
0018-9162/03/$17.00 © 2003 IEEE38 Computer

Turning Software
into a Service

I n 1999, the Pennine Group—a consortium of
software engineering researchers from the Uni-
versity of Durham, Keele University, and the
University of Manchester Institute of Science
and Technology—asserted that continued

development of new architectural styles based on
constructional forms such as objects or compo-
nents would not advance the software field. Rather,
they foresaw a future in which developers take a
radically different view of how software delivers
its functionality to users.1

We have explored the software as a service (SaaS)
concept through several small-scale experiments.2

This concept envisages a demand-led software mar-
ket in which businesses assemble and provide
services when needed to address a particular
requirement. The SaaS vision is a vital contribution
to current thinking about software development
and delivery that has arisen in part from initiatives
in the Web services and electronic-business-com-
munication communities.

SaaS focuses on separating the possession and
ownership of software from its use. Delivering soft-
ware’s functionality as a set of distributed services
that can be configured and bound at delivery time
can overcome many current limitations constrain-
ing software use, deployment, and evolution. Such
a model would open up new markets, both for rel-
atively small-scale specialist-services providers and
for larger organizations that provide more general
services. In addition, service provision could include
the dynamic creation and development of entirely

new services that use existing ones. The “Sample
SaaS Scenario” sidebar shows inherent SaaS ideas
in the context of a company helping with an over-
seas property purchase.

This approach lets the set of services a business
uses evolve without any user intervention as that
business and its context change. Also, the key know-
how involved is not who provides services, neces-
sary though that knowledge is, but what service a
transaction requires at any particular point, along
with negotiating suitable terms for its use. Selecting
and binding the means of providing an appropriate
service can therefore be performed dynamically, on
demand, through ultra-late binding.

SAAS AND OTHER SERVICE FORMS
Despite advances in programming language and

development environment technologies, the basic
paradigm for constructing and maintaining soft-
ware has altered little since the 1960s. Developers
still construct software largely by employing some
variant of the edit-compile-link cycle to generate an
executable binary image from a source described
using a procedural programming language.
Although the Web may have widened our interpre-
tation of what software is, the practices used to
develop and implement a Web site differ little from
those traditionally employed for constructing soft-
ware and are just as error prone.

To achieve our vision, we have focused on devel-
oping a radically different paradigm. We believe
that software should deliver a service. Further,

The software as a service model composes services dynamically, as
needed, by binding several lower-level services—thus overcoming many
limitations that constrain traditional software use, deployment, and
evolution.

Mark Turner
David
Budgen
Pearl
Brereton
Keele University,
Staffordshire

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

shifting the focus from providing software to
describing and delivering a service moves the focus
away from the constraints that traditional soft-
ware construction, use, and ownership models
impose. Hence, our service-based model config-
ures, executes, and disengages one or more services
to meet a specific set of requirements3—a vision of
instant service consistent with the widely accepted
definition: “an act or performance offered by one
party to another. Although the process may be tied
to a physical product, the performance is essen-
tially intangible and does not normally result in
ownership of any of the factors of production.”4

Figure 1a shows an abstract interpretation of
what the current literature widely refers to as a ser-
vice model: A fixed set of applications sit on top of
a service transport layer that uses technologies such
as Microsoft’s .NET or Sun’s J2EE platform, along
with XML-based enveloping and message formats
such as the simple object access protocol (SOAP).
Figure 1b shows our vision of what a service model

could be if developers insert a further service inte-
gration layer above the transport layer.

The model in Figure 1a is supply-led because it
supports applications that can provide only a pre-
determined range of services from a remote server.
The model in Figure 1b is demand-led because
applications can be constructed from smaller com-
ponent services and bound dynamically as needed.
Providing this capability will require support from
high-bandwidth information networking, which

October 2003 39

The following scenario, set within the context of a much
larger example, demonstrates the ideas inherent in the software-
as-a-service concept.

Alice has set up a company that offers services to people who
want to purchase property abroad. She currently offers two
services: One provides information about available properties,
while a second handles actual negotiation and purchase.

Alice’s purchasing service uses other services to handle tasks
such as translation, legal and financial negotiations, financing,
and currency transfer. Offering these services involves specify-
ing the terms, conditions, and form of service provision,
together with the rules describing how other services will be
employed. This is the know-how element of her service.

