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The histoy of petogenesis has been the histaf re-interpetations of origins — Peter J.yie

We analyze the first-aler obsevations, basic important enriched geochemicasewoir. e ailgue that
concepts and explicit/implicit assumptions built into the ancient subducted metasomatized mantle lithogpher
three major hypotheses for the enriched component(sfSML) piovides the major soae component for OIB.
in the souce of ocean island basalts (OIB) in terms of The metasomatic agent is ag®4CO,-rich silicate melt
incompatible trace elements: (1) subducted oceanderived fom within the ¥Z. Upwad migration and
crust (SOC), (2) subducted continental sediments, anadoncentration of the melt at the lithosp&el/Z interface
(3) mantle metasomatism. SOC is compositionally(i.e., the lithospher-asthenospherbounday or LAB)
too depleted (i.e., [La/Spk1) to be the major soae results in chemical stratification in theVk with the
material for OIB that ae highly incompatible element deeper potion being moe depleted (i.e., DMM),
enriched (e.g., [La/Sm]>>1). We cannot ule out the  providing the sowe for MORB. The widesgad
contribution of continental sediments as an enrichedmetasomatized peridotites, pyenites and hornblendites
OIB souce component; howevexcept for two known from xenolith suites exhumedrin the deep lithospher
cases that ar yet to be fuher investigated, theris (both oceanic and continental) and irogenic peridotite
no convincing evidence for any significant sedimentmassifs confirm theote of a low-F silicate melt phase
contribution to the petrgenesis of global OIB. as the metasomatic agent. The SOC, if subducted into
Continental materials tlmugh subduction esion can  the lower mantle, will be too dense &iurn in bulk to
certainly contribute to mantle compositional the upper mantle soce regions of oceanic basalts, and
hetepgeneity and may contribute towlarsome enriched may have contributed to the two d@rlow shear wave
component in OIB soae regions. Overall, OIB @& not  velocity povinces (LLSVPS) at the base of the mantle
only enriched in incompatible elements, but also enrichedbeneath the Pacific anéifrica over Eath’s histoy.
in the pogressively ma incompatible elements, with
their infered souce material being variably mer  Intr oduction
enriched than the primitive mantle. These observations Differences in the geochemical characteristics of mid-ocean ridge
require that the OIB soges ae pre-enriched by low- basalts (MORB) and intra-plate ocean island basalts (OIB) were
degree (Low-F) melt metasomatism. The interfacealready obvious over 40 years ago (Gast, 196@se diferences .
between the gwing oceanic lithospherand the top of were instrumental in formulatmg .the manFIe plumg hypothesis

(Morgan, 1971, 1972). OIB are rich in potassium and light rare earth
the seismic low velocity zone\k) represents a natural  glements, which is consistent with a mantle plume origin from a
peridotite solidus and is the ideal site for major low-F primordial mantle source deep in the lower mantle, whereas the ocean

melt induced metasomatism. The ~ 70 Myr history offidge crests tap only the passively rising shallow asthenosphere that

oceanic lithospher gowth to its full thickness of ~ 90 has !ow potassium and |I.gh'[ rare earth. element conten_ts because of
previous seafloor spreading-related episodes of reworkinggdvior

!(m recods the hiStof of mantle me'["_’lsomatisms'umng 1972).This first-order perception remainsdaty unchanged although
in the deep pdion of the oceanic lithospheeing an  our understanding of the mantle geochemistry is much better today
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thanks to the érts of intensive, world-wide sampling and detailed separation in the early EartAbundant geochemical evidence
trace element and isotope studies using analytical methods of varyinghdicates that the mantle source of MORB is more depleted, both
sophistication over the past forty years. isotopically and in terms of incompatible element abundances, than
One of the major advances in this regard is the recognition ofthe mantle source of OIB. By interpreting MORB-source mantle
mantle compositional heterogeneities through studies of oceaniaepletion as resulting from continental crust extraction in Ezetirly
basalts. OIB are particularly variable in composition such that severahistory (e.g.Armstrong, 1968; Gast, 1968, Hofmann, 1988), we could
isotopically distinct mantle source end-members (e.g., “DMM”, be satisfied with the OIB source being less depleted than the MORB
“EM1", “EM2”, “HIMU”, “FOZQ", “C") have been proposed to source. Howeverthe OIB source is actually more enriched in
explain the variability (e.gWhite, 1985; Zindler and Hart, 1986; incompatible elements than the PM (Sun and McDonough, 1989;
Hart et al., 1992; Hanan and Graham, 1996; Hofmann, 198@&). Niu and O’Hara, 2003, 2009; Prytulak and Elliott, 2007; Humphreys
isotopic ratio diferences among these end-members reflect theand Niu, 2009). It also varies significantly in its inferred abundances
differences of the radioactive parent/radiogenic daughter (P/D) ratiosand ratios of incompatible elements, as well as radiogenic isotopes,
(e.g., Rb/SrSm/Nd, Lu/Hf, U/Pb an@h/Pb) in their ultimate mantle ~ from one island to another and from one group of islands to another
sources which, with time, evolve to distinctive fields in isotope ratio group.
spaces. Significant fractionation of parent/daughter (P/D) ratios in By accepting the notion that mantle compositional heterogeneity
the solid state is considered unlikely in the deep mantle due toresults from plate tectonics, it is logical to search for the incompatible
extremely slow diusion rates (Hofmann and Hart, 1978); hence elementenriched OIB component in this context. Hofmani\&rite
it is logical to suspect that processes known to occur in the uppe(1982) were the first advocates for “Recycled Oceanic Crust” (ROC)
mantle and crust (e.g., magmatism, metamorphism, weathering ands the enriched source material for OTBey proposed that oceanic
sedimentary processes) are the likely causes of any P/D fractionatiorcrust is returned to the mantle during subduction. Eventually
These shallow or neaurface P/D fractionated materials are then becomes unstable (at the core-mantle boundary; see Christensen and
introduced into the mantle sources of oceanic basalts througfHofmann, 1994) as a consequence of internal heating, and the resulting
subduction zones. Mantle compositional heterogeneity is thus assumediapirs become the source of ocean island basalts (OIB) and other
to be a general consequence of plate tectonics. Despite this apparehbt-spot volcanismWhile some details are considered conjectural,
conceptual clarityour understanding of the origin of mantle the principal idea of the ROC model has been widely accepted as
compositional heterogeneitiyn particular the origin of the enriched  being correct (se@/hite, 2010).
geochemical signatures of OIB, remains somewhat incomplete. Some authors have suggested that subducted terrigenous
Here, we do not attempt to solve the OIB source problem, nor tosediments (upper continental crust (CC) derived material) may be
conduct a comprehensive review of the scientific literature, but toresponsible for enriched signatures of OIB in terms of both
analyze the first-order observations, basic concepts and explicitincompatible trace elements and isotopes (e.g., Chauvel et al., 1992;
implicit assumptions built into the major hypotheses for the enrichedWhite and Duncan, 1996; Hofmann, 1997; Jackson et al., 2007).
component(s) in OIB sources in terms of incompatible trace elementsOthers have emphasized the importance of mantle metasomatism (Sun
While radiogenic isotopes are important in helping revealing OIB and McDonough, 1989; McKenzie and O’Nions, 1995; Halliday et
source histories as dealt with by mame take an incompatible al., 1995; Niu et al., 1996, 1999, 2002, 20dliu and O’Hara, 2003;
element approach in illustrating the concepts because it is, relativelybonnelly et al., 2004Vorkman et al., 2004; Pilet et al., 2005, 2008,
speaking, simple, explicit and straightforward relative to that based2011; Niu, 2008, 2009; Humphreys and Niu, 2009).
on radiogenic isotopes; the latter can be quite complex, and their
interpretations ultimately rely on an understanding of trace elements -
especially the P/D ratios, as discussed abdiithold and Sracke Subducted ocean crust (SOC) IS not a
(2006) have demonstrated that the EMI, EMIl and HIMU OIB major source for OIB
end-members, defined on the basis of theiN8¢Pb isotope
characteristics, cannot be uniquely distinguished in terms of  Niu and O’Hara (2003) showed in terms of straightforward
incompatible trace elements. Because of the wide-spread associatigoetrology trace element/isotope geochemistry and mineral physics
of “OIB” with “mantle plumes”, we hope the conclusions reached in that ancient subducted ocean crust (SOC) cannot be the major source
this study may contribute to the great mantle plume debate (e.gmaterial for OIBAmong many other reasons, SOC, if subducted to
Campbell, 2005; Davies, 2005; Foulg2005; Foulgeet al., 2005; the lower mantle, wilhotreturn in bulk to the upper mantle, but will
Niu, 2005; Campbell and Davies, 2006) although the debate cannosink irreversibly to the base of the manfldis is because ocean
be resolved using the geochemistry alone. In order to make therust of MORB composition is denser than the ambient mantle at all
discussion here morefettive, we first briefly go over historic and  depths except the depth interval between 660 and 720 kmeiOno
current thinking about OIB mantle source regions and the basical., 2001; Hirosest al, 2005; also see discussion by Niu and O’Hara,

