exact
the lattice thus affects the energy-band gap. This distortion ofolution of the discrete equations. In this limit, we can thus
the lattice can be achieved in two different wage:through  replace the full system of equations by a modified discrete
an external force such as, e.g., bending, stretching, amonlinear Schrdinger (DNLS) equation. In Sec. IV, we
twisting® or (b) through an internal excitation, which inter- present and compare our numerical results for the continuous
acts with the lattice. It is well known that the interaction of MNLS equation, for the full system of equations, and for the
an excitation such as an amitl@ibration in biopolymers or modified DNLS equation. Most of our numerical simulations
an electron(in the case of the Fhdich Hamiltonian with a  are performed for the (5,5) armchair tube. Such nanotube
lattice whose distortion is initially caused by the excitationwas discussed in a recent paper by &fial. in the context of
results in the creation of a localized state which, in whatanorings’ We also discuss briefly how nanotubes with dif-
follows, we refer to as a soliton. Such a soliton was firstferent diameter and chirality could be constructed in our
introduced by Davyddbin 1970s to explain the dispersion- model.
free energy transport in biopolymefsee also Ref. 5 for
further detail$.

Recently, a Frolich Hamiltonian was studied on a two- 1l. THE HAMILTONIAN AND EQUATIONS OF MOTION
dimensional, discrete, quadratic lattft€.In Refs. 6 and 7,
the existence of localized states was studied numerically and
it was found that their properties depend crucially on the The HamiltonianH of our model is a sum of four sums
electron-phonon coupling constant. An analytical study conwhich result from the special features of the hexagonal grid.
firmed these resuftdy showing that in the continuum limit ; ; denotes the electron field on tih and thejth lattice
the set of discrete equations reduces to a modified nonlineaide, whileu; ; andv; ; are the displacements of thth and
Schralinger (MNLS) equation which has an additional term the jth lattice point from equilibrium in thex andy direc-
resulting from the discreteness of the lattice. Although a solitions, respectively:
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jx Is the electron field self-interaction coupling, couples dzuij
the electron field to the displacement fieldandv, andk, is 1 > =K(3Uj j= Ui j 1= Uj—gj=Uirgj-1)
the self-coupling of the displacement fields. t
CX
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We can easily derive the equations of motion from our 4

HamiltonianH. As an example, we give the equations for
=1+4k. The discrete Schringer equation for the; ; field and
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while the equations for the displacement fieldg andv; ;

are given by and introduce the following rescaled coupling constants:
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A. Discrete equation
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coupled equation&3)—(5) by just one modified DNLS equa-
tion. We again look at the case- 1+ 4k for which we have

g
A(1)Uij:§(2|l,/fi—1,j|2_|l/fi+1,j+1|2_|l/fi+1,j—1|2),

where A(l)Uij:Ui+1yj+1+ Uifl,j+Ui+1,jfl_3Ui,j .
Analogously, we have

V39
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where A(l)V” =Vi+1’j+1+Vi —1j +V, +1j-1" 3Vi,j . Next
we note that for the three nearest neighbors we have similar
relations, namely,

g
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9
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g
A(]-)Ui—l,j=§(|l/fi—2,j—1|2+|l//i—z,j+1|2_2|'r’/i,j|2)
for the U field and

V39
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J3g
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Defining

Z;=Uiqjr1tUipgj-1—2U 4
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[i.e., the lattice terms in Eq11)] we find that the following
discrete equation holds:

AD)Za=0(6|15; 12— 4 42> = Wi 21 ]P— [0 j_ o
~|Wis2j- 1P = |Wi-2j- 1P = ¥i—2j11/%).