Drawn from the complete scenario, one small task concern-
ing a legal document might play out as follows. Alice’s pur-
chasing service urgently needs to have the document translated
from Spanish to English, which involves the following steps:

• The purchasing service seeks a translation service and,
after negotiating the terms and conditions, selects Scribe,
the cheapest from the four available.

• Scribe, a broker that evaluates services but doesn’t actually
provide them, seeks a Spanish translation service geared to
handling legal documents. From the three providers offer-
ing this service, based upon previous use history and sat-
isfactory delivery, Scribe selects ES-trans, which offers an
immediate service.

• ES-trans provides the translation that Alice’s purchasing
service requires.

Within SaaS, the services involved in a system can change
with the associated business, and SaaS can perform this change
dynamically. For example, in Alice’s scenario, such a change
might occur if Scribe becomes aware of new translation services.

A more complex example, involving composition, would be
for Alice to add a new service to help negotiate mortgages.
Relating this example to the key service-oriented functions of
our service integration layer can be instructive.

First, in terms of service description, Alice must be able to
describe her general requirement to have a document trans-
lated, its more specific details—including that it is a legal doc-
ument—and the languages involved. Service description also
encompasses the way a service provider such as Scribe or ES-
trans describes the services it can supply—either directly or
using other providers—and the parameters within which they
will negotiate a service contract.

This example contains two instances of service discovery.
The first occurs when Alice seeks the translation service, the
second when the Scribe broker seeks a service that can deliver
the translation in the required time.

Likewise, the example shows two stages of negotiation. First,
Alice’s service will negotiate with Scribe. Because she frequently
needs translation services in general, however, the service also
may conduct this negotiation periodically, resulting in a longer-
term contract between Alice’s service and Scribe, in which case
the immediate negotiation will be concerned purely with ser-
vice parameters. Second, Scribe can then negotiate a much
shorter-term, per-document agreement with ES-trans and other
possible providers.

Service delivery in this example occurs when ES-trans
receives the original document and returns the translation.
However, if ES-trans does not do this within the specified
time—determined by the form in which Alice’s service may
have defined “urgently” in this case—either Alice’s service or
Scribe can opt to invoke the suspension step and renegotiate
with another provider. Finally, a form of service composition
occurs when Scribe employs its know-how about translation
services to seek a suitable service and negotiate with it.

Sample SaaS Scenario

Service transport layer

Service integration layer

Service layer
(applications created

on demand from
smaller services)

Service transport layer
(using forms such as

.NET or J2EE)

Supplier’s software
application service

(a) (b)

Figure 1. Service
models. (a) The
current supply-led
service model
provides only a
predetermined range
of services from a
remote server. (b)
The proposed
demand-led service
model has a service
integration layer
inserted above the
transport layer.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

40 Computer

we expect emerging grid technologies to pro-
vide and enhance.

SERVICE INTEGRATION LAYER
The key to the quite radical difference

between the two models represented in
Figure 1 lies in the functionality that results
from combining the facilities that the service
integration layer provides with those from
the component services that make up an
application. This layer employs software
technology to support a set of concepts

closely related to business and supply models. The
service integration layer incorporates four key ser-
vice-oriented functions.

Service description
This function matches client needs to appropri-

ate and available services. Essentially, the service
description provides the means of mapping
between the provider’s description of its offerings
and the client’s description of its needs. The form
used should accommodate descriptions of func-
tionality, interfaces, and nonfunctional character-
istics and constraints such as quality of service and
cost. It should also describe the parameters within
which both the service provider and client will
negotiate.

Service discovery
Clients use service discovery to locate appropri-

ate services, according to their requirements and
selection criteria. Using this process, a client identi-
fies those potential service providers whose offerings
meet its functional needs and who are prepared to
negotiate within some acceptable bounds. Discovery
can involve the recursive use of other services, includ-
ing brokers, and will result in a list of candidate ser-
vices and providers. Service negotiation involves the
interaction between a client and one or more of the
service providers identified through the discovery
process or already known to the client. This negoti-
ation aims to achieve agreement on the terms and
conditions for supplying a service.

Service delivery
This function consists of three steps. Invocation

is the calling-for step, during which the client
requests the provider to supply the specified service
according to the agreed terms and conditions. Next,
to validate the invocation, in the provision step the
service provider must supply the agreed-upon ser-
vice within the period agreed to in the supply con-
tract. Finally, where the contract has unspecified

bounds of provision, or when the bounds are
reached, the suspension step establishes the point at
which the client no longer needs the provider to
supply the service.

