
 

1 

BLOCK COPOLYMERS BY THE CONVERSION OF 

LIVING LITHIUM INITIATED ANIONIC 

POLYMERIZATION INTO LIVING RUTHENIUM 

ROMP  

Thomas C. Castle, Ezat Khosravi* and Lian R. Hutchings* 

IRC in Polymer Science and Technology, Department of Chemistry, University of Durham, Durham 

DH1 3LE, United Kingdom 

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required 

according to the journal that you are submitting your paper to) 

TITLE RUNNING HEAD Block Copolymers from anionic polymerization and ROMP  

CORRESPONDING AUTHOR FOOTNOTE * To whom correspondence should be addressed - e-mail: 

l.r.hutchings@durham.ac.uk.   

ABSTRACT: This paper describes a method for the synthesis of well-defined AB block copolymers, 

where one block is synthesized via anionic polymerization initiated with alkyllithium compounds, and 

one by ring opening metathesis polymerization (ROMP) using well-defined ruthenium macroinitiators. 

This methodology was demonstrated by copolymerizing styrene with norbornene derivatives. 

Polystyrene was synthesized via living anionic polymerization initiated by sec-butyllithium, and 

functionalized to form macromonomers. These were used as precursors to well-defined ruthenium 
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macroinitiators, the macromonomers being converted by an alkylidene exchange reaction with 

ruthenium propylidene initiator RuCl2(=CHEt)(PCy3)2. These macroinitiators were used to initiate the 

ROMP of various norbornene derivatives in order to synthesize well-defined block copolymers with 

narrow molecular weight distributions.  

Introduction 

Living polymerization techniques are powerful tools that allow the synthesis of polymers that are 

well-defined in terms of molecular weight and polydispersity.
1
 Amongst these techniques are anionic 

polymerization
2,3

 and ring opening metathesis polymerization (ROMP).
4-6

 One of their applications is in 

the synthesis of block copolymers, most commonly by the sequential polymerization of monomers using 

a single living polymerization mechanism.
3
 A more recently developed alternative to this methodology 

is the synthesis of block copolymers by the combination of two different living polymerization 

mechanisms.
7
 The latter approach can be used to synthesize novel block copolymers containing 

polymeric blocks derived from monomers that can not be copolymerized by any single technique. We 

have recently reported a method for the synthesis of block copolymers using the combination of 

potassium initiated living anionic polymerization and living ROMP initiated by well-defined ruthenium 

initiators.
8
 The anionically polymerized block was poly(ethylene oxide) (PEO), initiated by 

diphenylmethylpotassium. The potassium/oxyanion pairs of the living PEO produced by the 

polymerization reaction were reacted directly with 4-vinylbenzyl chloride (4-VBC), to yield 

macromonomers that were subsequently transformed into ROMP macroinitiators by an alkylidene 

exchange reaction with ruthenium propylidene initiator RuCl2(=CHEt)(PCy3)2. However, the majority of 

anionic polymerization reactions (for example that of styrene) are typically initiated using alkyllithium 

compounds such as sec-butyllithium.
3
 It is thus highly desirable to demonstrate that these 

polymerization reactions can be combined with ruthenium ROMP in order to extend the range of 

attainable block copolymers. These anionic polymerizations produce polymers with stable living chain 

ends consisting of a lithium/carbanion pair, which are available for functionalization.  Unfortunately the 
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nucleophilicity of living polystyrene (PS) means that the direct end functionalization reaction of the 

living polystyrllithium with 4-VBC is accompanied by a side reaction between the active site on the PS 

and the vinyl group of the 4-VBC.
9
  

This paper describes a modified strategy to convert polymers formed from living lithium initiated 

anionic polymerization into ruthenium macroinitiators for ROMP and their use in the synthesis of block 

copolymers. This is demonstrated by copolymerizing styrene with norbornene derivatives. Although 

there have been previous reports of block copolymers containing a block polymerized via ROMP 

initiated by well-defined molybdenum initiators, and a PS block polymerized via either an anionic,
10

 or a 

radical
11

 mechanism, the lower functional group tolerance of molybdenum ROMP initiators, in 

comparison to their ruthenium counterparts, limits the range of functionalities that can be incorporated 

into the ROMP block of the copolymers using these strategies.
4,12

. In a further investigation
13

 block 

copolymers were prepared using a combination of ROMP and atom transfer radical polymerization 

(ATRP) using vinylic ethers as chain transfer agents but the resulting materials were not well defined. 

The methodology reported here should allow the synthesis of well-defined block copolymers of styrene, 

and other monomers that can be polymerized via an anionic mechanism, with norbornene monomers 

containing a wide range of functionalities. 

