(© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh XXX

Dynamic Neighbourhood Cellular
Automata*

STEFAN DANTCHEV

Department of Computer Science, Durham University

Email: s.s.dantchev@durham.ac.uk

We propose a definition of Cellular Automaton in which each cell can change

its neighbourhood during a computation.

This is done locally by looking

not farther than neighbours of neighbours and the number of links remains

bounded by a constant throughout. We suggest that Dynamic Neighbourhood

Cellular Automata can serve as theoretical model in studying Algorithmic and

Computational Complexity issues of Ubiquitous Computations. We illustrate our

approach by giving an optimal, logarithmic time solution of the Firing Squad
Synchronisation problem in this setting.

Received XX Xzzzr 200X; revised XX Xxxxx 200X

1. INTRODUCTION

General background The concept of Cellular Auto-
mata (CA) goes back to works by Von Neumman and
Ulam in the early 1950’s [1]. A CA is a discrete struc-
ture consisting of identical cells arranged in a regular
way (such as a line, a two dimensional square grid,
etc.), and which compute synchronously. Each cell is
a deterministic finite-state automaton whose transition
function depends on its own state as well as on the
states of the neighbours. Thus one can think of a
CA as a massively parallel system, which consists of
very simple building blocks than can interact only loc-
ally. Von Neumman himself was motivated by his own
question of existence of self-reproducing machines and
proved that there is a CA which can perform a univer-
sal computation. Since then CA have received much
attention from theoretical point of view as well as have
been used for modelling and simulations [2]. It is now
known that even very simple one-dimensional CA can
exhibit a very complex global behaviour [3], and there-
fore issues such as reversibility, conservation laws, limit
sets, decidability questions, universality and topological
dynamics of CA have been extensively studied [4].

Motivation In our paper, we focus on Algorithmic
and Computational Complexity aspect of a certain
less-studied kind of CA, namely one in which a cell
can dynamically change its neighbourhood by linking
to neighbours of neighbours. One can argue that
such a model, which we call Dynamic Neighbourhood

*A preliminary version of this paper was presented at
the bCS08 Visions of Computer Science Conference, held on
September 22-24, 2008.

Cellular Automaton (DNCA), can serve as a basis
for studying computational resources in Ubiquitous
Computation - a new, quickly developing area which
is one of the UKCRC grand challenges [5]. To illustrate
the advantages of DNCA over the classical CA, we
show an exponential speed-up of the former over latter
in solving a classical synchronisation task, the Firing
Squad problem. More precisely, we give an algorithm
that solves it in optimal time O (logn) on a DNCA
consisting of n soldiers.

Previous work It seems that Rosenfeld and Wu were
the first to consider a CA that can dynamically
change links between cells. While earlier work [6]
was on recognition of certain regular structures of the
underlying graph, the subsequent paper [7] contained
several algorithms for transforming a regular link
structure to another. The presentation of [7] is however
rather informal. A more serious drawback of it is, in
our opinion, that the authors did not recognise the
importance of the potential speed-up of a CA with
dynamic links over a traditional one. For instance, they
presented a linear (in the number of cells) algorithm for
converting a line into a balanced binary tree. We show
in the present paper that this can be done in logarithmic
time, which is optimal (up to a constant factor). As a
matter of fact, Rosenfeld and Wu used the firing squad
problem as a subroutine in their construction. We
have had different motivation and quite the opposite
approach - we suggest the use of creating a balanced
binary tree as a building block for faster computations,
in particular for solving the firing squad in optimal,
logarithmic time.

THE COMPUTER JOURNAL VOL. XX No. X, 200X

2 STEFAN DANTCHEV

More recently, Dubacq [8] reconsidered the dynamic
neighbourhood in the context of CA and compared
several different models. He also proved a quite general
“synchronisation” theorem, which included solving the
firing squad problem in logarithmic time. While
Dubacq’s dynamically reconfigurable CA have been
rigorously defined and the importance of the the speed-
up (logarithmic versus linear) have been acknowledged,
his model has a serious drawback in that it allows for
a cell to be seen by an unbounded number of other
cells. Firstly, this does not look reasonable from a
practical point of view - a processor sending information
to everyone else in a single unit of time. Secondly, it
allows for a trivial solution of the firing squad problem
by simply pointing everyone to the general - this can
trivially be done in logarithmic time. In contrast to
this, our definition bounds the number of connections,
which a cell can have at any time, by a constant (the
same holds in the model of Rosenfeld and Wu).

Rest of the paper is organised as follows. In section 2,
we give the formal definition of what we call Dynamic-
Neighbourhood Cellular Automata (DNCA). We have
tried to keep it as simple as possible yet general enough.
There are different ways in to extend the definition,
which we discuss in section 4. The proof of the
main result, a solution of the Firing Squad problem in
O (logn) time, is given in section 3. Finally, we discuss
possible directions for further research in section 4.

