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Abstract

We consider the problem of coloring a planar graph with the minimum number of
colors so that each color class avoids one or more forbidden graphs as subgraphs. We
perform a detailed study of the computational complexity of this problem.

We present a complete picture for the case with a single forbidden connected (induced
or non-induced) subgraph. The 2-coloring problem is NP-hard if the forbidden subgraph
is a tree with at least two edges, and it is polynomially solvable in all other cases. The
3-coloring problem is NP-hard if the forbidden subgraph is a path with at least one
edge, and it is polynomially solvable in all other cases. We also derive results for several
forbidden sets of cycles. In particular, we prove that it is NP-complete to decide if a
planar graph can be 2-colored so that no cycle of length at most 5 is monochromatic.
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1 Introduction

We denote by G = (V,E) a finite undirected and simple graph with |V | = n vertices and
|E| = m edges. For any non-empty subset W ⊆ V , the subgraph of G induced by W is
denoted by G[W ]. A clique of G is a non-empty subset C ⊆ V such that all the vertices of
C are mutually adjacent. A non-empty subset I ⊆ V is independent if no two of its elements
are adjacent. An r-coloring of the vertices of G is a partition V1, V2, . . . , Vr of V ; the r sets
Vj are called the color classes of the r-coloring. An r-coloring is proper if every color class
is an independent set. The chromatic number χ(G) is the minimum integer r for which a
proper r-coloring of G exists.

Evidently, an r-coloring is proper if and only if for every color class Vj , the induced
subgraph G[Vj ] does not contain a subgraph isomorphic to P2. (We use Pk to denote the
path on k vertices.) This observation leads to a number of interesting generalizations of
the classical graph coloring concept. One such generalization was suggested by Harary [24]:
Given a graph property π, a positive integer r, and a graph G, a π r-coloring of G is a (not
necessarily proper) r-coloring in which each subgraph induced by a color class has property
π. This generalization has been studied for the cases where the graph property π is being
acyclic, or planar, or perfect, or a path of length at most k, or a clique of size at most k.
We refer the reader to the work of Brown & Corneil [8, 7, 9], Chartrand et al. [11, 12, 13],
Farrigua [16] and Sachs [29] for more information on these variants.

In this paper, we will investigate graph colorings where the property π can be defined
via some (maybe infinite) list of forbidden induced subgraphs. This naturally leads to the
notion of F-free colorings. Let F = {F1, F2, . . . } be the set of so-called forbidden graphs.
Throughout the paper we will assume that the set F is non-empty, and that all graphs in F
are connected and contain at least one edge. Moreover, to avoid technical difficulties in the
proofs we will assume that no graph of F is a proper subgraph of another graph of F . For a
graph G, a (not necessarily proper) r-coloring with color classes V1, V2, . . . , Vr is called weakly
F–free, if for all 1 ≤ j ≤ r, the graph G[Vj ] does not contain any graph from F as an induced
subgraph. Similarly, we say that an r-coloring is strongly F–free if G[Vj ] does not contain
any graph from F as an (induced or non-induced) subgraph. The smallest possible number
of colors in a weakly (respectively, strongly) F-free coloring of a graph G is called the weakly
(respectively, strongly) F-free chromatic number ; it is denoted by χW (F , G) (respectively, by
χS(F , G)).

In the cases where F = {F} consists of a single graph F , we will sometimes simplify
the notation and not write the curly brackets: We will write F -free short for {F}-free,
χW (F,G) short for χW ({F}, G), and χS(F,G) short for χS({F}, G). With this notation
χ(G) = χS(P2, G) = χW (P2, G) holds for every graph G, and hence also

χW (F , G) ≤ χS(F , G) ≤ χ(G).

It is easy to construct examples where both inequalities are strict. For instance, for F = {P3}
(the path on three vertices) and G = C3 (the cycle on three vertices) we have χ(G) = 3,
χS(P3, G) = 2, and χW (P3, G) = 1.

Our main concern in the paper are planar graphs. Recall that a graph is planar if it
can be drawn in the (Euclidean) plane without intersections of edges. Such a drawing is
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referred to as a plane graph. Hence a graph G is planar if and only if there exists a plane
graph isomorphic to G. A planar graph is called outerplanar if it has a drawing such that
all vertices lie on the boundary of the unbounded face (this face is usually referred to as the
outer face).

1.1 Previous results

The literature contains quite a number of papers on weakly and strongly F-free colorings of
graphs. One of the most general results is due to Achlioptas [1]: For any graph F with at
least three vertices and for any r ≥ 2, the problem of deciding whether a given input graph
has a weakly F -free r-coloring is NP-hard. We often use weakly (strongly) F-free r-coloring
as shorthand for the corresponding decision problem.

The special case of weakly P3-free coloring is known as the subcoloring problem in the
literature. It has been studied by Broere & Mynhardt [4], by Albertson, Jamison, Hedetniemi
& Locke [2], by Fiala, Jansen, Le & Seidel [18], Gimbel & Hartman [21], and by Broersma,
Fomin, Nešetřil & Woeginger [6]. We will further utilize especially the following result:

Proposition 1.1. [Fiala, Jansen, Le & Seidel [18]]
Weakly P3-free 2-coloring is NP-hard for triangle-free planar graphs.

A (1, 2)-subcoloring of G is a partition of V into two sets S1 and S2 such that S1 induces
an independent set and S2 induces a subgraph consisting of a matching and some (possibly
no) isolated vertices. Le & Le [27] proved that recognizing if a graph is (1, 2)-subcolorable is
NP-hard even for cubic triangle-free planar graphs.

The case of weakly P4-free coloring has been investigated by Gimbel & Nešetřil [22] who
study the problem of partitioning the vertex set of a graph into induced cographs. Since
cographs are exactly the graphs without an induced P4, the graph parameter studied in [22]
equals the weakly P4-free chromatic number of a graph. In [22] it is proved that the problems
of deciding χW (P4, G) ≤ 2, χW (P4, G) = 3, χW (P4, G) ≤ 3 and χW (P4, G) = 4 all are NP-
hard and/or coNP-hard for planar graphs. The work of Hoàng & Le [25] on weakly P4-free
2-colorings was motivated by the Strong Perfect Graph Conjecture. Among other results,
they show that weakly P4-free 2-coloring is NP-hard for comparability graphs.