Service composition
In its most direct form, know-how—expressed

in terms of rules—drives service composition
so that a service provider can compose its service
from lower-level services. However, such knowl-
edge is sufficient only for constructing those ser-
vices for which rules already exist. In the longer
term, we seek to devise a suitable mechanism for
creating new forms of service on demand. Nothing
in our model prevents this, but creating the means
of automatically providing entirely new services
will clearly only be practical once the other ele-
ments of the service integration layer have been
fully developed.

CURRENT SERVICE-RELATED PROTOCOLS
The current research literature frequently uses the

service-model concept to describe Web service tech-
nologies such as Microsoft’s .NET platform. Al-
though the Web services paradigm is fairly consistent
with our vision of SaaS, creating a true service-
oriented marketplace requires further developments.

Since the introduction of Web services, three
XML-based protocols have become de facto stan-
dards. These three protocols have become so wide-
spread that the term Web services has become
synonymous with them:

• SOAP provides a message format for commu-
nicating with and invoking Web services;

• the Web Services Description Language (WSDL)
describes how to access Web services; and

• universal description, discovery and integra-
tion (UDDI) provides a registry that clients can
use to discover available services.

These three protocols are adequate for simple Web
services requiring a remote-procedure-call style of
communication. For more complex Web services
that consist of several services, other XML-based
specifications provide functions at higher or inter-
mediate layers in a stack of protocols.

When developing complex Web services, the lack
of a universally accepted protocol that provides all
the functionality required at each layer can cause
problems. Adding to this confusion is the lack of
an overall definition for the actual layers such a
stack requires. The many standards organizations
and companies involved all have different visions of

In its most
direct form,
know-how—
expressed in

terms of rules—
drives service
composition.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

the layers and protocols that make up the Web ser-
vices architecture.

IBM produced one of the stack’s original defini-
tions in its Web Services Conceptual Architecture
document.5 It included the three de facto standards
at the XML-based messaging, service implementa-
tion, and description and discovery layers, along
with a service flow layer that incorporated IBM’s
Web Services Flow Language.6 However, the latter
has now been combined with Microsoft’s XLANG
protocol (www.gotdotnet.com/team/xml_wsspecs/
xlang-c/default.htm) to produce a new set of pro-
tocols: the Business Process Execution Language
for Web Services (BPEL4WS; www-106.ibm.com/
developerworks/webservices/library/ws-bpel/). The
W3C Web Services Architecture group also is
working on its own stack version to standardize
the required layers,7 again emphasizing the three
basic protocols.

Few of the available stacks include any detail
on the semantic Web protocols or the more busi-
ness-oriented Electronic Business using Extensible
Markup Language (ebXML). As a result, which
technologies to use at each level—and even which
of the available technologies are compatible—
remains unclear. To this end, we propose an
updated Web services stack framework that
places the currently available initiatives in con-
text.

The stack framework shown in Figure 2 consists
of several open-systems-interconnection-type lay-
ers, with each level using the services of the levels
below it.

• Network. This is the underlying transport
protocol layer.

• XML-based messaging. XML is the message
format for communicating documents and
procedure calls. This layer can, for example,
use SOAP with any underlying transport pro-
tocols in the network layer. This layer decou-
ples messaging from the physical transport
protocol so that messages can concentrate
on describing the service semantics. The
Electronic Business XML solution, ebXML
Messaging Specification (ebMS), builds on
SOAP by using its header specification exten-
sibility to include authentication and contex-
tual information.

• Service description. This layer provides the
functional description of a Web service in
terms of its interface and implementation. The
majority of description languages at this layer
utilize the XML Schema language for express-
ing data-type information.

• Nonfunctional description. Protocols at this
layer describe a service in terms of its less tech-
nical features, such as quality of service, cost,
geographic location, number of retries, and
legal factors.

• Conversations. In this context, a conversation
refers to the external view of the messages a
Web service is receiving and sending. This layer
therefore describes the correct data types and
sequence of messages or documents a Web ser-
vice is exchanging.

