
ar
X

iv
:0

71
2.

30
02

v1
  [

co
nd

-m
at

.o
th

er
] 

 1
8 

D
ec

 2
00

7

Collisions of bright solitary matter waves

N.G. Parker1‡, A. M. Martin1, S. L. Cornish2 and C. S. Adams2

1 School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
2 Department of Physics, Durham University, Durham, DH1 3LE, UK

PACS numbers: 03.75.Lm, 03.75.Hh, 05.45.Yv

E-mail: n.p@physics.org

Abstract. The collisions of three-dimensional bright solitary matter waves formed

from atomic Bose-Einstein condensates are shown to exhibit rich behaviour. Collisions

range from being elastic to completely destructive due to the onset of collapse during

the interaction. Through a detailed quantitative analysis we map out the role of

relative phase, impact speed and interaction strength. In particular, we identify the

importance of the collapse time in the onset of unstable collisions and show how the

relative phase controls a population transfer between the waves. Our analysis enables

us to interpret recent experimental observations of bright solitary matter waves.
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Solitons are intriguing nonlinear wavepackets that propagate without dispersion

due to the counteracting nonlinearity of the medium. They occur widely in nature,

for example, in nonlinear optics, water, mechanics, biological systems, astrophysics,

geology and particle physics [1]. In recent years, solitonic matter waves have been

realised in atomic Bose-Einstein condensates (BECs) in bright [2, 3, 4], dark [5] and

gap [6] forms. Here the atomic interactions introduce a nonlinearity to the system such

that, at zero-temperature and on a mean-field level, the BEC satisfies a cubic nonlinear

Schrödinger equation [7] and supports the well-known one-dimensional soliton solutions

derived by Zakharov and Shabat [8]. Bright solitons are supported by attractive atomic

interactions and manifest themselves as self-trapped droplets of matter. Although these

solitons are technically one-dimensional solutions, the analogous structure in 3D is a

bright solitary wave (BSW) [9, 10, 11, 12]. Under radial confinement, e.g. in an atomic

waveguide potential, these states are self-trapped in the axial direction. Due to their

novel properties of self-trapping and shape-preservation, bright solitary matter waves

hold strong advantages for applications such as for atom optics and interferometry [3].

However, attractive BECs in 2D/3D suffer from a collapse instability when the atom

number becomes too large [10, 11, 12, 13].

One of the most interesting aspects of solitons are their collisions and recent

experiments have probed the collisions of matter wave BSWs [3, 4]. Cornish et al. [4]

generated multiple matter-wave BSWs [14] and observed their dynamics in a trap. In

particular, two BSWs were observed to oscillate in anti-phase along the axial direction of

the harmonic trap for over 3 s, colliding in the trap centre approximately 40 times. The

stability of these dynamics was somewhat surprising given the almost three-dimensional

trap geometry and the combined population of the BSWs exceeding the critical atom

number for collapse. In the 1D limit, soliton interactions have been well-expounded,

with the force between two solitons known to depend sinusoidally on their relative

phase ∆φ [15]. For ∆φ = 0, the symmetric wavepackets can overlap freely, leading

to an ‘attractive’ interaction, while for ∆φ = π the asymmetric wavefunction prevents

overlap and leads to a ‘repulsive’ interaction [16]. In this 1D limit the collisions are

always elastic and the relative phase does not change the final outgoing states [15, 16]. In

contrast colliding BSWs in 3D can form a high-density state that is unstable to collapse

[10, 17, 18, 19, 20]. Here, the relative phase plays a crucial role, with an ‘attractive’

∆φ = 0 collision being prone to the collapse instability and a ‘repulsive’ ∆φ = π collision

predicted to negate collapse effects [10, 18]. Recent work [20] also indicates that the

collisional speed is also crucial in the stability of BSW collisions. In the majority of

theoretical studies of BSW collisions, approximations have been employed to simplify

the approach, for example, by reduction of the 3D dynamics to an effective 1D model