A notion that is closely related to strongly F -free r-coloring is the so-called defective
graph coloring. A defective (k, d)-coloring of a graph is a k-coloring in which each color class
induces a subgraph with maximum degree at most d. Defective colorings have been studied
for example by Archdeacon [3], by Cowen, Cowen & Woodall [14], and by Frick & Henning
[19]. Cowen, Goddard & Jesurum [15] have shown that the defective (3, 1)-coloring problem
and the defective (2, d)-coloring problem for any d ≥ 1 are NP-hard even for planar graphs.
We observe that for any k, defective (k, 1)-coloring is equivalent to strongly P3-free k-coloring,
and hence we derive the following proposition.

Proposition 1.2. [Cowen, Goddard & Jesurum [15]]
(i) Strongly P3-free 2-coloring is NP-hard for planar graphs.
(ii) Strongly P3-free 3-coloring is NP-hard for planar graphs.
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1.2 Our results

We perform a complexity study of weakly and strongly F-free coloring problems for planar
graphs. By the Four Color Theorem, every planar graph G satisfies χ(G) ≤ 4. Consequently,
every planar graph also satisfies χW (F , G) ≤ 4 and χS(F , G) ≤ 4, and so we may concentrate
on 2-colorings and on 3-colorings. For the case of a single forbidden subgraph, we obtain the
following results for 2-colorings:

• If the forbidden (connected) subgraph F is not a tree, then every planar graph is
strongly and hence also weakly F -free 2-colorable. Therefore, the corresponding deci-
sion problems are trivially solvable.

• If the forbidden subgraph F = P2, then F -free 2-coloring is equivalent to proper 2-
coloring. It is well-known that this problem is polynomially solvable.

• If the forbidden subgraph is a tree T with at least two edges, then both weakly and
strongly T -free 2-colorings are NP-hard for planar graphs. Hence, these problems are
intractable.

For 3-colorings with a single forbidden subgraph, we obtain the following results:

• If the forbidden (connected) subgraph F is not a path, then every planar graph is
strongly and hence also weakly F -free 3-colorable. Hence, the corresponding decision
problems are trivially solvable.

• For every path P with at least one edge, both weakly and strongly P -free 3-colorings
are NP-hard for planar graphs. Hence, these problems are intractable.

Moreover, we derive several results for 2-colorings with certain forbidden sets of cycles.

• For the forbidden set F345 = {C3, C4, C5}, both weakly and strongly F345-free 2-colorings
are NP-hard for planar graphs. In fact for any finite set F≥345 ⊇ {C3, C4, C5} of cycles,
both weakly and strongly F≥345-free 2-colorings are NP-hard for planar input graphs.

• Also for the forbidden set Fcycle of all cycles, both weakly and strongly Fcycle-free 2-
colorings are NP-hard for planar graphs.

• For the forbidden set Fodd of all cycles of odd lengths, every planar graph is strongly
and hence also weakly Fodd-free 2-colorable. This follows from (in fact, it is equivalent
to) the Four Color Theorem.

2 The machinery for establishing NP-hardness

Throughout this section, let F denote some fixed set of forbidden planar subgraphs. We
assume that all graphs in F are connected and contain at least two edges. We also assume
that no graph of F is a (not necessarily induced) proper subgraph of another graph from
F . We will develop a generic NP-hardness proof for certain types of weakly and strongly
F-free 2-coloring problems. The crucial concept is the so-called equalizer gadget. Before we
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define this gadget, let us introduce the following technical concept of crossing graphs. We
note that we distinguish between planar graphs and plane graphs (the latter being particular
nonintersecting drawings of abstract planar graphs), but we use the same notation for a plane
graph and its underlying abstract (planar) graph. When talking about more than one graph,
we use subscripts to distinguish their vertex and edge sets (i.e., VG and EG denote the vertex
and edge sets of a graph G).

Definition 2.1. Given a plane graph G with outer face C and a set S ⊆ VG of vertices on the
boundary of C (referred to as contact points), we say that another plane graph H is crossing
G if the following assertions hold:

1. G ∪H is a plane graph (i.e., no edge of G crosses any edge of H in the simultaneous
drawing of G and H),

2. all edges of EH \ EG are drawn in C,

3. no edge of EH \ EG is incident with a vertex of VG \ S,

4. VH ∩ (VG \ S) 6= ∅.

If G is a plane graph with a set S of contact points, we say that a planar graph H may
cross G if some nonintersecting planar drawing of a graph isomorphic to H is crossing G.

In the left half of Figure 1 the graph H induced by the vertices b2, c and d is crossing the
graph G induced by the vertices the a, b1, b2, b3 and c with S = {c}.

Definition 2.2. (Equalizer)
An (a, b)-equalizer for F is a plane graph E with two nonadjacent contact points a and b on
the boundary of the outer face, which satisfies the following properties:

(i) In every weakly F-free 2-coloring of E , a and b receive the same color.

(ii) There exists a strongly F-free 2-coloring of E such that a and b receive the same color,
whereas no monochromatic copy of a graph in F may cross E . Such a coloring is called
a good 2-coloring of E .

The graph E in the right half of Figure 1 is an (a, b)-equalizer for P3. In every weakly P3-
free 2-coloring of E the vertices a and b should receive the same color; otherwise a monochro-
matic P3 is unavoidable if we extend the 2-coloring. A good coloring of E can be obtained
by assigning a and b the same color and all remaining vertices of E the other color.

To better understand the definition of an equalizer E , let us remark right away that if F
contains a graph with a leaf, then an F-free 2-coloring of E is good if and only if all neighbors
of the contact points in E have the color that is not assigned to the contact points.

The rest of this section is devoted to the proof of the following (technical) main theorem.
This theorem is going to generate a number of NP-hardness statements in the subsequent
sections of the paper.

Theorem 2.3. Let F be a set of connected planar graphs that all contain at least two edges,
such that no graph of F is a proper subgraph of another graph of F . Suppose that
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Figure 1: Examples to illustrate Definitions 2.1 and 2.2.