The right-hand side of Eq.14) is a seven-point Laplacian
A(2)|4j|?, thus we find

A(1)Zy=—0gA(2)] 4|2 (14)

It is easy to see that one possible solution of this equation is
of the form

Z,= —§(|l/fi+1,j+1|2+|l!fi+1,j—1|2+|1//i—1,j|2+3|¢’ij|2)('15

In contrast to the square grid, we find that the discreteThis is quite remarkable since on a square lattice a similar
equations of the hexagonal grid in the stationary limit doequation has no simple solution. Inserting Ebtp) into Eq.
have anexactsolution. We can thus replace the system of(11) we have
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N i+23¢ = bivajrr—Yi-1j~ Yiv1j-1)
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or
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(16)
This equation constitutes our DNLS equation.

B. Continuum limit

Next we look at the continuum limit of Eq16). To do
this we introduce the following expansions:
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where fori=1+4k andi=3+4k we havedx, =1/2, 5x_

=1, while fori=2+4k andi=4+4k we havedx, =1,
5x_=1/2. Moreover,dy=/3/2. Inserting this into Eq(16),
we obtain

w——mp gw( A|w|2+6|¢|2): (19

or, equivalently,

Xw+A¢+4§¢(|w|2+§A|w|2)=o. (20)
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i ~ 1 B
|E+A<//+4g¢(|zp|2+§A|¢|2)—0. (21)

Following Refs. 6—-8 we see that the conserved energy in this
case is given by

- [ {19 u=zatues dsia| ooy 2

Approximating the soliton solution of E¢21) by a Gaussian
of the form ¢(x,y)= /7 exp(— k?2(x*+y?)) we find
that the value ok that minimizes the energy is

Kﬁmzz( 1- 2) 23
g

and thus we have an estimate of the critigalnamely, g,
~1Ir.

IV. NUMERICAL RESULTS
A. Continuous, modified nonlinear Schralinger equation

First, we have considered the continuous, modified non-
linear Schrdinger equatiorf21). For this, we have taken the
radially symmetric ansatz

P(r,t)=e'R(r), (24)

and put this into Eq(21). Then we have solved the ordinary
differential equation(ODE) using a collocation method for
the boundary value ODE%and choosing the boundary con-
ditions:

R(r=%)=0. (25)

Our results are shown in Fig. 1. For a fixgdwe have de-
termined the value of the functioR(r) at the origin,R(r
=0), as well as the value at for which the norm of the
solution is equal to unity. As can be seen from Fig. 1, we

have found that for a critical value gf=g.,~2.94 the value
of R(0) tends to zero. Since our construction is such that the
maximum of the solution is located et 0, the value of the
height of the solution tends to zero and thus the solution

ceases to exist. We thus find that the critical valug dfom
our numerical construction agrees with the upper-bound
value obtained from the variational approach based on the

Gaussian, namelyg,, = 7.

Note that the solutions cease to exist when the value of
tends to zero. Since we can interpaeas the frequency of an
internal rotation, the solutions apparently cease to exist when
there is no internal rotation. This can be compared to the
so-called ‘Q-balls” which are nontopological solitons char-
acterized also by a complex scalar fféldf the form similar
to Eq.(24). For them it is knowf that there exist upper and
lower positive-valued bounds on the frequency of the inter-

We thus have, in analogy to what was found in Refs. 6—8nal rotation in order foQ-balls to be stable. In comparison,
the MNLS equation with an extra term, which can stabilizeour solutions exist for all values af>0. This is probably

the soliton:

due to the fact that while the dynamical part of our action is
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value of the functionR(r) at the originR(0), which in our con-
struction is equal to the maximum & R, is shown as function
of g. The values ofa are also shown. The solutions shown have
normal one.