underpinning concepts. 2003), and it is not straightforward how such dense material can
rise in bulk to OIB source regions in the upper mamle.do not,
A brief overview howeverrule out the possible presence of fragments of SOC entrained

in some form of deep mantle upwelling. Consequeritlis not
The primitive mantle (PM) is a hypothetical construct representing surprising if some OIB do indeed contain traces of the geochemical
the silicate portion of the bulk EarttWhether any material of this  fingerprint of SOC. Note that we need to make a conceptual distinction
composition still remains within the mantle is conjectural, but it has here between the terms ROC and SOC: SOC is a description, but
been implicitly assumed in all models and discussions that the PMROC is an interpretation that SOC is necessarily returned to OIB
was compositionally uniform from its inception upon the core source regions.

Episodes #®l. 35, no. 2



312

SOC is too depleted to be the soae material
for OIB
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Figure 1 Schematic rare earth element (REE) patterns to illustrate
the compositional complemeatity between the contineat crust
(CC) and oceanic crust (OC) following the original work of
Hofmann (1988, 1997). Note that it is not straigbtward how to
produce OIB (process 4) that are highly enriched in incompatible
elemens (e.g., [La/SmY,, >> 1) by melting subducted OC that is
highly depleted in incompatible elemenfe.g., [La/Sm],, < 1), yet
“OIB from recycled OC” has remained the most popular model for
the petrogenesis of OIB despite the manyfidiilties of this model.
PM refers to the primitive mantle. Modification &r Niu (2009).
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If SOC cannot return in bulk to the mantle source regions for
OIB, the concept of “recycled oceanic crust” (ROC) as OIB source
may not be practicalWe can readily demonstrate that the “ROC”
interpretation for OIB has ditulties. Figure 1 shows this analysis
schematically in terms of rare earth element (REE) patterns. Obyiously
melting of incompatible element depleted SOC cannot produce
incompatible-element highly enriched OIB (process 4 in Fig 1),
without even mentioning the petrologic unlikeness of partially melting
basaltic rocks (SOC) with MgO < 13 wt% alone to produce picritic
melts with MgO > 15 wt% (e.g., primitive Hawaiian OIB) (see Niu
and O’Hara, 2003 his again simply menas that the major Hawaiian
source rock is peridotitic rather than basaltic/eclogitic. Figure 2
compares two independent estimates of average OIB (Sun an
McDonough, 1989illbold and Srake, 2006) with average N-type
MORB (Sun and McDonough, 1989) and the mean composition of
the ocean crust (Niu and O’Hara, 2003). It is clear that the ocear
crust (or SOC when injected into the mantle) is too depleted in

¥
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Extraction of very low degree (~ 1.6%) melt
from the PM in Earth’s history (> 2.5 Ga)
formed the incompatible element enriched
continental crust (e.g., Hofmann, 1988).

Process (1) also produced the incompatible
element depleted uppermost portion of the
mantle (DM) (e.g., Hofmann, 1988).

The DM is the source for MORB and explains
the incompatible element depleted nature of
ocean crust (OC) (e.g., Hofmann, 1988, 1997).

The OC, recycled to the mantle, cannot there-
fore be the source for the highly incompatible
element enriched OIB (e.g., Hofmann &
White, 1982; Hofmann, 1988, 1997).
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Figure 2 Comparison of average OIB (Sun and McDonough, 1989;
Wilbold and Sracke, 2006) with average N-type MORB (Sun and
McDonough, 1989) and model ocean crust (OC) (Niu and O’Hara,
2003) in terms of REE [a] and incompatible element abundances
[b] normalized to the primitive mantle (PM; Sun and McDonough,
1989).After Niu (2009).

incompatible elements to be a possible source material for OIB, as
guantitatively demonstrated in Figure 3 beldvurthermore, even if

the ancient SOC were indeed present in the OIB source regions, it is
isotopically far too depleted to explain the enriched isotopic properties

of OIB (see Figure 1 of Niu and O’Hara, 2003).