• Choreography. Whereas all the previous lay-

October 2003 41

WSDL

WSEL

RDF

DAML-S service grounding

SOAP

HTTP, FTP, SMTP, and others

DAML-S service profile

DAML-S service model

DAML-S service model

WSCI

BTP

BPML

CS-WS WSCL

WS-Coordination

WS-Transaction

BPEL4WS

UDDI

ebXML
CPA

ebXML
registries

ebXML
messaging

ebXML
CPP

ebXML
BPSS

BTP

BPML

WSDL-based Semantic-based ebXML-based

Discovery

Contracts

Business process/
workflow

Transactions

Choreography

Conversations

Nonfunctional
description

Service description

XML-based messaging

Network

Figure 2. Proposed
Web services stack
framework.
Separated into three
vertical sections,
the protocols use
or extend WSDL,
have roots in the
semantic Web’s
resource description
framework, and
the DARPA Agent
Markup Language
for Services
(DAML-S), and
include ebXML
specifications.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

42 Computer

ers are largely concerned with describing a sin-
gle Web service, the choreography layer coor-
dinates several Web services into a pattern to
provide an overall outcome. For example, pro-
tocols in this layer would specify the order in
which the methods—or operations in WSDL
terminology—of each Web service must be
invoked.

• Transactions. The protocols in this layer facil-
itate monitoring transactions between Web
services. When services themselves consist of
other services, numerous points of failure
become possible. The transactions layer
describes how to achieve this composition in
an atomic way, so that, for example, the entire
process either completes successfully or rolls
back.

• Business process and workflow. The protocols
in this layer describe how to actually compose
a higher-level service from several other Web
services, through descriptions of the control
and data flows involved in the process. It dif-
fers from the choreography layer by providing
internal details of the composition to supply
an executable business process.

• Contracts. This layer outlines the format of the
machine-readable contracts necessary to auto-
mate service-based electronic business. The
contract outlines the transaction’s terms and
conditions and finalizes any negotiable para-
meters, such as cost and acceptable time to
delivery.

• Discovery. Providers use this layer to publish
details of their Web services so that clients can
then search and discover any that meet their
needs.

We also separate our stack into three vertical sec-
tions. The first section includes protocols that use
or extend WSDL. The second includes protocols
that have roots in the semantic Web: the resource
description framework (RDF) and the DARPA
Agent Markup Language for Services (DAML-S).8

As Figure 2 shows, WSDL crosses the boundary
into the semantic-based section in our stack. This
is not because WSDL is semantic-based, but
because DAML-S builds upon WSDL for its Service
Grounding specification. The ebXML specifications
comprise the third vertical layer in our stack.
Although it is independent of Web services, ebXML
offers much the same functionality as the other
sections.

Also, several protocols relate to security within
the Web services paradigm, including enhance-

ments added to SOAP to provide secure messaging
capabilities such as those that WS-Security defines.
However, because it concentrates instead on other
areas, our current model does not include security.

REALIZING THE SERVICE INTEGRATION LAYER
Figure 2 reveals several significant gaps in the

current Web services stack.

Service description
Current description methods suffer from a severe

limitation: Although they provide the technical
information a client requires to invoke a service,
they cannot describe the function the service pro-
vides semantically. They also lack descriptions of
service delivery’s negotiable aspects. For example,
although it is the de facto standard Web services
language, WSDL describes a service in terms only
of its acceptable data types, methods, message for-
mat, transport protocol, and end-point uniform
resource identifier (URI).

In the ebXML section of our stack framework,
the Collaboration Protocol Profile specification
deals with service description. Although it includes
more details about the service provider and error-
handling scenarios than WSDL, the CPP focuses
largely on the transaction’s technical aspects. In the
WSDL-based section of our framework, IBM’s Web
Services Endpoint Language6 is the only protocol
explicitly designed to describe the nonfunctional,
negotiable elements of Web services. WSEL, how-
ever, remains a work in progress.

DAML-S is the only available description
method designed specifically for describing the
functional and nonfunctional aspects of services,
including details of what they actually do. A client
can use the specification’s service profile to describe
its requirements, and the service provider can use
the service profile to describe its capabilities, includ-
ing nonfunctional parameters, in a semantically
rich, ontology-based format. However, while clos-
est to our requirements, DAML-S has not yet
reached a final release. Thus, the exact details of
what the service profile will include have yet to be
finalized, and it also currently lacks an extensive
selection of usable, standardized ontologies.
Support for the language within current tools is also
fairly limited.