Experimental Section  

Materials. Styrene (Aldrich, 99+%) and benzene (Aldrich, 99.9+%) were distilled from CaH2 prior to 

use. Ethylene oxide (EO, Aldrich, 99.5+%) was purified by distillation from CaH2 and then by 

distillation from Mg(Bu)2 (Aldrich, 1.0 M solution in heptane) immediately before use. 4-Vinylbenzyl 

chloride (4-VBC, Aldrich, 90%) contained the impurities, -chloromethyl styrene (2%), dichloromethyl 

styrene (3%) and 3-vinylbenzyl chloride (3-VBC, 5%), and was purified as described later in the text. 

sec-Butyllithium (Aldrich, solution in hexane), potassium (Aldrich, 98%), 15-crown-5 (Aldrich, 98%) 

and ethyl vinyl ether (Aldrich, 99%) were used as supplied. Sodium hydride (Aldrich, dry, 95%) was 

stored and handled under nitrogen at all times. The preparation of the ROMP monomers and ruthenium 

propylidene initiator RuCl2(=CHEt)(PCy3)2 have been described previously.
8
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Anionic polymerizations were terminated using MeOH (Aldrich, 99.9+%) that had been sparged with 

N2 for 30 min. THF (Aldrich, 99.9%, anhydrous) used for azeotropic distillation and as a solvent for 

Williamson coupling reactions was passed through two columns containing alumina.
14

 Hexane (Aldrich, 

95+%, anhydrous) used in the precipitation of the macroinitiator was degassed prior to use. CH2Cl2 

(Aldrich, 99.9%) was distilled from CaH2. CD2Cl2 (Goss/Cambridge Isotope Laboratories Inc., 99.9% 

D, 0.03% v/v TMS) and CDCl3 (Aldrich, 99.9% D, 0.03% v/v TMS) were used as received. C6D6 

(Aldrich, 99.6% D, 0.03% v/v TMS) was purified by distillation from CaH2. 

Analytical Measurements. Nuclear Magnetic Resonance (NMR) spectroscopy was performed using a 

Varian Inova-500 MHz or Mercury-400 MHz spectrometer. All 
1
H and 

13
C NMR resonances are quoted 

relative to TMS unless otherwise stated. 

GPC was performed using a Viscotek 200 with refractive index, viscosity and right angle light 

scattering detectors and 2 x 300 mm PLgel 5 µm mixed C columns. THF was used as the eluent, at a 

flow rate of 1.0 mL/min and at a constant temperature of 30 °C.  Molecular weights were obtained using 

triple detection. The detectors were calibrated with a single, narrow molecular weight distribution PS 

standard (Mw = 66 000 g mol
-1

, PDI = 1.03, Polymer Laboratories). 

Matrix assisted laser desorption ionization – time of flight (MALDI-TOF) mass spectroscopy was 

performed using an Applied Biosystems Voyager-DE STR BioSpectrometry workstation. The block 

copolymer was dissolved in THF and premixed with the matrix trans-3-indoleacrylic acid (IAA) 

dissolved in THF. The sample was analyzed in linear mode. 

Synthesis of Hydroxyethyl Functionalized Polystyrene (HOEtPS) (2) via Anionic 

Polymerization. The anionic polymerization of styrene was carried out using standard high vacuum 

techniques. Styrene (10.18 g, 0.09 mol) and benzene (125 mL) were distilled into the reaction vessel and 

polymerization was initiated using sec-butyllithium (1.4 M solution in hexane, 1.45 mL, 2.04 mmol). 

Polymerization was allowed to proceed for a period of 14 h at room temperature (r.t.). An aliquot (~5 

mL) of the solution was then removed from the reactor, and terminated with MeOH (0.25 mL), in order 

to provide a sample of unfunctionalized PS for analysis. The remaining PSLi in benzene was cooled in 
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an ice bath, and EO (0.28 g, 6.4 mmol, 3-4 equivs) was distilled into the solution. The mixture was 

stirred for 30 min, after which MeOH (0.83 mL, 2.0 mmol, ~10 equivs) was added. After 30 min the 

solvent was removed under reduced pressure. The sample was dissolved in THF (40 mL) and traces of 

MeOH were removed by azeotropic distillation. The solvent was removed under reduced pressure, and 

the sample was dried for 24 h in vacuo at 50 °C. Yield = 10.11 g, ~100%. The volumes of benzene 

solvent used in the polymerization reaction, and the volume of solution collected from the 

polymerization vessel in order to provide a sample of MeOH terminated PS, were not measured with a 

high degree of precision. Theoretical maximum and therefore percentage yields of the PS are not highly 

accurate as a result. Target Mn: 5000 g mol
-1

.
 
THF GPC: Mn = 5900 g mol

-1
, PDI = 1.09. 

1
H NMR 

(CD2Cl2, 500 MHz):  7.4–6.3 (C6H5 of PS), 3.38–3.10 (CH2CH2OH), 2.4–1.7 (CH of PS), 1.7-1.24 

(CH2 of PS), 1.24-0.5 (sec-Bu). 
13

C NMR (CD2Cl2, 126 MHz):   146.8-145.0, (ipso-C of C6H5 of PS), 

129-127.2, 126.4–125.4 (C6H5 of PS), 61.2-60.8 (CH2CH2OH), 47–41.35 (CH2 of PS), 41.35–40.4 (CH 

of PS), 40.2–39.8, 39.6–39.0 (CH2 of PS/CH of PS), 32.0-28.4, 20.1-18.4, 11.6–10.8 (all sec-Bu). 