Figure 3 demonstrates theggament quantitatively using island-
averaged OIB data (s@@ble 2 of Humphreys and Niu, 2009 for
data source, derived from the global GEOROC database: http://
georoc.mpch-mainz.gwdg.de/georoc/). Sifi€, (we us€li,, where
72 refers to th&iO, content in OIB corrected for fractionatiorfiexits
to an Md value of 0.72) and_®;. (P,,) are reliably determined major
and minor incompatible element oxides routinely analyzed along with
the rest of the major element oxides, and because the REEs are reliable
incompatible and moderately incompatible trace elements (vs. other
incompatible trace elements in the database; see Humphreys and
Niu, 2009 for data discussion), our analysis here is focussed on these
elements, i.eTi,,, P, [La/Sm],, and [Sm/Yb},,. The panels, b
andc on the left in Figure 3 plati,,, P,, and [La/Sm],, against
[Sm/Yb],,,. While the data trends (thick grey linear regression lines
with arrows) lagely point to a control by increasing pressiesind
decreasing extenf} of melting from beneath thin lithosphere to
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Figure 3 Panels a-c on the leare based on thelb island-averaged datgiven in Table 2 of Humphreys and Niu (2009). The thick arrowed
lines are regression lines and point in the direction of increasing pressure and decreasing extent of melting with increasing lithosphere
thickness (Humphreys and Niu, 2009; Niu et al., 201Using the primitive mantle composition (PM, Sun and McDonough, 1989) as the
source (purple square) we show thag partial mels by varying exterst of partial melting from vanishingly small (~ 0.01%) to up to 10%
under both garnet (red) and spinel (blue) facies conditions cannot explain the formation of the highly enriched OIB.riéke arrows
(downwards and lgfvards) in panel b, which applies to all other panels, indicating increasing extent of melting form 0.1 to 10%. The
incongruent melting relationship [0.083 olivine + 0.810 cpx + 0.298 garnet = 0.190 opx + 1.000 melt] with initial modes of 0.53 olivine, 0.27
cpx, 0.04 garnet and 0.16 opx @lter, 1998) is used for garnet peridotite facies melting (red squares). The incongruent melting relationship
[0.652 opx + 0.466 cpx + 0.049 spinel = 0.167 olivine + 1.000 Melt] with initial modes of 0.513 olivine, 0.341 opx, 0.131 cpx and 0.015 spinel
(Niu, 1997) is used for spinel peridotite facies melting (blue triagles). The simple batch melting mqd@} ¢CL/[D, + F(1 - P)]) is adequate

to illustrate the concept. Relevant partition cdiefents are all aken from Prytulak and Elliot (2007). The panels d-f on the right are the
same but also show the model bulk composition of the ocean crust (bluish grey diamond; Niu and O’Hara, 20033 padidl mels (as
indicated) by varying extestof melting from vanishingly small (~ 0.01%) to up to 10% under eclogite facies conditions using modes of 0.6
omphacitic cpx and 0.4 garnet appropriate for MORB protoliths (Song et al., 2006). For conceptual illustration, we did not include rutile
and assume modal batch melting with the bulk ocean crust approximates the subducted oceanic crust (SOC) for thesetenmarned,

these simple calculations allowfettive evaluation of the actual roles of SOC in the genesis of OIB sné&lbte that inclusion of rutile will

lower the TO, in the model melt in the iT_-[Sm/Yb],, (see text for deiils).
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beneath thick lithosphere (see Figure 1 of Niu et allpQke lage melts which then react with surrounding hargherto produce an
compositional range and the scatter cannot be produced by melting alivine-free pyroxenite in the Hawaiian magma source redibe.
uniform mantle sourcelo illustrate the ggument, we use the PM  absence of olivine in the resultant source region could explain the
composition (Sun and McDonough, 1989) as the source to calculatéigh Ni content in the parental melts and hence the high Ni contents
melt compositions generated by ~ 0.01% (vanishingly small) to 10%of the olivine phenocrysts crystallized from Ni-rich basalts in shallow-
batch melting (simple and adequate for this purpose) under both spinéével magma chambers beneath Hawaii. Such a conceptually (not
and garnet peridotite facies conditions as indicated (see the captionecessarily geologically and physically) feasible process was invoked
to Figure 3 for further detailsps expected, a variety of sources to emphasize the requirement of recycled “SOC” in the petrogenesis
varying from PM-like to variably much more enriched than PM of Hawaiian OIB in favour of the “ROC” model. Howeydr has
would be required to explain the OIB compositional spectrum, in been demonstrated in terms of straightforward phase equilibria that
particularly the data witfTi_,, P,,, [La/Sm],,, and [Sm/Yb},, values Hawaiian basalts require olivine to be present in the magma source
greater than can be modelled with the extent of melting vanishinglyregion (Green and Falloon, 2005; Presnall and Gudfinnson, 2009,
small (Figure 3). 2011). Furthermore, a robust Ni-olivine Kd and mass balance analysis
The paneld, e andf on the right in Figure 3 include the bulk (Li et al., 2008, Li and Ripley2010) has pointed out that the
ocean crust composition (Niu and O’Hara, 2003) and its partial meltscalculations and interpretations by Sobadeal.(2005) on Hawaiian
from ~ 0.01 to 10% batch melting under eclogite facies conditionslavas and olivines are unsupported. More recent experimental
(see Figure 3 caption for detail#)ssuming the bulk ocean crust studies orK,S""¥™" as a function of (Wang and Gaetani, 2008;
approximates the SOC composition, these simple calculations suggesflatzen et al., 2009) demonstrate that the high Ni olivine in Hawaiian
that SOC, if present at all in OIB source regions, contributes verymelts can be readily produced without having to invoke an olivine-
little to the enriched OIB compositions. In tiie,-[Sm/Yb],,, plot free pyroxenite sourc&Ve consider that while an eclogite-derived
(Figure 3d), it seems possible that SOC melts could represent thenelt reaction with harzbgite is a petrologically interesting concept,
enriched end-member for OIB melts. Howewaich SOC melts it may actually not take place at all in practice because of the physical
cannot contribute in any straightforward way to OIB compositions in difficulty in transporting volumetrically significant amounts of dense
the RP,-[Sm/Yb],,, (Figure 3e) and [La/Srg)}-[Sm/YD],,, (Figure eclogite into the source region of Hawaiian magmatism. Importantly
3f) plots. Furthermore, the proportion of SOC is likely volumetrically the invoked eclogite of the “SOC” protolith is highly depleted in
small and would be preferentially melted out because of its low solidusncompatible elements (Figs. 1 and 2), as is the hagizbwvith which
temperature and heat-suctiofeef during melting (Hirschmann and  the eclogite melt reacts (unless metasomatized; see b&lwvgfore,
Stolper, 1996; $olper ancAsimow, 2007) As a result, the contribution  this revised ROC (R-ROC) model cannot produce OIB that are highly
of SOC by total melting to OIB would be the bulk composition of the enriched in incompatible elements (Figs. 2 and 3).
SOC itself, which lies at the most depleted end of the OIB Sobolev et al. (2007) have gone a step furthergoeathat the
compositional spectrunTherefore, SOC contributes, if not actually Ni, Cr, Mn and Ca contents of olivine phenocrysts can be used to

diluting, very little to the enriched component of OIB. estimate the proportions of “SOC” in the mantle source regions of
basalts erupted both in the ocean basins and on the contiFtesys.
Revised “ROC” model has moe difficulties showed that olivine Ni contents are high in basalts erupted on thick