FIG. 1. The results obtained with the ansgi , 6) =€ *'R(r)
to solve the continuous modified NLS equation. In this figure, the

D

q
q

similar to that forQ-balls, we have an extra term involving
derivatives as compared to an “ordinary®-potential in the

case ofQ-balls.
. . 9 K
B. Discrete equations
1. Full system of equations

For our numerical study of the full equatiof®)—(5) we ? T
have found it convenient to “squeeze” the lattice as indi- (p)
cated in Figs. @) and Zb). The Hamiltonian and the corre-
sponding equations are given in the Appendix. For our nu- FIG. 2. (a) The hexagonal lattice is shown. The arrows indicate
merical calculations, we have used mainly a periodic gridhe method of “squeezing” the lattice for the numerical evaluation.
with N; =160 andN,=20. We have in addition chosen the (b) The “squeezed” hexagonal lattice for the numerical construc-
boundary conditions such that the fields &t 0,j) are iden- tion. The HfimiltoniarH” corresponding to this lattice is given in
tified with those at (=iyay,j). Thus the type of nanotube € Appendix of the paper.
we are studying here is a (5,5) armchair tube which is
metallic2 Nanotubes can also be semiconducting and we
make a brief comment about the possibility of constructingwork is to study the dependence op. So the exact values
semiconducting tubes in our model in the last paragraph o6f j, andk, play a minor role. Hence, we have set them to
this section. one. The choice oM =20 is a reflection of the physical fact
In this work, the G—C bond length, 0.1415 nif,is nor-  that the mass of the carbon atom~20x 10~ %4g.
malized to unity. Therefore, the tube diameter is 0.6756 nm. To absorb the energy thus allowing the initial configura-
Tubes with different diameter can also be constructed in oution to evolve into the stationary solutions of E¢3)—(5),
model. We discuss this together with different chiralities ini.e., of Egs. (11)—(13) we have additionally introduced
the last paragraph of this section. damping termsy(du; ;/dt) and »(dv; ;/dt), respectively,
As starting configuration we have used an exponentialinto Egs. (4) and (5). We have typically chosen=0.25
like excitationy; ; extended typically over the lattice points —0.75. For this choice of the coupling constants, we have
i =78-83 and = 3-7 with the lattice at equilibrium every- performed several numerical calculations using a fourth-
where, i.e.,u; ;=0 andv; ;=0 for all i,j. We are mainly order Runge-Kutta method for simulating the time evolution.
interested in the existence of solitons and their dependend®#/e have found that solitons exist in this system fgr
on the value of the coupling constact. We have sef, >~20. For larger values ot,, the soliton forms very
=k,=1, M=20, andE=0.142 312. The main goal of this quickly, while decreasing, the time increases at which a

Ed
3

1

¢
q
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FIG. 3. The distortion of the lattice close to the location of the ~ F!G- 4. The height of the soliton’s maximumyi(; ;) max is
soliton is shown. The squares indicate the undistorted lattice, whil§hown as a function of the parameter
the circles indicate the distorted lattice after4000; c,=25. The
corresponding soliton’s maximumg* ) .~ 0.6145.

soliton forms. This is of course due to the weaker couplinﬁ‘”wz'%’ while the analytlc.al St.Udy led 1g;,= . Both
between the dynamics of the lattice itself and the excitation’@/U€S aré not a bad approximation for the value found nu-
For c,=19, we have waited untit~8000 and have not Merically for the discrete equation.
found a soliton. Moreover, in all cases we have found only 10 test the independence of our results from the form of
little displacement of the lattice from the equilibrium. We the initial settings, we have used a different starting configu-
have found that at the location of the soliton the lattice beration with two exponential-like excitations being located at
comes squeezdile., the lattice sites move towards the sitesi =78-83,j=3-7 andi =138-143 and = 13-17, respec-
at which the soliton is locatedThis is demonstrated in Fig. tively. We have found that for valueg>~3, the results
3 for c,=25, where we show the lattice distortion after agree. For both types of initial configurations, the minimal
=4000. The point at which the center of the soliton is lo-energy configuration corresponds to one soliton. However,
cated does not move, while the sites in its close neighbomaying said this, the time to reach this minimal energy con-
hood all move towards the center of the soliton. figurations is significantly smaller for the initial configura-
We have also studied the effects of perturbations of thgjon with one excitation than for that with two excitation
solitons. We have found that after perturbing the soliton WEtypically one order of magnitude smalleiWe have also
obtain a new solution with a different height of the soliton o516 our results as to the dependence on the size of the grid.