Service discovery
UDDI is the de facto standard for discovery in the

Web services environment. For our purposes,
UDDI’s key limitation lies in its inability to allow
semantic descriptions. This limits searching to key-

Current
methods lack

descriptions of
service delivery’s

negotiable
aspects.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

words, such as the name of the service provider or
the service itself, the service’s location, or the business
classification. Although the ebXML registry specifi-
cation offers richer searching capabilities in the form
of SQL and XML filter queries, it does not allow
semantic searching. Therefore, a client cannot use
either of the available registry specifications to search
for a service based on its functionality, which limits
the current model’s dynamic discovery capabilities.

Clients can use the DAML-S service profile to
make requests for services, and providers can use it
to describe their services semantically by the func-
tionality they provide. Because the language is
ontology-based, its inferential capabilities should
allow matching requests to service descriptions.
However, this requires a registry capable of per-
forming true semantic matching, which UDDI cur-
rently does not do. To this end, researchers have
been using an algorithm from previous research
that matches requests to advertisements according
to their semantics9 to determine how to extend
UDDI with DAML-S.

Service negotiation
The SaaS model requires that, upon discovering

a suitable service, the client and provider must
negotiate the service’s delivery terms and conditions
automatically. Although several protocols through-
out the stack framework include descriptions of
negotiable parameters—including ebXML’s CPP,
DAML-S, and WSEL—none allow for fully auto-
mated negotiation. The model also needs electronic
contracts to seal any negotiations that take place.
Figure 2 shows that, among the current ap-
proaches, only ebXML includes such contracts.

The Collaboration Protocol Agreement primar-
ily defines the common protocols and capabilities
of only two parties. Formed from the intersection
of the two parties’ CPP documents, the CPA uses
XML to define properties such as the contract’s
duration and the transactions’ agreed security fea-
tures. Formulating a CPA is intended to be a man-
ual process.10

Service delivery
Our model identifies three steps of primary

importance to service delivery. Current technolo-
gies cover a Web service’s basic invocation and pro-
vision, but they do not support either monitoring
whether the service is supplied within the agreed
terms and conditions or suspending the provision,
if necessary. Doing so would require an electronic
contract, which only ebXML includes. Services can
use ebXML’s CPA document to monitor the trans-

actions and terminate the process if this con-
tract is broken. However, in relation to our
model, this document does not detail any legal
or nonfunctional parameters such as cost or
quality of service.

Several other protocols in the stack, particu-
larly the Web Services Choreography Interface
and WSEL, also include elements that touch
upon service monitoring and suspension. WSCI
lets the developer specify how a service will
react in exceptional circumstances, while both
WSCI and WSEL can detail time-out periods.
Thus, developers could use these elements to
monitor the transaction at a basic level.

Also, true dynamic binding and invocation relies
heavily on the richness of the service description.
This description must be machine readable and
semantically rich to enable the requesting service
to automatically decipher all the requirements of
use. This capability is not yet fully in place.

Service composition
The automatic composition of Web services

requires suitable protocols at the conversations,
choreography, workflow, and transactions layers.
As Figure 2 shows, several protocol combinations
are available at each of these layers within the
WSDL-based section:

• HP’s Web Services Conversation Language
(WSCL) and IBM’s recent Conversation-
Support for Web Services specification (CS-
WS) both cover the conversation layer,11

• the WS-Coordination protocol and WSCI
both cover the choreography that links each
of the collaborating Web services together, and

• the Business Transaction Protocol (BTP) and
WS-Transaction both cover monitoring and
handling long-running business transactions.

Developers can use either the Business Process
Modeling Language or the Business Process Exe-
cution Language for Web Services to model the
actual control and data flows within the composi-
tion. BPEL4WS, which is likely to become more
widely adopted, can be distinguished from other
protocols in the layer because it includes both an
abstract XML description and an executable lan-
guage. The actual BPEL4WS specification also
encompasses the WS-Coordination and WS-
Transaction protocols, thus ensuring compatibil-
ity among the three layers.

The Business Process Specification Schema (BPSS)
provides an ebXML alternative. When combined

October 2003 43

The SaaS model
requires that
the client and

provider negotiate
the service’s

delivery terms and
conditions

automatically.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

44 Computer

with the compatible BPML and BTP specifications,
it can also describe the internal details of workflows
and long-running transactions. However, the BPSS
is designed to model only a transaction between two
parties, not a complex Web services composition.