[10, 18, 20] or the use of a variational approach [21]. Although full 3D simulations of

BSW collisions have been made [17, 19], a detailed study of the relevant parameter

space is still lacking. We note that analogous effects are observed for optical solitons in

saturable nonlinear media [22] and solitonic Q-balls in particle physics [23], including

soliton fusion and annihilation.
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In this work we theoretically analyse the rich behaviour of the collisions of three-

dimensional bright solitary matter waves. This is performed through extensive numerical

simulations of the 3D Gross-Pitaevskii equation. We elucidate how the collisions depend

on the key parameters, namely the relative phase, interaction strength and timescale

of the collision. We apply our analysis to the recent experiment of Cornish et al. [4]

(henceforth referred to as the JILA experiment) and give strong evidence to the existence

of a π-phase difference between the experimental BSWs.

In the limit of ultra-cold temperature the mean-field ‘wavefunction’ of the BEC

ψ(r, t) is well-described by the Gross-Pitaevskii equation (GPE) [7],

ih̄
∂ψ

∂t
=

[

−
h̄2

2m
∇2 +

m

2
ω2

r

(

r2 + λ2z2
)

+
4πh̄2as

m
|ψ|2

]

ψ, (1)

where m is the atomic mass and as is the s-wave scattering length (as < 0 for the

case of attractively-interacting BECs considered here). The confining potential is

cylindrically-symmetric and harmonic, with radial frequency ωr and the axial frequency

defined via the trap ratio λ = ωz/ωr. The mean-field wavefunction satisfies ψ(r, t) =
√

n(r, t) exp(iθ(r, t)), where n(r, t) is the atomic density and θ(r, t) is the condensate

phase. The GPE provides an excellent model of mean-field effects in BECs and has

accurately predicted the onset of collapse of an attractive BEC [12, 13]. However, the

basic GPE is insufficient to model post-collapse dynamics where higher-order effects,

such as three-body losses, become considerable and more sophisticated models must

be employed, e.g. [25]. We simulate the BSW dynamics by numerical propagation of

Eq. (1) on a cylindrically-symmetric spatial grid using the Crank-Nicholson propagation

technique [24].

It is convenient to define a dimensionless interaction parameter k = N |as|/ar, where

ar =
√

h̄/mωr is the radial harmonic oscillator length. When k exceeds a critical value kc

the system is unstable to collapse [10, 11, 12]. For a BSW (λ = 0), it has been predicted

that kc ≈ 0.67 [12], while the presence of an axial confining potential (λ > 0) weakly

reduces kc, e.g., kc ≈ 0.64 for λ = 0.4 [12, 13]. Although our results are generic, they are

presented in terms of the parameters of the 85Rb JILA experiment [4]. This featured full

3D confinement defined by ωr/2π = 17.3 Hz and λ = 0.4. Specifically, for as = −0.6 nm,

two BSWs were observed, with a total measured atom number ofN = 4000. Allowing for

approximately 500 thermal atoms in the experimental measurement [4], we will assume

each BSW to contain N = 1750, giving k = 0.4.

We first consider the simplest geometry of an axially-homogeneous waveguide

(λ = 0) with finite radial trapping (ωr > 0). The BSW ground state has the approximate

form ψ(r, z) =
√

N/2πξa2
r
sech(z/ξ) exp(−r2/2a2

r
) [10, 11, 12]. Here ξ = 1/

√

4πn0|as|

characterises the axial size of the BSW, where n0 is the peak density. We obtain the

exact BSW ground state by numerical propagation of Eq. (1) in imaginary time [24]. Our

initial state consists of two such solutions, well-separated at positions z = ±z0. Each

BSW is given a velocity kick vi towards the origin (via ψ(z, r) → ψ(z, r) exp(imvi|z|/h̄)).