• F contains a graph on at least four vertices with a cut vertex, or a 2-connected graph
with a planar embedding with at least five vertices on the boundary of the outer face;

• there exists an (a, b)-equalizer for F .

Then deciding weakly F-free 2-colorability and deciding strongly F-free 2-colorability are NP-
hard problems for planar input graphs.

We postpone the proof of Theorem 2.3 to Section 2.2, but first introduce some additional
tools.

2.1 Gadgets for the NP-hardness proof

We will design a series of gadgets that all use the equalizer gadget as an atomic component.
In all constructions, the only connections between an equalizer and the rest of the constructed
graph will always be via the contact points. The use of the equalizer gadget is justified (and
motivated) by the following lemma.

Lemma 2.4. Consider a nontrivial planar graph H and an edge xy ∈ EH . Let the graph
H+ result from H by adding a vertex-disjoint copy E of an (a, b)-equalizer to H and then
identifying vertex x with contact point a, and vertex y with contact point b.

Then H+ is a planar graph, and H+ has a strongly/weakly F-free 2-coloring if and only
if H has a strongly/weakly F-free 2-coloring in which x and y both receive the same color.

Proof. Since E is a plane graph with a and b on the boundary of the outer face, H+ is
also planar and it has a nonintersecting drawing such that all edges of H are drawn in the
outer face of E . For the proof of the ‘only if’ part, observe that every strongly/weakly F-
free 2-coloring of H+ induces a strongly/weakly F-free 2-coloring of H. By property (i) in
Definition 2.2, this induced coloring assigns the same color to x and y. For the proof of the ‘if’
part, we construct a strongly/weakly F-free 2-coloring of H+: We use the strongly/weakly
F-free 2-coloring for the subgraph H, and we color the (a, b)-equalizer E using a good coloring
in the sense of property (ii) in Definition 2.2.
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The negator gadget. An (a, b)-negator for F is a plane graph N with two nonadjacent
contact points a and b on the boundary of the outer face, which satisfies the following prop-
erties:

(i) In every weakly F-free 2-coloring of N , a and b receive different colors.

(ii) There exists a strongly F-free 2-coloring of N such that a and b receive different colors,
whereas no monochromatic copy of a graph in F may cross N . Such a coloring is called
a good 2-coloring of N .

Next we show how to construct such an (a, b)-negator from (a, b)-equalizers. We choose an
arbitrary graph F ∈ F , and take some fixed planar embedding of F to form the so-called
skeleton of the negator. Let a′ and b′ denote two vertices on the boundary of the outer face of
F . We partition VF into two disjoint sets V1 and V2 in such a way that both F [V1] and F [V2]
(the subgraphs of F induced by V1 and V2) are connected, and so that a′ ∈ V1 and b′ ∈ V2.
For every edge xy ∈ EF [V1] ∪EF [V2], we add an equalizer between x and y exactly in the way
we described in Lemma 2.4. We introduce a new vertex a and connect it by an equalizer to a′;
we create a new vertex b and connect it by an equalizer to b′. This completes the construction
of N . To see that (i) is fulfilled, consider some weakly F-free 2-coloring of N . Suppose that
a and b receive the same color. Then the equalizers enforce that this color propagates to all
vertices in the skeleton, and this yields a monochromatic induced copy of F , a contradiction.
To see that (ii) is fulfilled, we may color {a} ∪ V1 with one color, and {b} ∪ V2 with the other
color. The vertices inside the equalizer gadgets may be colored using a good coloring in the
sense of Definition 2.2.(ii). Any monochromatic copy of a graph F ′ ∈ F would either contain
some edges of some equalizer gadget (which is impossible by the goodness of the equalizer
coloring) or be a subgraph of F [V1] or F [V2] (which is impossible by the assumption we made
on F).

In our constructions, the negator gadget will be used similarly as the equalizer gadget
as described in Lemma 2.4. While the equalizer gadget can be used to enforce that a pair
of vertices receives the same color, with the help of the negator gadget we can enforce that
a pair of adjacent vertices in some planar graph must receive different colors in any weakly
F-free 2-coloring. We omit the details since the counterpart of Lemma 2.4 with respect to
negators and its proof are straightforward variations on Lemma 2.4 and its proof.

For our NP-hardness proof (of Theorem 2.3) we need two additional gadgets.

The clause gadget with four contact points. The gadget C4(a, b, c, d) is a plane graph
C with pairwise nonadjacent contact points a, b, c and d that lie in this (cyclic) ordering on
the boundary of the outer face of C. It has the following properties:

(i) In every weakly F-free 2-coloring of C, not all four contact points receive the same
color.

(ii) Any 2-coloring of the four contact points that uses both colors, can be extended to a
strongly F-free 2-coloring of the gadget C, in such a way that no monochromatic copy
of a graph in F may cross C. Such a coloring is called a good 2-coloring of C.
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Now let us construct such a clause gadget C4(a, b, c, d). Suppose we are in the case assumed
in Theorem 2.3. Hence the set F contains some graph F that can be planarly embedded such
that there are four vertices a′, b′, c′, d′ on the boundary of the outer face. We choose this
plane graph F to form the skeleton of the clause gadget. We create four new vertices a, b, c,
and d. Each of these new vertices is connected by an equalizer to its corresponding primed
vertex on the outer face of the skeleton. The vertices in the skeleton are partitioned into four
components (with connecting edges between them) such that a′, b′, c′, d′ end up in different
components. Within each component, we introduce equalizers along every edge in the way
we described in Lemma 2.4. This completes the construction.

By now it is routine to verify that the construction indeed fulfills the two properties (i)
and (ii). We leave the details to the reader.

The clause gadget with five contact points. The gadget C5(a, b, c, d1, d2) is a plane
graph C with pairwise nonadjacent contact points a, b, c, d1, and d2 that lie in the (cyclic)
ordering a − b − d1 − c − d2 on the boundary of the outer face of C. It has the following
properties:

(i) In every weakly F-free 2-coloring of C, the vertices d1 and d2 receive the same color,
and at least one of the vertices a, b, c receives the opposite color.