2. DEFINITIONS

The formal definition of DNCA and some related
concepts is as follows.

DEFINITION 2.1. DNCA is a quadruple (Q,P,6,C)
where

(i) Q is a finite set of states;
(ii) P is a finite sets of ports;
Qi) 6 : QP — Q@ x ({efuPuP)! s the
transition function and
(iv) C is a (potentially infinite) set of cells.

Interconnection function is a functionn : C x P —
C x PU{L} such that n(n(C,p)) = (C,p) for every
C €C and p € P such that n(C,p) # L.

A (global) state of the DNCA then is a pair (Q|C|,n).

The intuitive meaning of the definition is as follows.
We have a set of identical Deterministic Finite-state
Automata (DFAs) that we call cells. The cells are
“named” by the elements of some set C. Usually, we
take C to be some countable set, e.g. the natural
numbers N. In the rest of the paper, however, we shall
be mainly concerned with time complexity and, thus,
we shall assume than only finitely many cells numbered
from 1 to n are active - here n plays the role of “input
size”. We note that the cell names have no relevance to
the actual computation of a DNCA as a cell is a DFA,

which cannot hold logn bits required to memorise a
name. All the cells have a common state set Q and
the same transition function & which depends on the
cell’s own state as well as on the states of up to |P]
neighbouring cells which are available through the cell’s
ports named by elements of some finite set P.

The links are formally defined with the help of the
interconnection function: if two cells C; and Cy are
connected through ports p; of C7 and ps of Cs the
interconnection function should consistently say so, i.e.
n(C1,p1) = (C2,p2) and n(Ca,p2) = (Ci,p1). A
port p of a cell C' may be left loose - this is reflected
by n(C,p) = L and may be used to define external
input/output to the DNCA even though we ignore this
issue throughout the paper. Note that this definition
allows for loops, i.e. n(C,p) = (C,p).

The transition function § takes the current state
of a cell C' together with the current states of its
(at most)|P| neighbours and then returns a new state
plus |P| port changes, each of them being of the
following three kinds: & (meaning the port is left
loose), p (meaning connect to the cell which is currently
connected to the port p of C) or (pj,ps) (meaning
connect to the cell which is currently connected to
port po of the cell which is connected to port p; of
C - ie. switch a connection from a neighbour to a
neighbour of a neighbour). All these changes that
produce a new global state from the current one happen
synchronously in parallel. It could happen that the
new interconnection function is inconsistent, i.e. the
condition 7 (C,p) # L and 5 (n (C,p)) # (C, p) for some
C € Cand p € P - we shall treat such a situation as run-
time error in which case the computation of the DNCA
fails.

3. FIRING SQUAD IN OPTIMAL,
LOGARITHMIC TIME

Firing Squad problem is a synchronisation problem for
a line of finite automata (i.e. one-dimensional CA)
proposed by Myhill in 1957, first solved by McCarthy
and Minsky, and appeared in print in [9]. The problem
itself is as follows. The first (leftmost) cell is a general
and all the others are soldiers. At some point in time,
the general is placed in a special state ”fire when ready”.
The computational task is to all soldiers into a "fire”
state simultaneously at some later time, and it must be
the first time that any of them has fired.

The simple divide-and-conquer solution of Moore
starts by propagating two signals along the line: a
fast signal and a slow one, which moves three times
as slow. The fast signal bounces off the end of the
line and meets the slow signal in the centre. The
middle soldier declares himself a general and with
the help of additional two signals, he agrees with the
original general that they both give order to fire at
the same time, each for his half of the line . Thus,
the process recursively continues, halving each sub-line

THE COMPUTER JOURNAL VOL. XX No. X, 200X

DyNAMIC NEIGHBOURHOOD CELLULAR AUTOMATA 3

until each division consists of a single soldier (who
becomes general at that moment). Then every soldier
fires. It is easy to see that the time required is O (n).
Since then, a number of solutions have been found
including an absolute optimal ones in terms of time,
number of states, communication bits etc. The problem
has been generalised to many different topologies (see
the survey [10]).

We shall assume throughout the section that we are
given a DNCA with n linearly ordered cells. That
is, the cell names are the numbers from 1 to n, and
there are we successor and predecessor ports defined by
succ (z) =x+ 1forevery z € [1...n—1],succ(n) =¢
and pred (z) = x—1for every x € [2...n], pred (1) = ¢.
We also assume that, in the beginning, all the cells are
in some idle state except for cell 1, which initiates the
computation, and cell n, which knows that it is the last
in the line.