Furthermore, a phase difference ∆φ is imprinted between the BSWs.
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Figure 1. (a) Stability of BSW collisions in an axially homogeneous waveguide for

∆φ = 0 (solid line) and π (dashed line) as a function of k = N |as|/ar and speed

vi. To the left (right) of the lines, the collisions are stable (unstable). The dotted

line indicates kc for an isolated BSW. (b) Density plots show the evolution of a BSW

(k = 0.4) collision with ∆φ = 0 at (i) high speed vi = 1 mm s−1 and (ii) low speed

vi = 0.1 mm s−1. Here we plot the axial density, integrated over r. (c) Same as (b)

but for ∆φ = π.

Just as the interaction parameter k determines the stability of an isolated BSW

it is a crucial factor in the stability of their collisions. Salasnich et al. predict that a

∆φ = 0 collision is unstable for k ≥ 0.472, based on the nonpolynomial GPE and a

BSW ansatz [10]. Moreover, it is predicted that a ∆φ = π collision is always stable

to collapse [10, 18, 21]. We have performed extensive numerical simulations of BSW

collisions to map out the parameter space of k and vi for phase differences of ∆φ = 0

and π. The results are presented in Fig. 1(a). The solid and dashed lines mark the

transition between stable and unstable collisions for ∆φ = 0 and ∆φ = π, respectively.

During an unstable collision the peak density increases above the threshold for collapse

and triggers a collapse instability which destroys the BSWs. An example of an unstable

collision is shown in Fig. 1(b)(ii), for ∆φ = 0. In the stable regime, the collisions are

elastic, with the BSWs emerging with the same speed and shape as the incoming BSWs.

Typical stable collisions are shown in Figs. 1(b)(i), (c)(i) and (c)(ii).

In general the collisions are stable for low values of k but become unstable as k

increases towards kc. At low speeds the extent of the unstable region is dependent on the

relative phase ∆φ, as illustrated by comparing Figs. 1(b)(ii) and (c)(ii), with ∆φ = π

collisions being more stable since the overlap of the BSWs is prevented. However, at

large impact speeds the stability of the collisions is independent of ∆φ, as demonstrated

by the similarity between Figs. 1(b)(i) and (c)(i). Note that the number of collisional

fringes increases with speed [10] and is always even (odd) for ∆φ = 0 (π). For ∆φ = 0

and in the limit vi → 0, the collisions become unstable for k >∼ 0.4. As vi is increased,

this threshold shifts monotonically to higher values of k, and for vi ∼ 1 mm s−1 it is

close to kc. For ∆φ = π and in the limit vi → 0, the collisions become unstable for

k >∼ 0.6. That is, at low speeds, a π-phase difference collision can support a much greater

interaction strength, and therefore number of atoms, than a 0-phase difference collision.

Although a π-phase difference suppresses collapse between the colliding BSWs, it
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Figure 2. (a) Stability of BSW collisions in a λ = 0.4 trap for (i) ∆φ = 0 and (ii)

π, as a function of k and vi. The lines represent the transition between stable and

unstable collisions. Solid (dashed) lines correspond to ∆φ = 0 (∆φ = π) collisions,

and bold (grey) lines represent the collisional stability after one (40) collisions. We

cannot present results for low vi since the wavepackets overlap initially. The position

of the JILA experiment is shown by the cross and the dotted line indicates kc. (b)-(c)

Density plot of a single (k = 0.4) collision with (b) ∆φ = 0 and (c) ∆φ = π for initial

positions (i) z0 = 23 µm (vi ≈ 1 mm s−1) and (ii) z0 = 9 µm (vi ≈ 0.4 mm s−1).

does not completely prevent it. The density profile of the BSWs alters as they approach,

leading to an enhanced peak density. As vi is increased this enhancement becomes larger

and thus the threshold for instability initially moves to lower values of k. However, for

vi
>∼ 0.4mm s−1, the threshold moves to higher values of k and ultimately approaches kc.

At the transition between stable and unstable collisions, we observe a narrow region

of inelastic collisions, where the outgoing BSWs have modified shape and speed due to

the occurrence of partial collapse during the collision. This typically manifests in the

excitation of collective modes in the outgoing BSWs.