(> 70 km) lithosphere, low in basalts erupted on thin (< 70 km)

In recent years, the ROC model has become more popular becausighosphere, and lowest in MORBhis, plus the correlated variations
of some refreshed lines of evidence (e.g., Sobolev et al., 2000, 200%f Cr, Mn and Ca in olivine, allowed them to quantify that “SOC” in
2007). Sobolev et al. (2000) interpreted the composition of olivine OIB source regions is necessarily more abundant beneath thick
melt inclusions in some Hawaiian lavas as recording the signature ofithosphere than beneath thin lithosphefbey stated that the
“ghost plagioclase” from ancient recycled gabbros (lower ocean crust) proportion of “SOC-eclogite” in mantle source regions increases with
This interpretation has gained some acceptance, but as the host oliviriacreasing lithosphere thickness (e.g., 5% beneath ocean ridges, 10%
of these melt inclusions is a liquidus phase crystallized from coolingin Iceland mantle, and 20% in Hawaiian mantfe.a result, they
and evolving melts in shallow crustal magma chambers, the trappegroposed that “SOC eclogite induced olivine-free pyroxenite”
melt cannot be a primary melt in equilibrium with mantle minerals contributes more to the erupted basalts with increasing lithosphere
(Niu and O’Hara, 2003)Thus, it is unclear how the composition of thickness: ~ 10-20% for MORB, ~ 20% for Iceland “OIB”, ~ 40%
the melt inclusions can be used to infer Hawaiian OIB sourcefor Detroit seamount OIB, ~ 60% for Hawaiian OIB and ~ 100% for
lithologies. Furthermore, it is intriguing as to why such a source- the Siberian flood basalts.
indicating “ghost plagioclase” signature should be preserved only in ~ We have demonstrated that the high quality compositional data
these minute melt inclusions, yebtin the host lavad.his conundrum provided by Soboleet al. (2007) for olivines in MORB and basalts
was answered elegantly by Danyushevsky et(2004), who erupted both on thin and thick lithosphere in the ocean basins and on
demonstrated that-Ca-Sr rich melt inclusions in phenocryst olivines  the continents are wholly consistent with and readily explained by
result from a complex grain-scale dissolution-reaction-mixing process,the variation in the lithospheric thickness or lideeffect(Niu and
and that dissolution of phenocryst plagioclase can leave such @’Hara, 2007; Niu et al. 2@} without the need to invoke varying
signature in the melt inclusions and does not in any way demonstratabundances of SOC in the mantle source regions, which has more
a role for recycled gabbros in the petrogenesis of Hawaiian basaltsdifficulties. It is intuitively unreasonable that SOC should be more

Sobolev et al(2005) agued that the high Ni content of olivine abundant beneath old thick lithosphere than beneath young thin
phenocrysts in some Hawaiian lavas reflects the presence ofithosphere. If SOC were passively embedded in a peridotite matrix
volumetrically significant “SOC” in the mantle source regidrne in the upper mantle, there would be no straightforward physical
“SOC”, in the form of eclogite, melts first to produce S&aturated mechanism that selectively drives the SOC material from beneath
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thin lithosphere to beneath thick lithosphere to be sampled by OIB o T T T T T T T T T T
volcanism. If SOC was incorporated into hot mantle plumes, it is : —e— OlB-SM8o
fortuitous that deep-rooted plumes would know the “required” amount 50 —@— OIB-SW06
of SOC as a function of lithosphere thickness near the Earitface. —&— GLOSS-PL98
As SOC has a lower melting temperature than the ambient peridotite 30 | —&— CC-RGO03
mantle, it is possible that SOC might contribute more to OIB melts
because of the restricted extent of melting beneath thick lithosphere
but SOC is compositionally too depleted to yield highly enriched
OIB (Figures.1-3). ok i
81
Subducted continental sediment is not a E 6
<
major source for OIB E 4
= 1 | | | | | | | | 1 | | 1 | |
Many authors have suggested that subducted terrigenous < La Ce Pr Nd  Sm Eu Gd Th Dy Ho Er Tm Yb Lu
sediments could be responsible for the incompatible element enriche g 400 TT T T T T TT OB OB cC GLOSS
signature of some OIB (see discussion above). In the context of plat » | TR o —(C) EL)
tectonics with mantle circulation, it is possible and also likely that £ (Ulon | 153 1384 on 0192 0276
terrigenous sediments can be transported into the source regions s 100 L [[E,”,‘ff;;"’” 10000960 25> 0115 0156
K . X N & n PM | 1000 0770 >> 0.438 0311
oceanic basalt3.he question remains as to whether these sediments L (TéSmlpy | 0.587 0768 >> 0.220 0368
are indeed the enriched component seen in OIB. Looking at the REE L
patterns (Figure 4a), the similarity of average OIB (Sun and 40 |
McDonough, 1989Wilbold and $rake, 2006) to bulk continental
crust (CC; Rudnick and Gao, 2003) and global subducting sediment:
(GLOSS; Plank and Langmuat al, 1998) is encouraging, but we 10 F 4
can readily see the @lifulties when other incompatible trace elements .
are considered (Figure 40)he CC and GLOSS have characteristic al
depletions in NbTa, PandTi and enrichment in Pb - such a “CC-like L
signature” is rather strong and should be evident in the incompatible [IEEN ST SIS SIS I A A B A A

. . . : : BaTh U K Ce Pr Nd Hf Sm Eu Th Y Er Yb
element characteristics of OIB if terrigenous sediments were indeec Rb Nb Ta La Pb Sr Zr P Ti Gd Dy Ho Tm Lu

the enriched component. In fact, if anything, OIB are relatively Figure 4 Comparison of average OIB (Sun and McDonough, 1989;

enriched, not depleted, in Nb () andTa (vs. U) (Figure 4b; also  wjlbold and Srake, 2006) with model bulk contineat crust (CC;

see Niu and Batiza, 1997). Rudnick and Gao, 2003) and global subducting sedinsg@LOSS;
Thus far the best evidence for OIB suites with an apparent “CC- plank and Langmuit 1998) in terms of REE [a] and incompatible

like signature” is from the Naturaliste oceanic plateau in the Indianelement [b] abundances normalized to the primitive mantle (PM;
Ocean (Mahoney etal., 1995) and some lava flows from Samoa (Savagun and McDonough, 1989)fter Niu (2009).