Recovery of MeOH Terminated Polystyrene. The solution of PS terminated with MeOH was 

precipitated into MeOH (40 mL). The polymer was filtered and dried in vacuo. Following this the 

product was twice reprecipitated from toluene (2.5 mL) into hexane (20 mL), filtered, and dried in 

vacuo. Yield = 0.48 g. Target Mn: 5000 g mol
-1

. THF GPC: Mn = 5720 g mol
-1

, PDI = 1.10. 
1
H NMR 

(CD2Cl2, 500 MHz):  7.4–6.3 (C6H5 of PS), 2.4–1.7 (CH of PS), 1.7-1.24 (CH2 of PS), 1.24-0.5 (sec-

Bu). 
13

C NMR (CD2Cl2, 126 MHz):  146.8-145.0 (ipso-C of C6H5 of PS), 143-142 (terminal CH2 ipso-

C of C6H5 of PS), 129-127.2, 126.4–125.4 (C6H5 of PS), 47.0–41.35 (CH2 of PS), 41.35–40.4 (CH of 

PS), 40.2–40.0, 39.5, 38.5–37.8 (CH2 of PS/ CH of PS), 34.1-33.7 (terminal CH of PS), 32.0–28.4 (sec-

Bu), 20.1-18.4, 11.6–10.8 (all sec-Bu). 

Synthesis of PS Macromonomer (3) using a K Mirror. 4-VBC was passed through a short column 

of basic alumina, dried and degassed over CaH2, and purified by vacuum distillation immediately prior to 

use.  
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Hydroxyethyl functionalized PS 2 (HOEtPS, Mn = 5900 g mol
-1

, 5.00 g, 0.9 mmol) was dissolved in 

THF (100 mL) under an atmosphere of Ar in a bulb equipped with a septum. Potassium (0.2 g, 5.1 

mmol, 5 equivs) was added to a second bulb under a stream of N2 and placed under vacuum for 30 min, 

before being heated to form a mirror. The polymer solution was then added slowly to the K mirror to 

deprotonate the HOEtPS and the two were allowed to remain in contact for 24 h. (The solution was 

decanted into the first bulb and back again several times, to ensure the complete destruction of any trace 

amounts of protic impurities that might otherwise result in un-reacted HOEtPS contaminating the 

macromonomer. After this period the THF solution of KOEtPS was then decanted back into the first 

bulb, and freshly distilled 4-VBC (0.14 mL, 1.0 mmol, 1.2 equivs) was injected through the septum. The 

mixture was stirred for 24 h, after which air was admitted into the bulb. The polymer solution was 

diluted with THF (100 mL) and passed through a column of celite, in order to remove Li and K salts. It 

was then concentrated under vacuum (to 25 mL), precipitated into MeOH (200 mL), redissolved in 

toluene (25 mL) and reprecipitated into MeOH (200 mL) twice, to ensure the complete removal of 

unreacted 4-VBC. The sample was filtered and dried in vacuo at r.t overnight. Yield = 4.78 g, 94%. THF 

GPC: Mn = 6040 g mol
-1

, PDI = 1.10. 
1
H NMR (CD2Cl2, 500 MHz):  7.4-7.2 (O-CH2-C6H4CH=CH2), 

7.4–6.3 (C6H5 of PS), 5.76–5.64 (CHH=CH-C6H4), 5.24–5.16 (CHH=CH-C6H4), 4.36-4.12 (O-CH2-

C6H4-CH=CH2), 3.34–2.98 (PS-CH2CH2O-CH2C6H4CH=CH2), 2.4–1.7 (CH of PS), 1.7-1.24 (CH2 of 

PS), 1.24-0.5 (sec-Bu). 
13

C NMR (CD2Cl2, 126 MHz):   146.8-145.0 (ipso - C6H5 of PS), 139.0-138.8, 

137 (CH2=CH-C6H4),  136.9 (CH2=CH-C6H4), 129-127.2, 126.4–125.4 (C6H5 of PS, CH2=CH-C6H4), 

113.8-113.6 (CH2=CH-C6H4), 72.6 (O-CH2-C6H4-CH=CH2), 68.5 (PS-CH2CH2O-CH2-C6H4-CH=CH2), 

47–41.35 (CH2 of PS), 41.35–40.4 (CH of PS), 40.2–39.8, 39.6–39.0 (CH2 of PS/CH of PS), 32.0-28.4, 

20.1-18.4, 11.6–10.8 (all sec-Bu). 

Synthesis of PS Macromonomer (3) using NaH. Hydroxyethyl functionalized PS 2 (HOEtPS, 2.00 

g, 0.2 mmol, PS Mn: 10 600 g mol
-1

) and NaH (0.05 g, 1.9 mmol, 10 equivs) were added to a 2-neck 100 

mL round bottom flask equipped with a magnetic follower and stoppered with rubber septa. The flask 

was maintained under an atmosphere of N2. The polymer was dissolved by the addition of dry THF (20 
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mL) to the flask with agitation, following which 15-Crown-5 (0.38 mL, 1.9 mmol, 10 equivs) was added 

to the suspension.  4-VBC (0.27 mL, 1.9 mmol), which had been dried over fused CaCl2 for two hours at 

4 °C, was then passed through a short column of basic alumina and immediately added to the reaction. 