We now consider the presence of axial trapping §. This is known to lower the

critical point for collapse of the ground state [12, 13]. Our initial state consists of two

ground state wavepackets, positioned off-centre in the trap at z = ±z0 and given a phase

difference ∆φ. Density plots showing the typical evolution of a BSW collision in a trap

are shown in Fig. 2(b) and (c). The BSWs accelerate down the trap and collide at the

origin with approximate speed vi = λωrz0. First we consider the stability after just one

collision in the trap. We observe qualitatively similar features to the λ = 0 case. For

low speed and ∆φ = 0, collapse can occur (Fig. 2(b)(ii)) while a π-phase difference can

prevent collapse (Fig. 2(c)(ii)). At higher speed, the outcome becomes independent of

∆φ, as illustrated in Figs. 2(b)(i) and (c)(i). This insensitivity to the relative phase at

high impact speeds allows one to adopt a simple particle model to describe this regime

[26]. Figure 2(a) presents the relevant parameter space for ∆φ = 0 (bold solid line)

and ∆φ = π (bold dashed line) collisions. Comparison to Fig. 1(a) shows that the axial

trapping shifts the threshold for instability to lower values of k. Note that for more

§ Although these states are not strictly solitonic when under external axial trapping, we will continue

to refer to them as BSWs.



Collisions of bright solitary matter waves 6

(less) spherical traps the transition lines get shifted to lower (higher) values of k. Since

multiple collisions can occur in the trap, we also probe the collisional stability after 40

collisions (grey lines in Fig. 2(a)) for ∆φ = 0 (solid line) and π (dashed line). The

transition between stable/unstable collisions gets shifted to even lower values of k.

In the JILA experiment, the two BSWs can be clearly resolved when they are at

the outer turning points of their oscillatory motion in the harmonic trap, revealing their

maximum displacement to be z0 ≈ 16 µm. We estimate their collisional speed to be

vi = λωrz0 = 0.7 mm s−1. The point corresponding to the JILA experiment is indicated

in Fig. 2(a) by the cross. For ∆φ = 0 we see that the JILA BSWs are stable after one

collision but are destroyed by 40 collisions. In contrast for ∆φ = π the JILA BSWs

are stable even after 40 collisions. Given that over 40 stable oscillations were observed

in the JILA experiment, this gives strong evidence towards the existence of a π-phase

difference in the experiment.

We propose that the stability of BSW collisions is a play off between the timescale

over which the BSW interact tint and the characteristic time for collapse to occur tcol:

if tint < tcol then the passing wavepackets do not have time to collapse; however, if

tint > tcol, the collapse has sufficient time to develop during the collision. Based on this

idea, the onset of instability in high speed collisions will be dominated by the collapse

timescale tcol and this would imply that onset of instability is independent of ∆φ, as

observed in our simulations. Consider just one ∆φ = 0 collision in the JILA system

(k = 0.4, λ = 0.4). From Fig. 2(a), the critical speed for collapse is vc ≈ 0.6 mm s−1.

We can estimate the interaction time at this speed as tint = ξ/vc. From [12] the size

of the JILA wavepacket is ξ ≈ 3 µm, giving tint ≈ 5 ms. The characteristic timescale

for interaction-induced collapse has been measured experimentally in this system to be

5(1) ms [27]. In other words, at the point at which we observe the onset of unstable

collisions, tint ≈ tcol. This gives evidence to support this proposal. Due to the lack of

experimental data and an accurate theoretical model for collapse times [25], we cannot

currently extend upon this prediction.

For the cases of ∆φ = 0 and π considered so far, the evolution of the density

is symmetric about the origin throughout the dynamics. For intermediate phases

0 < ∆φ < π, the collisional density becomes asymmetric [15, 16]. Using an effective 1D

GPE, valid under strong quasi-1D confinement, Khaykovich et al. [20] have indicated

the transfer of atoms between the colliding waves. Here we will consider the full

3D dynamics of BSW collisions in a λ = 0 system for the whole range of phase

differences −π ≤ ∆φ ≤ π. An example is shown in Fig. 3(a) for two identical BSWs

(k = 0.4) colliding with relative phase ∆φ = 0.5π. The asymmetric collision induces

a considerable population transfer between the waves, generating a highly-populated

and lowly-populated BSW. To conserve momentum, the highly (lowly)-populated BSW

travels at reduced (increased) speed.