We start by converting the line into a balanced binary
tree (BBT)

Creating the BBT is done at two stages. At the first
one, an almost balanced tree is constructed by setting
the root to be cell 1 and then recursively constructing
two disjoint almost balanced sub-trees - one with a
root 2 and containing all even-numbered cells, and the
other with root 3 and containing all odd-numbered cell
(except 1, of course). The recursive split is made in
constant time, by simply linking any cell whose name
is > 4 to the neighbour of the neighbour in both
directions. Special care is needed in the boundary cases,
i.e. the cells that are neighbours of the end(s) or the
root(s).

More formally, the first stage is meant
to leave any «cell in a state of the form
(vertex — type, parent — type). Here vertex — type is
leaf (a leaf of the tree), lean (a vertex that has a single
left child which is a leaf) or node (any other internal
vertex, including the root). parent — type is left, right
(the node is a left, respectively right, child) or none
(for the only root of the tree). The process starts by
cell 1 going to a state (root,none) . A root node links
the next two nodes as the left and the right (only if it
exists) children:

Algorithm 1 Action performed by a (root,)

left (x) := succ (x)
if State (succ (z)) = end

(
then State (z) := (lean, %)
else State () := (node,),

right () := succ (succ (z))

An idle cell should become a left/right root only
if its predecessor/predecessor of predecessor has been
reached. Otherwise it should link to the neighbour
of the neighbour in both directions with special care
needed if it is next to an end cell:

Algorithm 2 Action performed by an idle cell
if State (pred (z)) = (node, *)

then State (z) := (root,left),
par (z) := pred ()
elseif State (pred (pred (x))) = (node, *)
then State (z) := (root, right) ,
par (z) := pred (pred (z))
else pred (z) := pred (pred (z))
if State (succ (z)) = end

then State (z) := end

else succ (x) := succ (succ (x))

An end cell should become a left/right leaf only
if its predecessor/predecessor of predecessor has been
reached:

Algorithm 3 Action performed by an “end” cell
if State (pred (z)) = (node, *)

or State (pred (z)) = (lean, *)
then State (z) := (leaf,left),
par (z) := pred ()
elseif State (pred (pred (x))) = (node, *)
then State (z) := (leaf, right),
par (z) = pred (pred (z))
else pred (z) := pred (pred (z))

The figure below is an example of how the first stage
works on a 8-element line. The double-circled vertices
show the recursive propagation of the root(s). In the
end, 1,2, 3 are nodes, 4 is a lean, and 5, 6, 7, 8 are leaves.

One can easily prove the following key properties of
the ABBT produced by the first stage.

LEMMA 1. The almost balanced binary tree obtained
from a line of n cells is

(i) of height h = |logyn| + 1.

THE COMPUTER JOURNAL VOL. XX No. X, 200X

W~

STEFAN DANTCHEV

ORORROLO0O2020

FIGURE 1. Creating an A(Imost)BBT.

(ii) For every internal node, the difference in the
number of vertices in the left sub-tree and the right
sub-tree rooted at that none is either zero or one.

(iii) Ewvery leaf of the tree is at depth either h or h — 1.

PROOF. Straightforward bounded induction (from
0 to h—1) on the number of rounds, each round being a
point in time at which a “root” message gets propagated
down. [J

The task of the second stage is to find all the leaves
at the higher depth h—1 and to advise them to pretend
that they have a child (at level k). This could easily be
done recursively. Given a node with left and right sub-
trees L and R, respectively, the height of L is greater
than the height of R only if |L| = |R| + 1 = 2! for some
t. In this case all leaves of R should be extended and
L should be recursively balanced. Otherwise, L and
R have the same height, so they should be recursively
balanced.

The implementation of this stage is better described
in terms of message passing. It is initiated by the unique
root of ABBT who sends a message balance to both
his children. This message is passed downwards by
ordinary nodes until it reaches a lean or a leaf. A lean
is a root of sub-tree of size two, so it replies back to
its parent by a message power whose informal meaning
is “my sub-tree is of size which is a perfect power of
two”. A leaf replies back to its parent by a message
balanced whose meaning is “my sub-tree is of perfectly
balanced”, i.e. of size which is a perfect power of two
minus one. Now every node awaits messages from both
children. Whenever a node receives two balanced, it
passes balanced to its parent. If a node gets power
from the left and balanced from the right, every leaf of
the right should be extended. This is done by sending
a message extend to the right child and, at the same
time, power to the parent. Any other combination of
two messages from the children can simply be ignored.
An extend message is passed downwards until it reaches
a leaf that then gets to know that it should pretend it
had a child.