in the Southwest Pacific (Jackson et al., 2088).the former is
geologically close to a passive continentalgimawithArchean crust Elliott et al., 1997; Plank and Langmuli998) and subduction zone
whereas the latter is close to the aclisaga subduction zone witha  erosion (von Huene and Scholl, 1991; Clifv&nnucchi, 2004; Niu
forearc possibly associated with ancient continental lithosphere (Niuand O’Hara, 2009), it is expected that subducted crustal materials
et al., 2003), it is unclear if the CC-like signatures in these two case€an be transported to the source regions of OIB and MORB. It is thus
are indeed produced by recycled terrigenous sediments or continentalot surprising that signals of CC (and GLOSS) may be detected in
lithosphere material made available at shallow levels. Further studieshe geochemistry of OIB and MORB. Howeéere is no convincing
of these two cases, based on a combined approach involving petrologgvidence that recycled CC or GLOSS materials are major contributors
geochemistrygeology and geophysics should prove useful. to the geochemically enriched signature of global OIB. However
In this context, it is necessary to briefly discuss the recent workthere is the possibility that subducted CC, GLOSS and subduction-
by Rapp et al. (2008), who conducted ultrahigh pressure (16 to 23roded continental materials may have been diluted in the mantle
GPa) experiments on terrigenous sediments and advocated th®IB source regions and thus CC-like signatures (Figure 5) may have
significance of their findings in explaining some mantle compositional been lagely “smoothed out” in the mantl@he possibility of the
heterogeneitiesThey discovered that the stable higlassemblage  latter scenario needs further investigation.
contains 15 to 30% K-hollandite, which controls much of the whole-

rock budget of lage-ion lithophile elements (LILE, e.g., Rb, Ba, Sr . .
K, Pb, La, Ce an@h). They concluded that the incompatible trace- Contmental mantle Ilthosphere may be

element signature of EMI OIB sources can be attributed to recyclinga potential enriched souce for OIB
of K-hollandite-bearing continental sedimentsTransition Zone

depths. We note, howevetthat the geochemical characteristics of McKenzie and O’Nions (1995) suggested that subcontinental
the sediments remain unchanged (Figure 5), afet difstinctly from lithospheric mantle (SCLM) could be an important source component
OIB compositions. for OIB. Because the SCLM is compositionally depleted (in terms of

In the context of plate tectonics with sediment subduction (e.g.,a basaltic component) and therefore physically buoyant, the
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(Rb Nb Ta La Fb Nd Hf Ti Dy FEr Mantle metasomatism of oceanic litho-
=== K-Hollandite .
- 155106 sphere can explain OIB souce
@ .
£ 100} GLOSS PLOS enrichment
£ CC-RGO3 .
5 Why mantle metasomatism?
% It has been recognized that OIB source materials are enriched in
g incompatible elements relative to the PM, e.g., [La/m] ..
g 10+ 1 [La/SmL,, (e.g., Sun and McDonough, 1989; McKenzie and O’Nions,
’é 1995; Niu et al., 2002; Niu and O’Hara, 2003; Prytulak and
E Elliott, 2007; Humphreys and Niu, 2009; Figure 3), and that OIB are
more enriched in the progressively more incompatible elements
(Figure 6).These observations require that OIB sources have
L1 L I R L1 undegone prior enrichments through a process of low-degree (low-
Ba Th U K Ce Sr Zr Sm Gd Y Y

F) melt infiltration, which is termed mantle metasomatism (e.g., Sun
Figure 5 Comparison of the experimeaitdat of Rapp et al. (2008)  5g Hanson, 1975; Lloyd and Bailey975; O'Reilly and Griin,
on terrigenous sedimest(i.e., CC-like sirting material) under 1988; Pileet al., 2005)Wyllie and his collaborators made pioneering
mantle conditions as represented by K-hollandite with actual qntributions to our understanding of mantle metasomatism through
compositions of CC (Rudnick and Gao, 2003) and GLOSS (Plank  eyperimental petrology and its application to global tectonics and the
and Langmuir, 1998) to show that the ultrahigh-Phase K- garth's chemical diferentiation (e.g. Wyllie, 1984, 1985,
hollandite is indeed the primary host of the incompatible elensent 1987a,b,c,1988a,Wyyllie and Huang, 1975,19784yllie and Sekine,
in the bulk rock and retins the trace element signatures of the 1982; Sekine anwyllie, 1982a, b\Wyllie et al., 1983; Gaspar and

starting CC-like material. This confirms that subducted sediment Wyllie, 1987:White andMyllie, 1992; Baker anyllie, 1992:Wyllie
compositionally remain unchanged (unless significantly modified 5,4 Rrabchikoy 2000).

in subduction zones) and cannot be the primary enriched source

material for OIB and alkali magmas, contrary to the interpegion Rb Nb Ta La Pb Nd Hf Ti Gd Dy Ho Tm Lu
. 100 T T T T T T T T T T T T T T T T T I
by the authors.After Niu (2009). . —@— OIB-SM9%
P& —@— OIB-WS06
L CC-RGO3
geochemically enriched component in the SCLM, which could be 3 TAB-E03

. : L =
potential OIB source material, must be of metasomatic origin as §
evidenced by the presence of hydrous minerals (e.g., amphibole =

phlogopite) and vein lithologies (e.g., garnet pyroxenite, pyroxenite é 10 ¢

and hornblendite), present in some mantle xenoliths (Frey and Greer £ i

1974; Frey et al., 1978; Menzies and Murpt880; Menzies, 1983; §

Menzies and Hawkesworth, 1987; O’'Reilly and @mif 1988) and (:

massif peridotites (Frey et al., 198@mkazawa et al., 2000; Pilet et §

al., 2005).The origin of the metasomatism in the SCLM is poorly ©

understood, but could be conceptually similar to that in the growing 1t

oceanic lithosphere (see Niu et al., 1999, 2002; Niu and O’Hara, Dbt ]
2003, 2009; Humphreys and Niu, 2009) as discussed below in detail Ba Th U K Ce Pr Zr Sm Eu Tb Y Er Yb