(ii) Any 2-coloring of the five contact points that assigns the same color to d1 and d2, and
the opposite color to at least one of a, b, c, can be extended to a strongly F-free 2-
coloring of the gadget C, in such a way that no monochromatic copy of a graph in F
may cross C. Such a coloring is called a good 2-coloring of C.

Suppose we are in the case assumed in Theorem 2.3, hence the set F contains a graph on at
least four vertices with a cut vertex, or a 2-connected graph with a planar embedding with
at least five vertices on the boundary of the outer face.

Let us first discuss the case of a graph F ∈ F with a cut vertex d′. The skeleton of
C5(a, b, c, d1, d2) is formed by a planar embedding of F where d′ is on the boundary of the
outer face. Choose three vertices a′, b′, c′ that all lie on the boundary of the outer face,
and that do not belong to the same component of F − d′, such that we can move around
the boundary of the outer face starting at a′, then moving to b′, then to d′, then to c′, then
to d′ again, and then returning to a′ (maybe meeting other vertices, including d′ and b′, in
between). For example, if F = K1,k is a star with k ≥ 3 leaves, we choose d′ as the center,
and a′, b′ and c′ as three successive end vertices in a cyclic ordering in a planar embedding
of F . We can move around the boundary of the outer face from a′ (via d′) to b′, then to
d′ and to c′, and back to a′ via d′ (and alternating between d′ and the possible other end
vertices if k ≥ 3). The other cases are similar. We create five new vertices a, b, c, d1, and
d2, and we connect them by equalizers to a′, b′, c′, d′, and d′, respectively, at the place
where we hit the primed vertices in the above ordering a′ − b′ − d′ − c′ − d′ while moving
around the boundary of the outer face in the way we described. The vertices in the skeleton
are partitioned into four components such that a′, b′, c′, d′ end up in different components.
Within each component, we introduce equalizers along every edge in the way we described
in Lemma 2.4. This completes the construction for the first case.
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Next we discuss the case of a 2-connected planar graph F ∈ F that has a planar embedding
with at least five vertices on the boundary of the outer face. We use such an embedding as
the skeleton of C5(a, b, c, d1, d2). Consider the cycle C that forms the boundary of the outer
face. Choose five vertices v0 − v1 − v2 − v3 − v4 in this order along C. Because all these
v-vertices are on the outer face, only two subcases are possible.

• (Subcase 1) There is a face D inside C that touches all these v-vertices. Then we choose
two nonadjacent vertices d′1 and d′2 from these five and three additional appropriate
vertices a′, b′, c′ from C such that the cyclic ordering along the cycle C is a′− b′− d′1−
c′ − d′2. Then we connect d′1 and d′2 by an equalizer that is put inside D. Notice that
in the graph F −{d′1, d

′
2} the vertex c′ is in a component different from the component

containing a′ or b′.

• (Subcase 2) There is an i and a path P (possibly just one edge) internally-disjoint from
C that connects two vertices vi and vi+3 (where the indices are taken modulo 5). We
put d′1 = vi, d

′
2 = vi+3 and call the remaining three v-vertices a′, b′, c′ in such a way

that the cyclic ordering along C is a′− b′−d′1− c
′−d′2. For every edge of P we connect

its incident vertices by an equalizer. Again notice that in the graph F − VP the vertex
c′ is in a component different from the component containing a′ or b′.

In either subcase, we create five new vertices a, b, c, d1, d2, and connect them by equal-
izers to their corresponding primed vertices on the outer face of the skeleton. Finally, we
partition the vertices of the skeleton into five connected subgraphs, each containing one of
the vertices a′, b′, c′, d′1, d

′
2, and we introduce equalizers along the edges of these subgraphs as

in Lemma 2.4. This completes the construction.
It can be verified that this construction in both cases and subcases indeed fulfills the two

properties (i) and (ii).

2.2 The NP-hardness argument

Now we prove Theorem 2.3. The proof will be done by a reduction from an NP-hard variant
of the 3-satisfiability problem: Let Φ be a Boolean formula in conjunctive normal form over
a set X of logical variables; every clause in Φ contains exactly three variables. With Φ we
associate a graph QΦ. The vertices of QΦ are the clauses and the variables in Φ. There are
two types of edges in QΦ. The first type belongs to a cycle that spans all the clauses in
some ordering. The second type connects a variable x ∈ X to a clause φ ∈ Φ if and only if
x or x̄ occurs as a literal in φ. We call a formula Φ planar if for some choice of the cycle
spanning all the clauses of Φ the associated graph QΦ is planar. Fellows et al. [17] proved
that the restriction of the 3-satisfiability problem to planar formulae is NP-hard. (To be
precise, they only show the NP-hardness for formulas with at most three literals per clause.
One may achieve exactly three literals per clause by dropping the requirement of distinctness
of literals per clause. Since variable-clause incidences will later be replaced by gadgets with
nonadjacent contact points, our final graph will have no multiple edges anyway.)

Consider an arbitrary planar formula Φ as described above, and let QΦ be an associated
planar graph. We will construct in polynomial time a planar graphGΦ which has the following
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two properties: If formula Φ is satisfiable, then GΦ has a strongly F-free 2-coloring. If GΦ has
a weakly F-free 2-coloring, then formula Φ is satisfiable. This clearly will prove Theorem 2.3.

Fix a planar embedding of QΦ. The cycle through the clause vertices divides the plane
into a bounded and an unbounded region. Variables in X that are embedded in the un-
bounded region are called outer variables, and variables in the bounded region are called
inner variables. As it is usual in reductions from planar SAT, we construct a graph from
the planar drawing of QΦ by a series of local replacements. Slightly informally described,
we thicken the edges and the vertices in the planar embedding of QΦ such that they become
streets and squares; this yields a map into which we will put our gadgets. For every variable
x ∈ X, we put a vertex v(x) into the square corresponding to x. For every clause φ ∈ Φ, we
put a corresponding clause gadget into the square corresponding to φ in the following way.

• If all three literals in clause φ belong to inner variables, then the clause gadget for φ
is a clause gadget C4(a, b, c, d) with four contact points. The contact point d lies in
the center of the square of φ, and the contact points a, b, c lie at the beginning of the
streets leading to these three inner variables.