Periodically samples (1 mL) were removed through the septa using a syringe, and were precipitated into 

IPA (10 mL), filtered, washed with IPA (5 x 10 mL), and dried briefly under vacuum. Conversion of the 

starting material HOEtPS to macromonomer was monitored using 
1
H NMR by following the 

disappearance of the signal observed at 3.38–3.10 ppm (CH2CH2OH) and the emergence of the signal in 

the macromonomer at approximately 3.34–2.98 ppm (PS-CH2CH2O-CH2C6H4-CH=CH2). The reaction 

was complete within 48 h. Residual NaH was destroyed by the addition of a few drops of MeOH. The 

polymer solution (16 mL) was then precipitated into MeOH (160 mL), filtered and washed with MeOH 

(5 x 40 mL) before being dried in vacuo. The macromonomer was purified by passing a dilute solution 

(DCM) of it through a short (1.5 cm) column of celite, eluting the polymer with more DCM (total 100 

mL), and removing the solvent under vacuum. The polymer was reprecipitated twice from toluene (10 

mL) into MeOH (100 mL); the solid produced was isolated by filtration, washed with MeOH (5 x 40 

mL), and dried in vacuo at r.t. overnight. Yield = 1.40 g (86%, based on polymer left after reaction 

monitoring). Analytical data was identical to that from macromonomers synthesized using a K mirror. 

Synthesis of a PS Ruthenium Macroinitiator (5). In a nitrogen-filled glovebox (M.Braun), PS 

macromonomer (Mn = 10 700 g mol
-1

, 0.500 g, 5 x 10
-2

 mmol) was dissolved in C6H6 (3.0 mL) and 

placed in an ampule. RuCl2(=CHEt)(PCy3)2 (0.044 g, 6 x 10
-2 

mmol, 1.2 equivs) was dissolved in C6H6 

(2.00 mL) in another ampule.  Both ampules were transferred to a vacuum line and placed under Ar. A 

flow of Ar was then passed through the agitated solution of ruthenium initiator while the solution of PS 

macromonomer was slowly introduced via a cannula. Upon complete addition the reaction was stirred 

for 1 h. The solution was reduced to half its original volume under vacuum and added drop-wise to 

vigorously stirred, degassed hexane (chilled to -78 
o
C, 25 mL) producing a purple-red precipitate. The 

mixture was then filtered and washed thoroughly with chilled hexane (3 x 30 mL) using standard 

cannula techniques. The solid product, the macroinitiator, was dried at room temperature and in vacuo 
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(2x10
-6

 mbar) overnight, redissolved in C6H6 (2 mL) in the glovebox and precipitated into hexane (20 

mL (chilled to -78 
o
C to ensure the product precipitated as a powdery solid) and washed with hexane as 

previously described, to ensure complete removal of any unreacted RuCl2(=CHEt)(PCy3)2. Yield = 

0.280 g, 53%. The macroinitiator was fully characterized by NMR using the aid of existing assignments 

for the PEO macroinitiator
8
 and RuCl2(=CHPh)(PCy3)2.

15
 

1
H NMR (C6D6, 500 MHz):  20.56 (s, 

Ru=CH), 8.71 (br, o-H of C6H4 relative to Ru=CH), 7.3-6.4 (C6H5 of PS and residual H in C6D6), 3.92-

3.70 (PS-CH2CH2O-CH2-C6H4-CH=Ru), 3.24–2.96 (PS-CH2CH2O-CH2-C6H4-CH=Ru), 2.90 (m, 

P(C6H11)3), 2.60-1.10 (CH and CH2 of PS, all m, P(C6H11)3), 1.1–0.42 (sec-Bu). 
13

C NMR (C6D6, 126 

MHz, v.s C6D6):   153.35 (s, ipso-C of C6H4 relative to Ru=CH), 146.8-145.0 (ipso-C of C6H5 of PS),  

141.32 (s, p-C of C6H4 relative to Ru=CH), 131.47 (s, o/m-C of C6H4 relative to Ru=CH), 129.4–127.8, 

(C6H5 of PS, o/m-C of C6H4 relative to Ru=CH and C6D6),  127.0–126.4 (C6H5 of PS),  73.46 (br, PS-

CH2CH2O-CH2-C6H4-CH=Ru), 69.28 (br, PS-CH2CH2O-CH2-C6H4-CH=Ru), 48.0–42.0 (CH2 of PS), 

42.0–41.2 (CH of PS), 32.03 (pseudo-t, ipso-C of P(C6H11)3), 30.76 (s, m-C of P(C6H11)3), 28.75 

(pseudo-t, o-C of P(C6H11)3), 27.55 (s,  p-C of P(C6H11)3). 
31

P NMR (C6D6, 202 MHz):  37.14 (s, 

PCy3). 