We note here that although the seismic low velocity zoR&)lis Figure 6 Ocean crust (Niu and O’Hara, 2003) normalized multi-

the most likely source of the metasomatic agents (see below), it i®lement diagram illustrating that OIB are enriched in the
poorly defined beneath continents except in locations associated witlprogressively more incompatible elemenindicating that the
continental rift systems (e.g., the EAftican Rift), and in eastern  enriched component in OIB is of low-degree melt magmatic origin
Australia and eastern China where the upper mantle structurgi.e., mantle measomatism)Average OIB compositions are as in
resembles that beneath the ocean basins. Figs. 2 & 4. For comparison, model compositions of CC (Rudnick
The involvement of metasomatized SCLM in intra-plate and Gao, 2003) and island arc basaffAB; Elliott, 2003) are also
continental magmatism is physically straightforward, but how plotted.After Niu (2009).
metasomatized SCLM materials enter OIB source regions beneath
the ocean basins is ndtis requires that the metasomatized SCLM The pre-metasomatic sources may be primitive mantle or
becomes part of the convective (asthenospheric) mantle system. SCLireviously depleted melting residues, and their metasomatism has
delamination is a widely invoked “process” (see Lorinczi and been ascribed to infiltration by a low-melts that are enriched in
Housman, 2009), but how such a process actually works remainsolatiles (e.g., HO, CQ) and incompatible elemenfBhe evidence
poorly understood because it is physicallffidifit for the buoyant for metasomatism has come from mantle xenoliths in oceanic and
SCLM to sink into the denser asthenosphéymong several continental alkali basalts and kimberlites (e.g., Frey and Green, 1974,
conceivable possibilities, “basal hydration-weakening” remains theFrey et al., 1978; Freyl980; Menzies, 1983; Menzies and
most efective physical mechanism that can convert “lithospheric Hawkesworth, 1987; O’Reilly and Giiifi, 1988; Coltorti et al., 1999;
mantle” into “asthenospheric mantle” (Niu, 2005, 2006). Gregoire et al., 2000; Sen et al., 2005; Coltorti and Gregoire, 2008)
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and tectonically exhumed massif peridotites (e.g., Frey et al., 1985This incipient melt is enriched in volatiles (e.g,(H CQ) and
Takazawa et al., 2000) as well as inferences from highly enrichedncompatible elements (Niu et al., 2002; Niu and O’Hara, 20G3).
mantle derived melts (e.g., Sun and Hanson, 1975; Lloyd and Baileythe melt is buoyant, it tends to concentrate into a “melt-rich layer” (in

1975). green) atop the\lZ, leading to compositional stratification within
the LVZ. The deep portion of theMZ (in yellow) is thus depleted
Locations of mantle metasomatism (see below). During the process of lithosphere growth, spinel/garnet

Iherzolite in the uppermostMZ is thermally captured as newly

Wyllie (1980, 1987a, 1988a,b) presented elegant metasomatiaccreted lithospher&he low+ melts (from the melt-rich layer) collect
models for the petrogenesis of highly enriched magma types such aand ascend, crystallizing hydrous minerals within the ambient
kimberlite and carbonatite in continental settings and basanite angeridotite (modal metasomatism; O'Reilly and @1if1988;Wilshire,
nephelinite in the ocean basins. He stressed the importance of incipierit987; Nielson and Nollerl987; Harte et al., 1993; Nielson et al.,
partial melting in the presence of bothHand CQ in generating 1993; Nielson andVilshire, 1993; Pilet et al., 2008, 201 forming
the metasomatic agents which can modify both oceanic and continentaleins of garnet pyroxenite, hornblende-pyroxenite and hornblendite
lithosphere (e.d/Vhite andWyllie, 1992; Baker antyllie, 1992). (yellow veins) before being completely absorbed into the ambient

Compared to MORB, OIB samples from all the intra-plate ocean peridotite (cryptic metasomatism; O’Reilly and @&nif 1988; Pilet
islands so far studied are enriched in incompatible elements withet al., 201).
[La/Sm],,, >>1. Furthermore, many intra-plate seamounts on old Figure 7b presents a parcel of mantle (diapir or “plume”) that
ocean crust apparently unrelated to “plumes” or “hotspots” (e.g.,ascends and partially melts by decompression when it intersects the
Batiza, 1982; Batiza andanko, 1984; Castillo et al., 2010), including  solidus As these “plume” melts approach the base of the lithosphere,
the very young (~ 6 Ma) “Petit Spots” alkali basalts erupted on thethey may gain additional incompatible element enrichments from the
135 Ma old Pacific plate (Hirano et al., 2006), are also highly enrichedmelt-rich layer (green). “Plume” melts ascending further through the
in the incompatible elements. lithosphere can assimilate eardfermed metasomatic veins, leading

All these suggest that mantle metasomatism is widespread in théo further enrichment of the OIB melts that are ultimately erupted
oceanic lithosphere, and is likely also true in the mantle lithosphere(Pilet et al., 2008,20% Niu, 2008)The erupted OIB melts may thus
beneath continents. In principle, mantle metasomatism cannot takéave three components) fertile mantle source materials from greater
place in regions of major melting such as beneath ocean ridges and idepths (plumes?),l() the LVZ melt layer (green), andll()
mantle wedges above subduction zones because oFHigh-low- components assimilated from the eaffenmed metasomatic vein
F) melting where less enriched or diluted melts prevail. However lithologies in the oceanic lithosphere. Note also that for the
because melting regions are finite, I&wmelt may exist and  petrogenesis of OIB the fertile materials from depth (i.e., component
metasomatism may thus take place in the peripheral areas of thesé”) must be volumetrically dominant, compositionally peridotitic,
major melting regions (Niu et al., 1996; Pikdtal., 201). Mantle and may contain recycled, previously (ancient) metasomatized, deep
wedge overlying subduction zones is surely metasomatized/{gie= portions of oceanic lithosphere that are already enriched in the volatiles
and Sekine, 1982; Donnelly et al., 2004), but the connection to OIBand incompatible elements (Niu and O’Hara, 20880, component
petrogenesis is obscured because the metasomatic agent there mdy is required for OIB petrogenesis to explain the basaltic/picritic
have an arc-melt signature (i.e., [Nb/Jh[IAB) < 1 and [B&/U];,, composition and the first-order coupling between incompatible
(IAB) < 1), whereas both MORB and OIB all have [Nb/Jh] elements and radiogenic isotopes in many OIB suites (see Niu and
(MORB, OIB)=1 and [®&/U],, (MORB, OIB)= 1 (Niu and Batiza, O’Hara, 2003; Niu et al., 2a). For example, the highly scattered
1997; Niu et al., 1999; Niu and O’Hara, 2009; Sun and McDonough, variation of®’SrfSr, 143Nd/A*Nd, 206.207.20pp %P and! ®Hf/1 Hf
1989; Halliday et al., 1995; Hofmann, 1997). in average OIB as a function lithosphere thickness (Niu et all) 201