We quantify the population transfer after the collision by the ratio ∆N/N , where

∆N is the number of atoms transferred and N is the initial population of each BSW.

In Fig. 3(b) we plot ∆N/N as a function of relative phase ∆φ for the collision of two
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Figure 3. (a) Density plot of a collision of two (k = 0.4) BSWs for vi = 0.05 mm s−1

and ∆φ = 0.5π. (b) Population transfer (∆N/N) versus ∆φ for speeds of vi = 0.025

(crosses), 0.05 (circles) and 0.1 mm s−1 (dots) for k = 0.4. For ∆φ ≈ 0 (shaded region)

the collisions are unstable to collapse due to maximal overlap of the waves.

k = 0.4 BSWs at various speeds. At the highest speed (dots) the population transfer

varies sinusoidally with ∆φ, reaching a peak at ∆φ = π/2. However, at lower speed

(circles) the population transfer becomes skewed, with the peak moving towards ∆φ = 0.

At the lowest speed presented (crosses) the population transfer appears to diverge as

∆φ → 0. This information is also shown in Fig. 4(a) which maps out the population

transfer in the parameter space of vi and ∆φ for k = 0.4. Here we clearly see that

the population transfer is maximal for low speeds and decays with vi. Around ∆φ = 0

and at low vi, we find a small region where the BSW overlap is so great that a collapse

instability is induced. For an increased value of k = 0.5 this unstable region becomes

larger, as shown in Fig. 4(b), with collisions only being stable for all phases when

vi > 0.6 mm s−1. The region of collapse instability increases even further for k = 0.6

[Fig. 4(c)], where stable collisions for all ∆φ occur only for vi > 0.9mms−1. As shown

in Figs. 3 and 4, the magnitude of the population transfer can be a large fraction of the

total population and is expected to be experimentally detectable.

We have performed an approximate two-mode analysis of this problem, similar

to that performed for BECs in static double well potentials [28], but with each mode

being propagated at constant speed vi through each other. When closely positioned,

Josephson-like tunnelling occurs between the states, with the final population transfer

depending sinusoidally on ∆φ and decaying exponentially with vi due to the reduced

interaction time. This is in qualitative agreement with the GPE simulations, suggesting

that Josephson-like tunnelling is the key process. However, the two-mode analysis over-

estimates the amplitude of the population transfer and does not describe the observed

divergent behaviour or the regions of collapse. Since the two-mode analysis grossly fails

to describe the collisional state of the BSWs (e.g. the formation of fringes), this is not

surprising.

In summary, we have shown that the collisions of bright solitary waves exhibit

rich and non-trivial behaviour, not present for 1D solitons. High-density collisions can

induce collapse, depending on the collision time tint (and therefore the collisional speed)

relative to the collapse time tcol. For tint > tcol the BSWs are completely destroyed by

a catastrophic collapse, with the presence of a π-phase difference between the waves
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Figure 4. Population transfer (∆N/N) between two colliding BSWs in an axially-

homogeneous waveguide (λ = 0) in the parameter space of relative phase ∆φ and speed

vi for (a) k = 0.4, (b) k = 0.5 and (c) k = 0.6.

suppressing this instability. For tint < tcol, the collisions are elastic and independent

of relative phase. Using our analysis we show that the experimental observations

of long-lived ‘soliton’ oscillations by Cornish et al. [4] require the existence of a π-

phase difference. Furthermore, we reveal a Josephson-like population transfer between

the colliding BSWs that depends sensitively on relative phase and can be a large

proportion of the total number. As such, this effect may provide a route to matter-

wave interferometry with solitons, which will be examined in future work.
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