DAML-S covers many of the compositional layers
with the service profile and service model specifica-
tions. However, the current release lacks support for
long-running transactions. We expect that a future
specification will include such support, along with
a control model that describes a process in terms of
its state, allowing automated monitoring.

A lthough many available technologies support
service composition, they require that the
developer knows, at design time, the details

of the services to be used. In the SaaS model, ser-
vices will be dynamically composable when needed,
through binding of several other, lower-level ser-
vices. Indeed, a true service-oriented model will
automatically compose a new higher-level service
from a client’s description of the sequence of tasks
to be performed. The service could achieve this by
searching for and dynamically binding to lower-
level services that perform each task.

Although many of the protocols necessary to
achieve true service provision are either available
or under development, significant gaps remain.
Perhaps not surprisingly, these protocols address
the less technical aspects of service delivery and thus
represent research challenges that have strong inter-
disciplinary elements. �

Acknowledgments
We thank the members of the Pennine Group

(www.service-oriented.com) for their continuing
research into software as a service and for con-
tributing to the ideas in this article. We also thank
the members of the Integration Broker for
Heterogeneous Information Sources project
(www.co.umist.ac.uk/ibhis) for their useful discus-
sions concerning Web services and for the ongoing
development of a service-oriented prototype.

References
1. O.P. Brereton and D. Budgen, “Component-Based

Systems: A Classification of Issues,” Computer, Nov.
2000, pp. 54-62.

2. K.H. Bennett et al., “An Architectural Model for Ser-
vice-Based Software with Ultra-Rapid Evolution,”
Proc. Int’l Conf. Software Maintenance (ICSM

2001), IEEE CS Press, 2001, pp. 292-300.
3. O.P. Brereton et al., “The Future of Software,”

Comm. ACM, Dec. 1999, pp. 78-84.
4. C. Lovelock, S. Vandermerwe, and B. Lewis, Services

Marketing, Prentice-Hall, 1996.
5. H. Kreger, “Web Services Conceptual Architecture

(WSCA 1.0),” 2001; www-3.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf.

6. F. Leymann, “Web Services Flow Language (WSFL)
1.0,” 2001; www-3.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

7. D. Booth et al., “Web Services Architecture: W3C
Working Draft,” 14 May 2003; www.w3.org/TR/
ws-arch/.

8. A. Ankolekar et al., “DAML-S: Web Services
Description for the Semantic Web,” Proc. 1st Int’l
Semantic Web Conf. (ISWC 2002), Springer-Verlag,
2002, pp. 348-363.

9. M. Paolucci et al., “Importing the Semantic Web in
UDDI,” Proc. Web Services, E-Business, and Seman-
tic Web Workshop (CAiSE 2002), Springer-Verlag,
2002, pp. 225-236.

10. ebXML Trading-Partners Team, “Collaboration-Pro-
tocol Profile and Agreement Specification,” v. 1.0,
2001; www.ebxml.org/specs/ebCCP.pdf.

11. J.E. Hanson, P. Nandi, and S. Kumaran, “Conversa-
tion Support for Business Process Integration,” Proc.
6th IEEE Int’l Enterprise Distributed Object Com-
puting Conf. (EDOC 2002), IEEE CS Press, 2002,
pp. 65-75.

Mark Turner is a research assistant and PhD stu-
dent in the Department of Computer Science at
Keele University, UK. His research interests focus
on service-based software engineering, in particu-
lar access control, description languages, and Web
services substitution. Turner received an MSc in
information technology from Keele University.
Contact him at m.turner@cs.keele.ac.uk.

David Budgen is a professor of software engineer-
ing at Keele University. His research interests
include design, measurement, and empirical eval-
uation practices for software-based systems. Bud-
gen received a PhD in theoretical physics from the
University of Durham. Contact him at d.budgen@
cs.keele.ac.uk.

Pearl Brereton is a professor in the Department of
Computer Science at Keele University. Her research
focuses on component-based and service-based
software engineering. Brereton received a PhD in
numerical analysis from Keele University. Contact
her at o.p.brereton@cs.keele.ac.uk.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:08 from IEEE Xplore. Restrictions apply.