A typical block copolymer preparation. Synthesis of Poly(Styrene)-block-(exo-N-

Phenylbutylbicyclo[2.2.1]Hept-5-ene-2,3-Dicarboxyimide). PS [Degree of Polymerization (DP) = 

100] - PNB A (DP = 500). All ROMP reactions were performed in a nitrogen-filled glovebox 

(M.Braun) in screw top vials. exo-N-Phenylbutylbicyclo[2.2.1]hept-5-ene-2,3-dicarboxyimide 

(Monomer A, 0.259 g, 0.9 mmol) was dissolved in CH2Cl2 (10 mL).  This solution was added to a 

stirred solution of a ruthenium PS macroinitiator (0.020 g, 2 x 10
-3

 mmol, PS macromonomer Mn = 10 

500 g mol
-1

, DP = ~ 100) dissolved in CH2Cl2 (0.5 mL).  After 5 h the living polymer was terminated by 

the addition of ethyl vinyl ether (0.1 mL, 1.1 mmol) under a stream of N2. The solution was stirred for a 

further 1 h, after which it was concentrated to approximately 3.0 mL using a stream of N2 and 

precipitated into MeOH (30 mL) with vigorous agitation. The resulting precipitate was recovered by 

filtration, washed with MeOH and dried in vacuo at r.t. overnight. Yield = 0.243 g, 88%. Target Mn: 158 
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400 g mol
-1

. THF GPC: Mn = 151 200 g mol
-1

, PDI = 1.09. The block copolymer was fully characterized 

by NMR using the numbering scheme shown in Figure 1. 
1
H NMR (CD2Cl2, 500 MHz):  7.4–6.9 (H15-

17,20-22), 6.9–6.3 (H20/21/22), 5.78-5.66 (brm, trans H5,6), 5.56-5.45 (cis H5,6), 3.50–3.36 (brm, H10), 3.23-

3.10 (brm, cis H2,3), 3.07-2.87 (brm, trans H2,3), 2.69 (brm, cis H1,4), 2.62 (brm, trans H1,4 and 13), 2.4–

1.7 (H7/7’,18), 1.7-1.24 (H7/7’,11,12,23). 
13

C NMR (CD2Cl2, 126 MHz):   178.56–178.2 (C8,9), 146.8-145.0 

(C19), 142.53/142.44 (C14), 133.6 (trans C5,6),  132.4–131.8 (cis C5,6), 129-127.4 (C15,16,20/21/22), 126.4–

125.4 (all C17,20/21/22), 52.72 (cis C2,3), 51.43-51.14 (trans, C2,3), 47.0–40.4 (C1,4,7,18,23), 38.51/38.35 

(C10) 35.54/35.50 (C13), 29.03/28.96, 27.52/27.49 (C11,12). 
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Figure 1. 

Block copolymers of varying compositions of PS and a total of 3 different ROMP monomers were 

prepared in an analogous manner, by varying the Mn of the PS block, and ratio of ROMP monomer to 

macroinitiator together with the time allowed for complete consumption of the ROMP monomer. In the 

case of monomer A 1 h was allowed for a block copolymer with ROMP block of DP = 100, in the case 

of monomer B a time of 24 h, and in the case of monomer C a time of 1h.  The reaction times were 

increased in proportion with increases in the target DP of the ROMP block. 

 

 

Results and Discussion 
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The synthesis of a range of block copolymers containing a PS and a polynorbornene (PNB) block has 

been achieved by the conversion of lithium initiated living anionic polymerization into ruthenium 

catalyzed ROMP. The living anionic polymerization of styrene was initiated using sec-butyllithium, in 

order to synthesize the block copolymers it is necessary to quantitatively convert the living PS into 

macromonomers by end-functionalizing them with 4-VBC. The greater reactivity of the carbanions of 

living PS, compared with those of the oxyanions present on living PEO chains, complicates their 

functionalization.
3
 The addition of 4-VBC to PSLi using the reaction conditions used to functionalize 

the PEO macromonomers
8
 results in vinyl addition, as well as the desired SN2 reaction with the 

chloromethyl group.
9
 The SN2 reaction with the benzyl halide is faster than the reaction with the vinyl 

group, but even by increasing the molar excess of 4-VBC (with respect to the chain ends) to 8.25 : 1, 

only 50% of the resulting product mixture is the desired macromonomer, the other major component 

being a dimer of polystyrene.
9
 Asami et al. have developed a method for the direct functionalization of 

PS-Li using 4-VBC.
9
 This required specially designed equipment in which the living PS-Li in C6H6 was 

pre-mixed with THF, creating a highly solvated ion-pair, and hence increasing the reactivity of PS-Li 

towards the benzylic halides relative to the vinyl group. However, in order to yield a product free of PS 

dimer the 4-VBC must be used in the form of a dilute solution in THF, and the method of combination 

of the two requires precise control; the PS-Li solution being added dropwise to the 4-VBC solution at 0 