• If two literals in clause φ belong to inner variables and one literal belongs to an outer
variable, then the clause gadget for φ is a clause gadget C5(a, b, c, d1, d2) with five contact
points. The contact points d1 and d2 lie at the beginning of the streets that lead to
the left and the right neighbors of the clause φ on the clause cycle. The contact points
a and b lie at the beginning of the streets that lead to the two inner variables. The
contact point c lies at the beginning of the street that leads to the outer variable.

• The case of three outer variables, and the case of one inner and two outer variables are
handled symmetrically to the above two cases.

If the variable x occurs un-negated (respectively, negated) in the clause φ, then we put an
equalizer (respectively, a negator) from v(x) to the corresponding contact point in the clause
gadget for φ. Finally, we put an equalizer gadget between the d-vertices into every street that
connects a clause square to another clause square, and thus connect all clause gadgets into a
ring. These equalizer gadgets connect contact points d from clause gadgets C4(a, b, c, d), and
contact points d1 and d2 from clause gadgets C5(a, b, c, d1, d2) in an appropriate way. This
completes the construction of the graph GΦ which is easily seen to be planar.

Assume that formula Φ is satisfiable, and consider a satisfying truth assignment. Intu-
itively speaking, color 1 will correspond to TRUE and color 0 will correspond to FALSE.
Color all contact points d, d1, and d2 of clause gadgets by color 0. If variable x is TRUE,
then color the vertex v(x) by color 1. If x is FALSE, then color v(x) by 0. The equaliz-
ers and negators propagate the colors (respectively opposite colors) of the variables to the
corresponding contact points a, b, c in the clause gadgets. Since the truth assignment is a
satisfying truth assignment, in every clause gadget at least one of the contact points a, b, c is
colored 1. Moreover, in every clause gadget the contact points d (respectively, d1 and d2) are
colored 0. Therefore, we can use property (ii) of the clause gadgets to get a strongly F-free
2-coloring of all used clause gadgets. Altogether, this yields a strongly F-free 2-coloring for
the graph GΦ.
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Now assume that GΦ has a weakly F-free 2-coloring. Because of the ring of equalizer
gadgets that connect the clause gadgets to each other and property (i) of the C5-gadgets,
all contact points d, d1, d2 of clause gadgets must receive the same color; without loss of
generality we assume that this color is 0. We construct the following truth assignment for
X: If v(x) is colored 1, then x is set to TRUE. If v(x) is colored 0, then x is set to FALSE.
Suppose for the sake of contradiction that some clause φ in Φ is not satisfied by this truth
setting. Then the three literals in φ all are FALSE, and hence all three contact points a,
b, c in the corresponding clause gadget are colored 0. But then all contact points of this
clause gadget are colored 0, and by property (i) of the clause gadgets the coloring cannot be
a weakly F-free 2-coloring. This contradiction shows that Φ is satisfiable.

This completes the proof of Theorem 2.3.

3 Tree-free 2-colorings of planar graphs

The main result of this section is an NP-hardness result for weakly and strongly T -free
2-colorings of planar graphs for the case where T is a tree with at least two edges (see
Theorem 3.3). The proof of this result is based on an inductive argument over the number
of edges in T . The following two propositions are used as the base case of the induction.

Let K1,k denote the complete bipartite graph with one vertex in one color class and the
other k ≥ 1 vertices in the other color class. The leftmost drawing in Figure 2 shows a K1,7.

Proposition 3.1. For every k ≥ 2, it is NP-hard to decide whether a planar graph has a
weakly (strongly) K1,k-free 2-coloring.

Proof. For k = 2, the statement for weakly K1,k-free 2-colorings follows from Proposition 1.1,
and the statement for strongly K1,k-free 2-colorings follows from Proposition 1.2.(i).

For k ≥ 3, we apply Theorem 2.3. The first condition in this theorem is fulfilled, since
for k ≥ 3, the star K1,k is a graph on at least four vertices with a cut vertex.

For the second condition, we note that the complete bipartite graph K2,2k−1 with color
classes I with |I| = 2k − 1, and {a, b}, is an (a, b)-equalizer for F = {K1,k}. This graph
satisfies Definition 2.2.(i): In any 2-coloring, at least k of the vertices in I receive the same
color, say color 0. If a and b are colored differently, then one of them is colored 0. This would
yield an induced monochromatic K1,k. A good coloring as required in Definition 2.2.(ii)
results from coloring a and b by the same color, and all vertices in I by the opposite color.
This coloring has no monochromatic copy of K1,k itself, and since all neighbors of the contact
points are colored with the other color than the contact points, no monochromatic copy of
K1,k may cross the equalizer.

As we mentioned in Section 1.1, Cowen, Goddard & Jesurum [15] have shown that the
defective (2, d)-coloring problem for any d ≥ 1 is NP-hard even for planar graphs. This
implies that strongly K1,k-free 2-coloring is NP-hard for planar graphs for any k ≥ 2, so the
above proof is needed for the weak case only.

For 1 ≤ k ≤ m, a double-star Xk,m is a tree of the following form: Xk,m has k +m + 2
vertices. There are two adjacent central vertices y1 and y2. Vertex y1 is adjacent to k leaves,
and y2 is adjacent to m leaves. In other words, the double-star Xk,m results from adding an

11



Figure 2: The graph K1,7 and the double-stars X4,5 and X1,1.

edge between the centers (vertices of maximum degree) of K1,k and K1,m. See Figure 2 for
an illustration. Note that X1,1 is isomorphic to the path P4.

Proposition 3.2. For every 1 ≤ k ≤ m, it is NP-hard to decide whether a planar graph has
a weakly (strongly) Xk,m-free 2-coloring.

Proof. We apply Theorem 2.3. The first condition in this theorem is fulfilled, since Xk,m is
a graph on at least four vertices with a cut vertex. For the second condition, we construct
an (a, b)-equalizer.