/
58 °

FIGURE 2. Completing the tree

An example with 18 nodes is given below. The black
nodes are roots of balanced sub-trees, while the grey
ones are roots of sub-trees whose size is a perfect power
of two. The grey node vertices 3,4,5,6 sent extend
message to all leaves in their respective right sub-trees.

Finally, we point out that the two stages can work
in parallel (more precisely the second stage lags a step
behind the first one) - it is not hard to see that whenever
a node needs to send or receive a message, the relevant
links as well as the type of the node has already been
established by the first stage. In order to solve the firing
squad problem, we can run any known algorithm on
all branches in parallel with a speed three times slower
than normal - it is easy to see that every signal sent by
such an algorithm will reach a soldier who has already
established his position (i.e. knows he is the end of
the line, or knows he has to simulate an additional fake
soldier). The running time is clearly O (logn). The
optimality follows from the fact that, the reach of any
cell at time k is at most 2*, so that the last in the line
cannot even see the order to fire in fewer than [logn]—1
steps. Apart from the running time, there are other
resources that can be of interests, namely the number of
messages sent by a node as well as the number of times
a node needs to re-link. These can easily be counted,
and all upper and lower bounds on the resources are
summarised below.

THEOREM 3.1. There is a DNCA algorithm that
solves the FSSP on a line of n cells in optimal time
0 (logn) time with each cell having re-linked at most
O (logn) times. The number of messages sent,received
or generated by a cell is Q(1) plus the number of
messages needed to solve the sequential FSSP on a line
of length logn.

THE COMPUTER JOURNAL VOL. XX No. X, 200X

DyNAMIC NEIGHBOURHOOD CELLULAR AUTOMATA 5

4. CONCLUSION AND FUTURE WORK

We have given a basic definition of Dynamic
Neighbourhood Cellular Automata and have shown
that a DNCA can exhibit an exponential speed-up
over a (static neighbourhood) CA. There are a number
of ways to extend the model as well as many other
algorithmic and complexity issues to be considered.

(i) Consider cell that are more powerful than
deterministic finite-state automata. These could
be finite automata whose memory is O (logn), so
that a cell could know its own name or memorise
another cell’s name. In this case, one may need to
restrict in some way the transition function ¢, so
that a cell is not as powerful as a log-space Turing
machine.

(ii) Consider complexity measure other than running
time. An example of this, particularly relevant to
Ubiquitous Computations could be “energy”, i.e.
the number of times a cell receives/sends a message
or changes its neighbourhood.

(iii) Consider DNCA consisting of non-identical cells,
i.e. cells that have different computational power.
Make precise the notion of input to and output of
a DNCA.

(iv) Consider different algorithmic problems that have
been studied in the context of Distributed
Computation. These might include Leader
Election, Byzantine Agreement etc.

REFERENCES

1]

2]

8]

[4]

[5]

(6]

[7]

8]

[9]

Von Neumann, J. (edited and completed by A.
W. Burks) (1966) The Theory of Self-Reproducing
Automata. University of Illinois Press.

Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G.,
and Chaudhuri, P. P. (2003) A survey on cellular auto-
mata. Technical report. Centre for High Performance
Computing, Dresden University of Technology.
Wolfram, S. (2002) A new kind of Science. Wolfram
Media Inc., Champaign, Ilinois, US, United States.
Kari, J. (2005) Theory of cellular automata: A survey.
Theoretical Computer Science, 334, 3—-33.

Sloman, M., Chalmers, D., Crowcroft, J., Kwi-
atkowska, M., Milner, R., Rodden, T., —and

Sassone, V. Ukcrc grand challenges for com-
puting research, ubiquitous computing: Sci-
ence and design. Available at http://www-

dse.doc.ic.ac.uk/Projects/UbiNet/GC/index.html.
Rosenfeld, A. and Wu, A. Y. (1979) Cellular graph
automata i and ii. Information and Control, 42, 305—
353.

Rosenfeld, A. and Wu, A. Y. (1981) Reconfigurable
cellular computers. Information and Control, 50, 64—
84.

Dubacq, J.-C. (1994) Different kinds of neighborhood-
varying cellular automata. Maitrise / honour bachelor
degree Ecole normale supérieure de Lyon.

Mooore, E. F. (1964) The firing squad synchronization
problem. In Moore, E. F. (ed.), Sequential
Machines, Selected Papers, pp. 213-214. Addison-
Wesley, Reading, MA.

Mazoyer, J. (1986) An overview of the firing squad
synchronization problem. In Choffrut, C. (ed.),
Automata Networks, Lecture Notes in Computer
Science, 316, pp. 82-94. Springer.

THE COMPUTER JOURNAL VOL. XX No. X, 200X