The interface between the base of the growing oceanic lithospherelemonstrates OIB compositional heterogenbity also shows weak,
and the seismic low velocity zone\(EZ), which is also termed  yet expected trends reflecting coupling of the isotopic compositions
lithosphere-asthenosphere boundary (LAB), atop the asthenospherneith radioactive parent/radiogenic daughter ratios (P/D; e.g., Rb/Sr
as the ideal site for mantle metasomatism is relevant to OIBSm/Nd, U/Pb,Th/Pb and Lu/Hf). Such coupling requires a time

petrogenesis (Halliday et al., 1995; Niu et al., 1996, 2002,;20iL interval between the formation of the metasomatized lithosphere and

and O’Hara, 2003, 2009; Niu, 2008). the volcanism in excess of 1.0 Gyrs, which may represent the minimum
period from the time of the subduction of ancient oceanic lithosphere

Mechanism of mantle metasomatism at the into the deep mantle to the return of these materials to the OIB source

regions (Niu and O’Hara, 2003). Componetit§ and “lll ” (Figure
7b) are not required for contemporaneous OIB volcanism, but their
(LAB) presence and involvement, if arman contribute to the petrogenesis
Figure 7a shows that oceanic lithosphere grows with time throughof extremely enriched magma compositions such as alkali basalt,
basal accretion of\LZ material (red arrows) before reaching its full basanite and nephelinite on many ocean islands (e.g., Pilet et al.,
thickness after ~70 million yearshe presence of an incipient melt 2008; Niu, 2008) and some intraplate seamounts (e.g., Batiza and
due to the déct of volatiles (HO+CQ,)) in lowering the peridotite  Vanko, 1984). If these components were involved, then incompatible
solidus is required to explain the characteristics of g (Lambert elements and radiogenic isotopes would be decoupled because of
andWyllie, 1968, 1970Anderson and Spetz|et970; Green, 1971,  significant parent-daughter element fractionation by the recent
1991; Wyllie, 1971; Wyllie and Huang, 1975,1976; Green and metasomatism (Figure 7), that is too young/recent to produce
Liebermann, 1978\Wyllie, 1977; Niu and O’Hara, 2003; Green and significant radiogenic isotope ingrowthshe association of
Falloon, 2005; Mierdel et al., 2007; Niu, 2008; Green et al., 2010).incompatible element enrichment with a depleted radiogenic isotopic

growing oceanic lithosphee-LVZ interface
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lithosphere metasomatism is a widespread

Ridge phenomenon, and the deep portion of the
oceanic lithosphere is therefore an important
| —— enriched geochemical reservoir (Niu and
\ [ O’Hara, 2003).
40J\

The nature of the metasomatic
agents

Lithosphere

Decompression melting

The observation that metasomatic vein
lithologies (e.g., pyroxenite, hornblendite,
other amphibole- and phlogopite-bearing
assemblages, as well as grain-boundary
enrichment) are common in deep portions of

(edD) 2unssaig

“plumes”

Depth (km)

N Incipient H 0-CO, rich helt forms 7\~

N

anq concentrates toward top of LVZ
~

LVZ

160, - - %“
oL £ both oceanic and continental lithosphere
N - _ ' 2 strongly suggest that the metasomatic agents
zoo—m 2 originate from the seismic\MZ. The
observation that OIB are more enriched in

the progressively more incompatible elements
Age (Ma) with respect to major mantle minerals (Figure
Figure 7 [a] Oceanic lithosphere thickens with time by basal accretion ¥ZLmaterial (red 6) requires that the metasomatic agents are
arrows) for ~70 million years before reachingsitfull thickness of ~ 90 km in terms of the very low+ H,0- and CQ-rich silicate melts.
plate model. The thick purple curve is the present-day interface (LAB) between the growlngecent years, carbonatite melt has been a
lithosphere and the Z, which is conceptualized as a natural solidus marking the petrologigopular choice of metasomatic agéyllie
transition from solid amphibole/phlogopite-bearing peridotite (lithosphere) to peridotite¢as among the very first to recognize that the
containing a small melt fraction (MZ). The thin white dashed curves indicate where thipresence of CQin the LVZ can induce
interface was in the past, illustrating the continuing lithosphere growth with time as the plataelting more dectively than HO although
agesAn incipient melt may form at depth (as deep as ~ 180 km?) in tW& caused by the he considered that both G@nd HO must
presence of H-C-O volatiles. The incipient melt is thus enriched in these volatiles (e,@,, Hbe at work in the ¥Z (Wyllie and Huang,
CO,) and incompatible elemestAs the melt is buoyant, it tends to concentrate towards thE975, 1976\Wyllie, 1977; Wyllie and Lee,
top of the LVZ as indicated by the green “melt layer” (the thickness is exaggerated f8098;Wyllie and Rrabchikoy2000). Several
illustration), leading to compositional stratification within the\\Z. The dashed-blue lines investigators have proposed recently that the
with arrows point in the direction of asthenospheric flow because of ridge suction (Niu BYZ may be lagely or perhaps entirely caused
Hekinian, 2004).As a result, MORB samples the more depleted deep portions of e Lby CO,-bearing/generated incipient melts
whereas the enriched “melt layer” atop theMZ continues to contribute to lithosphere (e.9., Yaxley et al., 1998; Presnall and
metasomatism before it reachesifull thickness. In the process of the lithosphere thickeningGudfinnsson, 2005, 2008; Dasgupta et al.,
the melt from the “melt layer” will collect and ascend, crgélizing hydrous minerals within 2007). These ayuments are based on the
the ambient peridotite (i.e., modal nmetomatism), forming veins of pyroxenite andrecognition that the solubility of JO in
hornblendite (yellow veins) before being finally/completely absorbed in the ambient peridotitantle minerals is high enough to absorb any
(i.e., cryptic measomatism). Because tkes ~70 million years for the lithosphere to reach it free HO (e.g., Hirth and Kohistedt, 1995;
full thickness, measomatism continues for this length of time. [AJparcel of mantle material Karato and Jung, 1998), yet the solubility of
(perhaps a “plume”?) ascends and partially melby decompression. These “plume” ngelt CO, in upper mantle minerals is
() may gain additional enrichmers from the “melt layer” (Il). Continued ascent of the “diminishingly low” (Keppler et al., 2003).
“plume” melts through the lithosphere can cause assimilation of earlier-formedasematic It follows that the free volatile components
veins (lll), leading to further enrichment of the ultimately erupted OIB melt Note that available in the upper mantle must be, @O
while the “asthenosphere” is ¢én considered synonymous with th&Z, we here consider dominated by CQin non supera-subduction
the LVZ as the upper portion of the asthenosphere because the latter is present throughgane environmentsThis naturally leads to
the upper mantle, yet the\lZ is seismically detected mostly beneath ocean basins bidgified the conclusion that C@rich melt or

from Niu and O’Hara (2003, 2009) and Humphreys and Niu (2009). carbonatite melt may in fact be the
metasomatic agent in the mantlEhis
signature is a consequence of recent mantle metasomatism (e.gaygument is further strengthened by the fact that carbonate melts are