The (a, b)-equalizer E = (V ′, E′) consists of 2m+k− 1 independent copies (V i, Ei) of the
double-star Xk,m where 1 ≤ i ≤ 2m+ k− 1. Moreover, there are five special vertices a, b, v1,
v2, and v3. We define

V ′ = {v1, v2, v3, a, b} ∪
⋃

1≤i≤2m+k−1

V i and

E′ = {v1v2, v2v3, v1v3, av3, bv3} ∪
⋃

1≤i≤2m+k−1

Ei ∪

⋃

1≤i≤m

{v1v : v ∈ V
i} ∪

⋃

m+1≤i≤2m

{v2v : v ∈ V
i} ∪

⋃

2m+1≤i≤2m+k−1

{v3v : v ∈ V
i} .

See Figure 3 for an illustration.
We claim that every 2-coloring of E with a and b colored differently contains a monochro-

matic induced copy of Xk,m: Consider some weakly Xk,m-free 2-coloring of E . Then each
copy (V i, Ei) of Xk,m must have at least one vertex that is colored 0 and at least one vertex
that is colored 1. If v1 and v2 had the same color, then together with appropriate vertices in
V i, 1 ≤ i ≤ 2m, they would form a monochromatic copy of Xk,m. Hence, we may assume
by symmetry that v1 is colored 1, and that v2 and v3 are colored 0. Suppose for the sake
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v1 v2

Xk,m Xk,m · · ·

︸ ︷︷ ︸

m

Xk,m Xk,m Xk,m Xk,m· · ·

· · ·
︸ ︷︷ ︸

m

v3

Xk,m Xk,m
· · ·

k−1
︷ ︸︸ ︷

a b

Figure 3: An equalizer for the double-star Xk,m.

of contradiction that a and b are colored differently. Then one of them would be colored 0,
and there would be a monochromatic copy of Xk,m with center vertices v3 and v2. Thus E
satisfies property (i) in Definition 2.2.

To show that also property (ii) in Definition 2.2 is satisfied, we construct a good 2-
coloring: The vertices a, b, v1 are colored 0, and v2 and v3 are colored 1. In every set V i

with 1 ≤ i ≤ m, one vertex is colored 0 and all other vertices are colored 1. In every set V i

with m + 1 ≤ i ≤ 2m + k − 1, one vertex is colored 1 and all other vertices are colored 0.
This coloring has no monochromatic copy of Xk,m, and since vertex v3 as the only neighbor
of the contact points a, b is colored differently than a, b, no monochromatic copy of any tree
may cross E .

Now we are ready to prove the main result of this section.

Theorem 3.3. Let T be a tree with at least two edges. Then it is NP-hard to decide whether
a planar input graph G has a weakly (strongly) T -free 2-coloring.

Proof. By induction on the number ` of edges in T . If T has ` = 2 edges, then T = K1,2, and
NP-hardness follows by Proposition 1.1. If T has ` ≥ 3 edges, then we consider the so-called
shaved tree T ∗ of T that results from T by removing all the leaves. If the shaved tree T ∗ is
a single vertex, then T is a star, and NP-hardness follows by Proposition 3.1. If the shaved
tree T ∗ is a single edge, then T is a double-star, and NP-hardness follows by Proposition 3.2.

Hence, it remains to settle the case where the shaved tree T ∗ contains at least two edges.
In this case we know from the induction hypothesis that weakly (strongly) T ∗-free 2-coloring
is NP-hard. Consider an arbitrary planar input graph G∗ for weakly (strongly) T ∗-free 2-
coloring. To complete the NP-hardness proof, we will construct in polynomial time a planar
graphG that has a weakly (strongly) T -free 2-coloring if and only ifG∗ has a weakly (strongly)
T ∗-free 2-coloring: Let ∆ be the maximum number of leaves pending on a vertex of T . For
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every vertex v in G∗, we create ∆ independent copies T1(v), . . . , T∆(v) of T , and we join v

to all vertices of all these copies.
Assume first that G∗ is weakly (strongly) T ∗-free 2-colorable. We extend this coloring to a

weakly (strongly) T -free 2-coloring of G by taking a proper 2-coloring of every subgraph Ti(v)
in G, such that for every v ∈ VG∗ , exactly one vertex of each Ti(v) receives the same color as
v. It can be verified that this extended 2-coloring for G does not contain any monochromatic
copy of T .

Now assume that G is weakly (strongly) T -free 2-colorable, and let c be such a 2-coloring.
Every subgraph Ti(v) in G must meet both colors. This implies that every vertex v in the
subgraph G∗ of G has at least ∆ neighbors of color 0 and at least ∆ neighbors of color 1
in the subgraphs Ti(v). Any monochromatic (induced) copy of T ∗ in G∗ would then extend
to a monochromatic (induced) copy of T in G, and hence the restriction of the coloring c to
the subgraph G∗ is a weakly (strongly) T ∗-free 2-coloring. This concludes the proof of the
theorem.

Using the same ideas as in the proofs of the previous theorem and propositions, one can
prove the following more general statement about larger sets of forbidden graphs.

Theorem 3.4. Let F be a finite set of graphs containing at least one tree with at least two
edges. Then both weakly and strongly F-free 2-coloring are NP-hard.

Proof. Let T ∈ F be a tree in F with the minimum number of edges. If T = P3, then the
remaining graphs in F must be complete (every non-complete connected graph contains P3 as
an induced subgraph), so they could be only K3 or K4. The NP-hardness of F-free 2-coloring
then follows from Proposition 1.1, since for coloring triangle-free graphs, graphs containing
triangles are irrelevant as forbidden subgraphs.

For T being a star (with at least three leaves) or a double-star, the result follows directly
from the construction of equalizers in the proofs of Propositions 3.1 and 3.2, since the good
colorings presented there are such that the neighbors of the contact points receive a differ-
ent color from the contact points, and the only connected monochromatic subgraphs of the
equalizers are singletons (in case of T = K1,k) or smaller double-stars (Xk−1,m in case of
T = Xk,m). Since T itself may be used as the skeleton of the negator and the clause gadgets,
the good colorings of these gadgets also do not contain a monochromatic copy of any graph
of F (neither induced nor non-induced).