rk';aexggmigne' rﬁ;;?n :Iftﬁgi;mr?‘g(ueﬂnqch: npeev:/tusrglittiic())?] \(’j\’i?figrhSFor this, we have chosen two excitations on three different
from the starting one. We thus come to the conclusion thagggtzlzee?(:c(:?a;o%ld(;I;Iti]nng t?/%#N;;_%% ?E%t_v;o ::gio'
the full system of Eqs(3)—(5) has a large number of solu- —138-143, |=13-17, respectively(b) a, J ;id with N

tions for each choice of coupling constants. We believe that a_ 1= ’ P y 9 1

: DR, : : =320 andN,=40 with the excitations located at the same
conserved quantity exists in this system which picks out the laces as in(@), and finally () a grid with N,=60, N,

specific solution. However, so far we have not been able t(g 10 d t ial itati tended o
determine this conserved quantity. =10, and two exponential excitations extended over

=18-23,j=2-4 andi=38-43,j=7-9, respectively. We
2. Modified, discrete nonlinear Schidinger equation have found that fog=3, the results of case®) and (c)

In addition to the full system of equations, we have also2Jree: For the cade) the soliton forms at~300, while for

studied the dynamical analog of E6L6). Using a similar the casdc) it forms att~1_00.. This is not surprising since in
. ) . : : . the case(c), the two excitations are located nearer to each
starting configuration withy; ; being exponential and non-

z6r0 overi=78-83 andj=3-7, we have determined the other than in t_he casén). To test the dependence on the
actual lattice size we have compared the cdagand (b).

value ofg for which a soliton exists. Our results are shownye have found that the larger the lattice the longer it takes

in Fig. 4, where we present the height of the soliton’s maxi-, - e soliton to form. Forg=3 a soliton forms aftet

mum (¥4 )max as function ofg. We find that the value § <300 in the caséa), while for (b) it forms att>700. We

at which the soliton disappeags,~2.295. The height of the have thus found that, in comparison with the case of the full
soliton at this critical coupling is l(xi,jzp;fj)maxmo.zﬂ. Our system of equations, the solutions of the DNLS equation are
numerical study of the continuous MNLS equation gave uainique for each choice of the coupling constant.
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3. Comparison of results which would be semiconducting.
Since we have found that in the stationary limit the full [N this work, we have concentrated our attention on the

system of equations can be replaced by the DNLS equaﬁoﬁzxistence of localized structures. These structures extend
the minimal energy solutions we have obtained for bothOVer large parts of our grids, but are negligible at poundarles.
types of equations should be in agreement. Hence, we expect these to hold for systems with different

Comparing the two systems, we see that the v boundary conditions, i.e., different chiralities.
given in terms of the coupling constants of the full system by

V. CONCLUSIONS
2

X (26) Motivated by a large amount of research done in the area
M xKx of nanotubes, we have studied solitons on a two-dimensional
hexagonal lattice. We have chosen our lattice to be periodic
which, for the choice of coupling constants we have used i Poth thex andy directions and to be of large extension in
our numerical simulations, gives one (x) direction and of small extension in the othgy di-
rection. In the stationary limit, we have found that the full
system of equations in which the electron excitation is
coupled to the displacement fields of the lattice can be re-
placed by a modified discrete nonlinear Satinger(DNLS)
_ equation. This discovery of an exact solution of the full sys-
Thus a critical value ot,~ 20 would implyg.,~4.4. First, tem of equations is remarkable since for the similar quadratic
we remark that the values of the critical electron-phononattice such a simple solution does not exist.
coupling we obtained from all our simulatiorigcluding In our numerical studies we have mainly concentrated our
those for the continuous MNLS equatjoare of the same attention on determining the value of the critical phonon-
order of magnitude. However, there is a slight discrepancelectron coupling constant. For the DNLS we have found
between the results for the full system and the DNLS equathat unique solutions exist and that the value of the critical
tion. We believe that this is due to the fact that there mightcoupling is in good agreement with both the analytical and
exist additional terms4 in Eq. (15) for which A(1)A4=0 numerical values found for the continuous analog of the
and/or A(2).A=0. These terms would then appear in Eq.DNLS. For the full system of equations, we believe that a
(16) and would change the comparison of the solutionslarge number of solutions exist for each choice of the cou-
However, it is difficult to determine these additional termspling constants and that a conserved quantity exists in the