°C to ensure an excess of the benzyl halide with respect to living chain ends at all times. Whilst it has 

been reported that no significant termination of PSLi by THF occurs over the lifetime of the experiment 

when 20% (v/v) THF is used in cyclohexane,
16

 a general problem with the use of THF in organolithium 

synthesis is metallation of the solvent
17,18

 - even PSLi itself is unstable in pure THF.
19,20

 It could thus be 

anticipated that in some cases functionalization of polymers with 4-VBC would be accompanied by a 

significant amount of side reaction with THF. A method was thus sought that would avoid the design 

and use of new and complicated equipment, and which would not require extensive optimization in 

order to generate macromonomers from different anionic polymerizations. It is anticipated that such a 
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method might form the basis for a general strategy that could be used for the synthesis of 

macromonomers from other lithium initiated anionic polymerization reactions.  

The approach that was adopted in this research to the synthesis of PS macromonomers was to use 

Quirk’s method
21

 to functionalize living PS (1) with ethylene oxide (EO) to synthesize hydroxyethylated 

PS (2) (Scheme 1). The macromonomer (3) was then synthesized by a coupling reaction, between 2 and 

4-VBC, based on the Williamson ether synthesis.  

Scheme 1. Synthesis of Polystyrene Macromonomers. 
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The reaction of polymeric organolithium compounds with EO has been shown to be a useful method 

for the hydroxyl functionalization of many polymers synthesized via an anionic polymerization 

mechanism.
21-24

 In the case of PS (and polybutadiene) the reaction is well-characterized and leads to 

quantitative hydroxylation.
25,26

 Reaction of PS-Li (1) with EO yields polymeric oxyanion chain ends, 

which aggregate strongly in solution.
25

 This aggregation inhibits propagation of EO resulting in the 

introduction of a single EO monomer unit. Oligomerization of EO can occur however with increased 

reaction times and concentrations of EO. The lithium alkoxide end group was protonated with N2 

sparged MeOH to yield 2. Study of 2 via 
1
H NMR spectroscopy indicated the presence of a single broad 

peak at 3.38–3.10 ppm corresponding to a single terminal methylene group adjacent to the hydroxyl 

group, no evidence of the extra signals between 3 and 4 ppm that would result from the ether linkage 
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formed via oligomerization were observed.
25

. Oligomerization is not expected to present a problem for 

the synthesis of macromonomers as the oligomeric product would be functionalized with a hydroxyl 

group, however the data suggests it did not occur to any detectable degree using our reaction conditions. 

Comparison of the integration values of the peak at 3.38-3.10 ppm corresponding to the CH2OH 

methylene group with that from the aromatic phenyl protons of the PS polymer chain at 7.4–6.3 ppm 

confirmed that the reaction was virtually quantative. In all cases a sample of PSLi was withdrawn and 

terminated with MeOH prior to the addition of EO, and used for the determination of Mn of the polymer 

using GPC. 

The conversion of the hydroxyl functionalized PS (2) into PS macromonomer (3) was achieved using 

a Williamson coupling reaction with 4-VBC, and was attempted successfully by two different routes. 

Firstly the hydroxyl group of 2 was deprotonated using a K mirror to yield a potassium alkoxide salt, 

which was then reacted with 4-VBC to form 3. In a second approach the methodology of Aspinall et 

al.,
27

 originally developed to allow the conversion of hindered alcohols into ethers at room temperature, 

was adapted for the synthesis of 3. In this case the hydroxyl functionalized PS 2 was combined with 4-

VBC, NaH, and 15-crown-5 and left stirring under dry N2 until reaction was complete (48 h). Whilst the 

latter reaction was slower than the first method (K mirror), it needed less rigorous purification of 4-VBC 

and exclusion of moisture, and was catalyzed by a milder base. This could prove particularly useful 

when adapting the described methodology, for polymers containing functionalities that are sensitive to 

nucleophilic attack. In each case the product of the functionalization reaction was analyzed by NMR 

spectroscopy. The spectra of the products from both routes were identical as expected, indicating the 

quantitative conversion of 2 into 3 via both approaches. 

The functionalized PS macromonomers 3 were used as precursors to ruthenium PS macroinitiators for 

ROMP (Scheme 2, 5), which were used to initiate the ROMP of norbornene derivatives, resulting in the 

synthesis of a series of block copolymers (6).  
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Scheme 2. Synthesis of Poly(Styrene–Norbornene) Block Copolymers.
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 Cy = Cyclohexyl. 