If T is such that the shaved tree T ∗ has at least two edges, we proceed by induction
similarly as in the proof of Theorem 3.3. For any graph F ∈ F , we denote by F ∗ the shaved
copy of F , i.e., the graph obtained from F by removing all leaves (vertices of degree one). Let
∆ be the maximum number of leaves pending on a vertex of a graph from F . Construct the
graph G from a graph G∗ as in the proof of Theorem 3.3 and use the fact that G has a weakly
(strongly) F-free 2-coloring if and only if G∗ has a weakly (strongly) F∗-free 2-coloring, where
F∗ = {F ∗ : F ∈ F}.
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4 Cycle-free 2-colorings of planar graphs

In this section we turn to the case when the forbidden graph F is not a tree and hence
contains a cycle (we assume F is connected).

If F contains an odd cycle, then the Four Color Theorem (4CT) shows that any planar
graph G has a strongly F -free 2-coloring: a proper 4-coloring of G partitions VG into two sets
S1 and S2 each inducing a bipartite graph. Coloring all the vertices of Si by color i yields a
strongly F -free 2-coloring of G. If we extend the set of forbidden graphs to all cycles of odd
length, denoted by Fodd, then the converse is also true: In any Fodd-free 2-coloring of G both
monochromatic subgraphs of G are bipartite, yielding a 4-coloring of G. To summarize we
obtain the following.

Proposition 4.1. The statement “χS(Fodd, G) ≤ 2 for every planar graph G” is equivalent
to the 4CT.

In case F is just the triangle C3, one can avoid using the heavy 4CT machinery to prove
that χS(C3, G) ≤ 2 for every planar graph G by applying a result due to Burstein [10]. A
brief sketch of the argument is as follows. Prove by induction that in any plane triangulation,
any nonmonochromatic precoloring of the outer face (triangle) can be extended to a coloring
which avoids monochromatic triangles.

If F contains no triangles, a result of Thomassen [31] can be applied. He proved that
the vertex set of any planar graph can be partitioned into two sets each of which induces a
subgraph with no cycles of length exceeding 3. Hence every planar graph is strongly F≥4-free
2-colorable, where F≥4 denotes the set of all cycles of length exceeding 3. The following
theorem summarizes the above observations.

Theorem 4.2. If the forbidden connected subgraph F is not a tree, then every planar graph
is strongly and hence also weakly F -free 2-colorable.

The picture changes if one forbids all cycles, or a combination of cycles including the
triangle. A result of Stein [30] states that the vertex set of a plane triangulation G can
be partitioned into two sets each inducing a forest if and only if the plane dual of G is
hamiltonian. Since deciding hamiltonicity of planar cubic graphs is NP-hard (see [20]), this
implies that deciding whether a (maximal) planar graph has a weakly (strongly) cycle-free
2-coloring is NP-hard. We are able to slightly strengthen this statement.

Theorem 4.3. Let F345 = {C3, C4, C5} be the set of cycles of lengths three, four, and five.
Then the problem of deciding whether a given planar graph has a weakly (strongly) F345-free
2-coloring is NP-hard.

We prove this theorem in a more general setting as a corollary of Theorem 4.4. But first
let us note that {C3, C4, C5} is a minimal set of cycles which determines an NP-hard instance
of the F-free 2-coloring problem. Indeed, if F ⊂ {C3, C4, C5} is a proper subset, then every
planar graph is strongly F-free 2-colorable. We have noted this already for F ⊆ {C3, C5}
and F ⊆ {C4, C5}, and the last case F = {C3, C4} is covered by the result of Kaiser &
Škrekovski [26] who proved that every planar graph is strongly {C3, C4}-free 2-colorable.
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Theorem 4.4. Let F be a finite set of planar 2-connected graphs. If there exists a pla-
nar graph which is not weakly (strongly) F-free 2-colorable, then weakly (strongly) F-free
2-coloring is NP-hard for planar input graphs.

Proof. Consider the graphs of F with some fixed plane embeddings. If every face of every
graph F ∈ F is C3 or C4, then every planar graph is strongly F-free 2-colorable by the main
result in [26]. If not, there is an F ∈ F with a face of size at least 5 and the first assumption
of Theorem 2.3 is met.

Next we show how to construct an equalizer. LetH ′ be a smallest (by the number of edges)
planar graph which is not weakly (strongly) F-free 2-colorable. Take an edge xy ∈ EH′ and
denote by H the graph obtained from H ′ by deleting this edge. Then H is weakly (strongly)
F-free 2-colorable, and in every weakly (strongly) F-free 2-coloring of H the vertices x and
y receive the same color. We construct an equalizer E by concatenating sufficiently many
copies of H. More formally, choose a number k to be larger than the order of any graph in
F . The copies of H will be Hi = (Vi, Ei) with Vi = {vi : v ∈ VH} and Ei = {uivi : uv ∈ EH},
for i = 1, 2, . . . , k. For i = 1, 2, . . . , k − 1, we identify yi with xi+1, and we set a = x1 and
b = yk to be the contact points.

Clearly E is planar and in every weakly (strongly) F-free 2-coloring of E the vertices xi, yi

for i = 1, 2, . . . , k, and hence also a and b, receive the same color.
Let c be a weakly (strongly) F-free 2-coloring of H. Color E using c on every Hi. Consider

a graph F ∈ F . No copy of F which lies entirely in E is monochromatic, since the 2-
connectedness of F implies that such a copy of F lies entirely within one of theHi’s. Therefore
this 2-coloring of E is weakly (strongly) F -free. It also follows from the 2-connectedness of F
that every copy of F which crosses E contains a path from a to b through E . But every such
path has more vertices than F . Hence the 2-coloring of E is good.

To conclude the proof of Theorem 4.3, it would suffice to construct a planar graph which
is not weakly F345-free 2-colorable. It is, however, equally simple to describe an equalizer for
F345 (and exploit the fact that C5 ∈ F345 is 2-connected and every plane drawing contains a
face of size 5): Let Θ(x, y) be the graph depicted in Figure 4. This graph has the following
important property: In any weakly F345-free 2-coloring of Θ(x, y), the vertices x and y have
different colors (we leave the simple proof of this fact to the reader). The (a, b)-equalizer is
constructed from a graph Θ(a, x) and a graph Θ(b, y) by identifying the two vertices x and
y. A good 2-coloring of the (a, b)-equalizer is induced by the 2-coloring indicated in Figure 4.