c

9=

O N

ey (27)

and so this is left as a future wotR. system. The critical value of the electron-phonon coupling is
of the same order of magnitude as in the case of the DNLS;
4. Tubes with different diameter, chirality, and lengths however, we believe that this small discrepancy results from

. . fact that possible “boundary” terms appear when replac-
t of It fi hair t € p y PP P
Since most of our results are for a (5,5) armehair tbe an(?r:g the full system by the DNLS. These boundary terms are

since it is well known that the properties of nanotubes de-

pend strongly on the diameter, chirality, and lengths of thethat which are annihilated by either the four-point Laplacian

tube, we will discuss briefly how different tubes could beA(l) and/or by the seven-point Laplacian(2). To find

constructed in our model. We have not constructed thes@ese terms is nontrivial and since this seems an interesting
tubes yet, but we aim to do so in a future publication inOPIC DY itself, we leave this as a future work.

which we intend to extend our approach to a more realistic Flnally let us mention that a possible extension of the
three-dimensional moda? results given here would involve the study of the correspond-

Labeling the first carbon atom in the direction by | ing three-dimensional equations and/or of the influence of

—0, we have chosejy,,, such that it is divisible by 4. Thus, ©Xternal forces.
the length of the tube in the direction isl, = 3imax. Since

we identify the fields labeled byi €0,j) with those at {

=imax.j), the diameter of the tube is given =1, /.

Thus increasing/decreasirgax by 4n, n=1,2,3 ..., we ACKNOWLEDGMENT

can construct armchair nanotubes with diametats B.H. was supported by an EPSRC grant.
= (3/4) (jmaxt4n). Similarly, we can construct longer
tubes by increasing the number of atoms in xhdirection.

As far as chirality is concerned, there are two things to
modify in our model in order to be able to construct tubes
with different chirality. One is to change the number of
points in they direction so thaf,,.xis nondivisible by 4. The To simplify the numerical construction of the solutions we
other is to adjust the periodic boundary conditions in yhe have squeezed the lattice as indicated in Figa). 2nd 2b).
direction appropriately. If we, e.g., choosgg,.,=18, we  This reduces the memory requirements and so speeds up the
have to identify the fields atiE&0,) with those at {  calculations. The Hamiltoniat" for the numerical con-
=imax:) T1). This then would give us a (5,4) nanotube struction thus takes the form

APPENDIX: HAMILTONIAN AND EQUATIONS OF
MOTION FOR THE NUMERICAL STUDIES
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N, (Ny/4)-3

H'=2 >

=1 (i-1Dla=0

(E+W) & 47— 1 (i T i1t divaj—1)

Cx
]xlr/f|1('r//|+1j+'7[’| 1J+l70|+1j 1)+(/f|]l/f|1< (ul+l]+ul+lj 1~ 2u| 11) \/—(U|+1J 1 |+l,j))1

Ny,  (Nq/4)-2

+> 2

=1 (i-2)/4=0

(E+W) i 147 = 1l (i 1+ i1+ i1y 40)

Cx
— It (B U 1J+1)+¢|1¢.J< (—Ui—q Uil,j+1+2Ui+1,j)+ﬁ(Ui1,j+1_Ui1,j)H

Ny (Ny/4)-1
+j§1 (i—BZ)M:O (E+W) i 47— 15 (i F it i) — Ixtj (G H 0 g4 0)