The synthesis of the ruthenium PS macroinitiators 5 was achieved by an analogous alkylidene 

exchange reaction to that used to convert PEO macromonomers into PEO ruthenium macrointiators.
8
 

The alkylidene exchange reaction of PS macromonomer 3 with ruthenium propylidene initiator 

RuCl2(=CHC2H5)(PCy3)2 (4), resulted in the synthesis of 5. This reaction is an equilibrium process and 

thus the 1-butene side product must be removed in order to effect complete conversion of 

macromonomer 3 to macroinitiator 5.
8
 The solution containing the ruthenium initiator was purged with 

argon prior to and during the reaction, to ensure complete removal of the 1-butene by-product, which is 

a gas at room temperature. The success of the reaction can be monitored by the absence of the peaks 

from the vinyl functionality of the macromonomer 3 in the 
1
H NMR spectrum of the final product, as 

well as changes in the alkylidene region. The triplet due to the alkylidene proton of the propylidene 

initiator 4 at 19.62 ppm (a, Figure 2) disappears and is replaced by a resonance due to the alkylidene 

proton of the macroinitiator 5 at 20.58 ppm (b, Figure 2), which is similar to that observed for the 

ruthenium benzylidene initiator.
8
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ppm19.419.619.820.020.220.420.620.8

 

Figure 2.  

A series of PS macroinitiators were synthesized with the number average molecular weight (Mn) of PS 

(THF GPC) ranging from 2850 to 10 500 g mol
-1

. The macroinitiators were subsequently used in the 

synthesis of block copolymers of styrene with NBE derivatives.  Three different ROMP monomers were 

used for the synthesis of block copolymers (Figure 3). 
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Figure 3.  

A series of block copolymers were synthesized in which the composition was controlled by altering 

the ratios of monomer [M] to macroinitiator [MI]; [M]/[MI] = 100, 200, and 500. Consumption of 

b 
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monomer was quantitative and in almost all cases the block copolymers possessed a narrow molecular 

weight distribution (PDI of 1.05-1.2). This suggests that as with the PEO macroinitiators, the PS 

macroinitiators are efficient initiators for the ROMP of the NBE derivatives investigated. 

Table 1. Molecular Weight and Composition Data for a Series of Diblock Copolymers 

Sample PS Block
a
 ROMP Block Block Copolymer 

 
Mn 

g mol
-1

 

Mw 

g mol
-1

 

PDI Monomer DP Mn/Pred
b 

g mol
-1

 

Mn/GPC 

g mol
-1

 

PDI Mn/NMR 

g mol
-1

 

1 2850 2900 1.02 A 100 32 500 29 700 1.16 32 600 

2 5700 6300 1.10  100 35 400 32 700 1.10 34 100 

3 10 500 11 100 1.06  100 40 200 38 400 1.07 43 100 

4     200 69 700 68 300 1.07 68 700 

5     500 158 400 151 200 1.09 159 000 

6 2850 2900 1.02 B 100 24 000 15 600 1.15 23 900 

7 5700 6300 1.10  100 26 900 20 800 1.09 26 200 

8 10 500 11 100 1.06  100 31 700 23 100 1.05 31 000 

9 5700 6300 1.10 C 100 25 000 23 100 1.17 24 900 

10 10 500 11 100 1.06  100 29 800 22 600 1.24 30 900 

a Determined by THF GPC.  b Based on GPC measurements of the PS block. 

The block copolymers were precipitated into MeOH, a non-solvent for both the PS and PNB blocks so 

that any PS homopolymer, if present, should be observed in the GPC chromatograms. A small peak was 

sometimes observed at an elution volume where the PS homopolymers would be expected (a in Figure 

4). A shoulder was also observed at lower elution times, corresponding to approximately double the 

molecular weight of the block copolymers (b in Figure 4), which as with the PEO-PNB block 

copolymers is attributed to polymer-polymer coupling by dimerization of the living polymer after 

ROMP. Further work was conducted to examine the formation of this species, which was consistent 

with this idea, and is discussed in the supporting information.  
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Figure 4.  

The values of Mn for the block copolymers, calculated by GPC using triple detection (Table 1) are 

lower than those predicted by the stoichiometry of the reaction. The data obtained by triple detection 

GPC is based upon the parameters for PS measured in THF solution (e.g. refractive index [RI], specific 

refractive index increment [dn/dc], and intrinsic viscosity [η]), we would not therefore expect the values 

from GPC to be accurate. Homopolymers of all three NBE monomers were synthesized using 

benzylidene initiator RuCl2(=CHPh)(PCy3)2 using the same conditions that were used to polymerize the 

ROMP block of the copolymers. All three were studied by GPC using THF as the eluent; in all cases the 

calculated data for Mn were lower than the predicted values. For example a sample of homo-PNB B 

(predicted Mn:  21 050 g mol
-1

, DP = 100) had a calculated value of 12 700 g mol
-1

 for Mn (PDI = 1.02).  

The GPC analysis of the block copolymers is important in that it gives an accurate measure of the 

polydispersity of the copolymers. Previously reported methods for synthesizing block copolymers by 

combining well-defined ruthenium initiated ROMP and PS, have produced materials that possess a 

rather broad molecular weight distribution.
28,13

 For instance the ROMP of norbornene derivatives 

b 
  a 
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initiated by ruthenium initiators was used to create macroinitiators that initiated the ATRP of styrene, 

resulting in the synthesis of block copolymers of styrene with a PDI of 2.70.
29

 The molecular weight 

distributions of the block copolymer synthesized with our methodology thus compare very favourably 

with PS-PNB block copolymers synthesized via other routes.  