The following statement is now a direct corollary of Theorem 4.4 and Theorem 4.3.

Corollary 4.5. For any finite set F≥345 ⊇ {C3, C4, C5} of cycles, both weakly and strongly
F≥345-free 2-coloring are NP-hard for planar input graphs.

5 3-colorings of planar graphs

A linear forest is a disjoint union of paths (some of which may be trivial). The following
result was proved independently in [23] and [28].
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x y

Figure 4: A gadget for the forbidden set F345 in Theorem 4.3.

Proposition 5.1. [Goddard [23] and Poh [28]]
Every planar graph has a partition of its vertex set into three subsets such that every subset
induces a linear forest.

This result immediately implies that if a connected graph F is not a path, then χW (F,G) ≤
3 and χS(F,G) ≤ 3 hold for all planar graphs G. Hence, these coloring problems are trivially
solvable in polynomial time.

Figure 5: Example for the graph Y3.

We now turn to the remaining cases of F -free 3-coloring for planar graphs where the
forbidden graph F is a path. We start with a technical lemma that will yield a gadget for
the NP-hardness argument.

Lemma 5.2. For every k ≥ 2, there exists an outerplanar graph Yk that satisfies the following
properties.

(i) Yk is not weakly Pk-free 2-colorable.

(ii) There exists a strongly Pk-free 3-coloring of Yk, in which at least one color class being
is independent set.
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Proof. The skeleton of the graph Yk is formed by a regular tree, in which every inner vertex has
exactly k children, and all paths from the root to a leaf have exactly k vertices. Additionally
to the edges in this regular tree, the children of every inner vertex are connected by a path.
See Figure 5 for an illustration.

Suppose there was a Pk-free 2-coloring of Yk. Since the children of any vertex induce a
path Pk, both colors must show up at the children. Consequently, for every inner vertex v at
least one of its children must get the same color as v. But this yields a monochromatic induced
Pk running from the root to some leaf. This contradiction proves property (i). Property (ii)
is straightforward to prove: The graph Yk is outerplanar, and hence properly 3-colorable.

Theorem 5.3. For any path Pk with k ≥ 2, it is NP-hard to decide whether a planar input
graph has a weakly (strongly) Pk-free 3-coloring.

Proof. We will use induction on k. The basic cases are k = 2 and k = 3. For k = 2,
both weakly and strongly P2-free 3-colorings are equivalent to proper 3-coloring which is
well-known to be NP-hard for planar graphs.

Next, consider the case k = 3. Proposition 1.2.(ii) yields NP-hardness of strongly P3-
free 3-coloring for planar graphs. For weakly P3-free 3-coloring, we sketch a reduction from
proper 3-coloring of planar graphs. As a gadget, we use the outerplanar graph Z depicted
in Figure 6. The crucial property of Z is that it does not allow a weakly P3-free 2-coloring,
as is easily checked. Now consider an arbitrary planar graph G. From G we construct the
planar graph G′: For every vertex v in G, create a copy Z(v) of Z, and add all possible edges
between v and Z(v). Since Z(v) is outerplanar, the new graph G′ is planar. It is easy to
verify that χ(G) ≤ 3 if and only if χW (P3, G

′) ≤ 3.

Figure 6: The graph Z in the proof of Theorem 5.3.

For k ≥ 4, we will give a reduction from weakly (strongly) Pk−2-free 3-coloring to weakly
(strongly) Pk-free 3-coloring. Consider an arbitrary planar graph G, and construct the fol-
lowing planar graph G′: For every vertex v in G, create a copy Yk(v) of the graph Yk from
Lemma 5.2, and add all possible edges between v and Yk(v). Since Yk is outerplanar, the
new graph G′ is planar. If G has a weakly (strongly) Pk−2-free 3-coloring, then this can
be extended to a weakly (strongly) Pk-free 3-coloring of G′ by coloring the subgraphs Yk(v)
according to Lemma 5.2.(ii). And if G′ has a weakly (strongly) Pk-free 3-coloring, then by
Lemma 5.2.(i) this induces a weakly (strongly) Pk−2-free 3-coloring for G.
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6 Concluding remarks and open problems

6.1 Triangle-free graphs. By modifying the gadgets for the equalizers in such a way that
the planar graph GΦ constructed in the proof of Theorem 2.3 becomes triangle-free, one
might be able to prove complexity results for weakly (strongly) F -free 2-coloring restricted to
triangle-free planar graphs. In fact, it is not difficult to apply this method to prove that for
F = K1,k with k ≥ 2, weakly (strongly) F -free 2-coloring remains NP-hard for triangle-free
planar graphs.

Problem. Is it true that every triangle-free planar graph G is P4-free 2-colorable? This
would imply that for every connected graph F of diameter at least 3 there is a weakly F -free
2-coloring of G.

6.2 Monotonicity. All our NP-hardness techniques are such that hardness proofs for F-free
2-colorability extend naturally to NP-hardness of F ′-free 2-colorability for any finite F ′ ⊇ F .
This raises the following question.

Problem. For finite sets of graphs F ′ ⊇ F , is it true that F ′−F − 2−CPG ∝ F −F − 2−
CPG? (F − F − 2− CPG standing for F-Free-2-Coloring-Planar-Graphs.)

Note that this is not necessarily true for infinite sets of forbidden graphs. The infinite
set Fcycle of all cycles has uncountably many subsets, and if each of these defines a different
problem, infinitely many of them will have to be undecidable, whereas deciding the existence
of an Fcycle-free 2-coloring is surely in NP.

6.3 Forbidden sets of cycles. It would be interesting to characterize for which particular
(finite) sets of forbidden cycles the F-free 2-coloring problem on planar graphs is feasible and
for which it is hard. In particular, for two cycles this question remains open if one of them
is the triangle and the other one is an even cycle of length greater than 4.

Problem. For which k > 2 does there exist a planar graph which is not {C3, C2k}-free
2-colorable?

6.4 Equalizers. Despite our inductive proof of NP-hardness for forbidden trees, it would be
interesting to know whether one can use the equalizer gadget machinery directly.

Problem. Does there exist an equalizer for any tree T?
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