C
‘H/’ulﬂ”( (UippjtUis1j41—2Ui-1j)+ \/_%(Ui+1,j+1_vi+l,j))l

N, Ny/4
+j21 ”42:1 (E+W) & 05— 1T T it i) — i j (B H it g -0)
Cx
+¢|J¢|J( (Ul 1J+ul 1j—-1" 2U|+1J) ﬁ(vil,j_vil,jl))l (Al)

with the phonon energ\",

dzui'j
F:_kx(3ui,j_ui+l,j_ui—1,j_ui+1,j—1)
N
1 2 N du dov 2 C
_ _ 2
WH_EMZ Z ((dt) a9t R (Ui —Ui— 1)+ (vjj —ﬁ(Zlﬂi—lJl/’r—l,j_¢’i+1,j'/’i*+1,j
Ny, (Np/d)-2
1 2 1 — g z//-* 1), (A4)
_Ui—l,j)z] +§Mz , > (kx[(uij_ui—l,j+l)2 L
j=1 (i—2)/4=0
Ny (Np/4)—1 dzvij K (3 B B )
Hogmvi)? DT EME 3 ol T
=1 (i-3)/4=0
—U 2 oy 2 (o
Uis1j+1) T+ (0ij = Vis1j+1)°D)- (A2) _J—S_);\A(l/fi+1,j—1‘r/fi*+1,j—1_‘/’i+1,j'/’i*+1,j)'
The equations of motion are then given by (A5)
Fori=1+4k, k=1,2,...,
Fori=2+4k, k=1,2,...,
’/fi,j . llllj .
|h7:(E+W)¢i,j_21x(¢i+l,j+¢ifl,j+¢i+l,j71) ——=(E+W) ¢ ;= 2] (iy1jt b1yt bio1jrn)
+¢|] (ul+1j+ul+lj 1 2l-|| 1]) +¢|J ( ui— 1, ui—1,j-%—1"+_2l-li-%—1,j)
Cy Cx
\/—(U|+lj Ui+1,j—1) ) (A3) \/—(Ul 1j+1~ Ui- 11) (AB)
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2 2
ui,j d vi,j
> - —Ke(3Uj j=Ujy1j—Ui—1j—Ui_1j41) o - —Ke(3vi j=Viy1j 7 Vi1 Vit1j+1)
dt dt
+ 1(2 : Y/ [ C* Cx * *
am Clirnjlicn T dioajidiogg - W(‘!’iu,j‘!’iu,j_l/’i+1,j+1llfi+1,j+1)-
— i 11y 1) (A7) (A11)
d2: Fori=4+4k, k=1,2,...,
I,
dtz—l = —Ke(3vj = Vi1 Vi—1j T Vi—1j+1) "
ih _ﬁtu =(BE+W) ¢ j=2]x(iprj T thiajtdbi—1j-1)
CX
+_\/§M (Yi1jr 1 1jer— -1 ¥ 1))- c,
— i E(ui—l,j+ui—1,j—1_2ui+1,j)
(A8)
Fori=3+4k, k=1,2,..., Cy
—=(vi—1jvi—1j-1) |, (A12)
' (9lﬂi‘j . \/§ i—1j i—1j—-1
'ﬁT:(E+W)l/’i,j_21x(¢i+1,j+¢i—1,j+¢i+1,j+1) ,
uA .
c ?;J:—kx(3ui,j_Ui+1,j—Ui—1,j_Ui—1,j—1)
X
+ i §(Ui+1,j+Ui+1,j+1_2Ui—1,j)
c
+ 3—;/'(2‘,0”1,]' Y= i i
CX
+ T(Ui+l,j+l_vi+1,j)]a (A9) .
8 _¢i—1,j—1¢i—1,j—1). (A13)
%:_k(:gu_u C—Us —Us . ) dzvivj_ k(3
a2 X i i+1, i—1, i+1j+1 dt2 = x( Ui,j 7 Vi+1j 7 Vi-1j Ui—l,j—l)
- LB I O . .
3M TP LTS T L i +W(lﬁi—l,jlﬂi—u—¢i—1,j—1¢i—1,j—1)-
—Yivrj 1) (A10) (A14)
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