The 
1
H NMR spectra of the PS-PNB block copolymers can be used to calculate a quantitative value 

for the molecular weight (Mn) of the block copolymers, as we know the Mn of the PS block from GPC.  

To calculate the ratio of PNB to PS blocks the integrals of a peak from each of the two polymer 

backbones must be compared. This allows the calculation of the DP of the PNB block, using the DP of 

the PS block of known Mn, and hence the Mn of the block copolymers. The calculation is discussed in 

detail in the supporting information. The values for Mn calculated by NMR are in good agreement with 

those predicted by the stoichiometry (Table 1).  

The percentages of cis and trans vinylene units in the ROMP blocks of the PS-PNB block copolymers 

of NBE A and C were compared with those of the homo PNB polymers synthesized using 

RuCl2(=CHPh)(PCy3)2, and the previously reported PEO-PNB block copolymers.
8
 In the case of PNB 

A, the results were calculated by comparison of the integration values of the 
1
H NMR resonances of the 

vinylene protons of cis and trans units, which fall at 5.54-5.47 and 5.76-5.70 ppm respectively, and in 

PNB C the cis and trans bridgehead methine protons at 3.11 and 2.83 ppm were used. The percentage of 

cis vinylene units was determined to be in the region of 20% for all of the PNB homopolymers and PS-

PNB block copolymers studied, which is typical of polymers synthesized using 

RuCl2(=CHPh)(PCy3)2.
30

  

PS-PNB diblock copolymer sample 3 (Table 1) was subjected to MALDI analysis (Figure 5). 
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Figure 5 

The preferential ionization of one polymer block in block copolymers can be observed, reducing the 

accuracy of the molecular weight data.
31,32

 However a value of 44 300 g mol
-1

 for Mn was calculated 

from the MALDI data, in good agreement with the predicted 40 200 g mol
-1

. The resolution in the 

spectrum was insufficient to see individual macromolecules, probably due to the high molecular weight 

of the block copolymer. 

Synthesis of a PS Macromonomer using an Initiator Containing a tert-Butyldimethylsilyl Ether 

(TBDMSO) Protected Hydroxyl Group. An alternative and facile approach to the synthesis of PS 

macromonomers was also recently developed. Instead of end-functionalizing the living chain end with 

EO after polymerization, the hydroxyl functionality was incorporated into the polymer chains via the use 

of an anionic initiator with the hydroxyl group protected by a TBDMSO group (Scheme 3). 

Scheme 3. Synthesis of Hydroxyl Functionalised PS using a TBDMSO Functionalized Initiator. 
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After deprotection of the hydroxyl group, the polymer was coupled with 4-VBC using the 

methodology depicted in Scheme 1, resulting in the synthesis of a PS macromonomer. Full details of the 

synthesis and characterization of this PS macromonomer are given in the supporting information. 

Conclusions 

A methodology for the synthesis of well-defined block copolymers, where one block is synthesized 

via anionic polymerization, initiated using alkyllithium compounds, and subsequently, the second block 

via ruthenium initiated ROMP, has been developed. The methodology was demonstrated by the 

synthesis of macromonomers and subsequently block copolymers from living (PS). This was achieved 

by means of an end functionalization reaction with ethylene oxide, and conversion of the hydroxyl 

functionalized product into macromonomer via a Williamson ether synthesis reaction involving the PS-

OH and 4-VBC. Alkylidene exchange reactions between the PS macromonomer and ruthenium 

propylidene initiator RuCl2(=CHEt)(PCy3)2 resulted in the synthesis of ruthenium PS macroinitiators for 

ROMP. Addition of norbornene derivatives to the macroinitiators resulted in the synthesis of a range of 

block copolymers that possessed narrow molecular weight distributions, and contained little or no 

homo-polymer.  
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Figure Captions 

 

Figure 1. Numbering scheme for NMR assignments of poly(styrene)-block-(exo-N-phenylbutylbicyclo 

[2.2.1]hept-5-ene-2,3-dicarboxyimide) 

 

Figure 2. Comparison of the 
1
H NMR analysis of the ruthenium propylidene initiator and the PS 

macroinitiator formed as a product of the alkylidene exchange reaction between the propylidene initiator 

and PS macromonomer (C6D6). a Ruthenium propylidene initiator and b PS Ruthenium macroinitiator. 

 

Figure 3. Norbornene derivatives that were copolymerized with styrene. 

 

Figure 4. Triple detection GPC chromatogram of PS-PNB diblock copolymer sample 6 prepared from 

PS and monomer B. Mn = 15 600 g mol
-1

, PDI = 1.10, contaminated with a trace of PS homopolymer (a) 

of Mn = 2900 g mol
-1

, PDI = 1.02. Refractive Index (top), viscosity (middle) and light scattering 

(bottom) detector responses shown. 

 

Figure 5. MALDI spectrum of poly(styrene)-block-(exo-N-phenylbutylbicyclo[2.2.1]hept-5-ene-2,3-

dicarboxyimide).  Sample PS-PNB 3, Table 1. Mn: 44 300 g mol
-1

, PDI: 1.02  
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