Mahoney et al., 1994; Niu et al., 1996). much more mobile and can readily metasomatize the lithosphere on
The occurrence of highly alkaline basalts dtrisige seamounts  large scales because of their low viscosity and low solidus temperature.
on the young (< 3 Ma) seafloor (Batiza, 1982; Batiza ‘daako, There is indeed much observational evidence from studies of

1984; Batiza et al., 1989) suggests th&Zirelated metasomatismis  mantle xenoliths for the importance of carbonatite metasomatism (e.g.,
a rapid process. It follows from this and the foregoing discussionlonov, 1998; Schleicher et al., 1998; Harmer and Gittins, 1998;
that the history of oceanic lithosphere growth through basal accretiorColtorti et al., 1999; Gregoire et al., 2000; Newmann et al., 2004).
in its first ~70 Myrs records the history of the oceanic mantle Nevertheless, we consider thaj@HCQO,-rich silicate melts are far
lithosphere metasomatism (Niu, 2008)e consider that mantle  more important as metasomatic agents than carbonatite melt alone
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Figure 8 Multi-element diagrams normalized to the average
composition of the bulk ocean crust (Niu & O’Hara, 2003; see
Figure 6) to compare represeative carbonatites with average OIB.
[a] fresh Cenozoic carbonatite mslt(dikes/sills without obvious
cumulate) from the eastern margin of thabletan plateau (Hou et
al., 2006) show trace element patterns with REE and LILE
enrichment and HFSE depletion (e.g., Baker\&Yllie, 1992; Hauri

et al., 1993). Given such high levels of non-HFSE incompatible
elemens in carbonatites, if such carbonatite meltwere the
metsomatic agent for the enriched OIB signature, OIB would
inherit such signature, but it is not observedlso note that such
signature is ofen interpreted as apatite cumulate, but the
phosphorous (P) contertin these samples are at the same level as
those of OIB. [b] Comparison of carbonatite mel{produced
experimenally (6-10 GPa) by melting carbonated peridotite (Brey
et al., 2008). Note that as they used synthetictsig materials, in
order to compare the experimaitdaia with actual rocks like OIB,
we removed the é&fcts of sarting material composition by
normalizing their sarting compositions to the primitive mantle (PM;
Sun & McDonough, 1989) with compositions of the run prodsct
normalized accordinglyThe adjusted abundance levels are lower
than expected for OIB, which means that melting of PM
composition cannot produce the required enrichmgim OIB. By
assuming that carbonatites are derived from much more enriched
source than the PM, the maltwill be enriched, but the elemeait
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for several reasons. (1) Most metasomatic lithologies so far
documented from the continental and oceanic lithosphere are
dominated by pyroxenite and hornblendite veins (plus garnet,
phlogopite, rutile, zircon, titanite), with or without minor carbonate.
(2) OIB are enriched in the progressively more incompatible elements,
which is consistent with the metasomatic agent being &léiyo-
CO,-rich silicate melt, rather than a carbonatite melt. Natural
carbonatites have trace element systematics that are distinct from those
of OIB (Figure 8a). High pressure experimental simulation
demonstrates that behaviours of incompatible elements in carbonatite
melts difer remarkably from their behaviours in OIB (Figure 8b).
Carbonatite melts of deep transition-zone origin also show distinct
incompatible trace element systematics (Figure 8c).

Therefore, HO-CO,-rich silicate melt, notcarbonatitemelt, is
likely the major metasomatic agent for the petrogenesis of OIB even
though carbonatite melt may be locally important, particularly in the
continental settings.

Some new insights on mantle dynamics

The above discussion of OIB sourcefers some new insights
into a number of fundamental aspects of mantle geodynamics.

A new view on the origin and natue of the
depleted MORB mantle

The current paradigm of solid earth geochemistry is that the upper
mantle is depleted in incompatible elements (e.g., Hofmann, 1997),
and is therefore termed depleted mantle (DM) or depleted MORB
mantle (DMM) (Zindler and Hart, 1986; see Figure The logic
behind this is reasonable because MORB are depleted in incompatible
elements and the MORB source must therefore be depleted. Because
MORB are produced by decompression meltingpa$sive(vs.
dynamic) upwelling asthenosphere, the maximum depth of melting
must be shallowT herefore, the DM or DMM reservoir must also be
shallow and may occupy the entire upper mantle or upper mantle
plus the upper part of the lower mantle (see Donnelly et al., 2004;
Workman and Hart, 2005; Niu and O’Hara, 2009)e requirement
for the DMM to produce highly incompatible element enriched, near
solidus (lowF) melts that metasomatize the base of the overlying
oceanic lithosphere may therefore seem contradiclbiy apparent
contradiction does not negate the MORB source being depleted, but
rather suggests that the standard concept for the DM or DMM (see
Figure 1) needs some revision as pointed out by Niu and O’Hara
(2009). In Figure 7, the blue dashed lines with arrows point in the

patterns do not favour such carbonatite melt as a aseimatic agent
for the enriched signature of OIBAIso, the experimeral data show

Nb and Ta depletion, but no iTdepletion, yet Zr-Hf enrichment. [c]

3 calculated carbonatite medtin equilibrium with majorite and
perovskite (diamond inclusions) underdnsition Zone conditions
(Walter et al., 2008). Carbonatites with such trace element
systematics may indeed exist in deep part the upper mantle or
Transition Zone, but if these were netomatic agers, they would
impart such signatures to OIB, but this is again not observed.
Therefore, these three cases suggest that even though carbonatitic
melts may indeed exist and may be an im@ort measomatic agent

in some mantle environmesgt they cannot be the major naetomatic
agent required for the enriched signature of the global OIB.
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direction of the asthenospheric flow required to feed the ocean ridgecalculation, based on reasonable and explicit assumptions, is clearly
because of ridge suction (Niu & Hekinian, 20043.a result, MORB only illustrative. We note that there have been several alternative
sample the deep portions of th€Z_(in yellow) that are already  estimates involving more complex assumptions that give variably
depleted by the removal of@v-F melt. This concept dérs an entirely greater values. For example, Hetth & Wood (2001) estimated that
new perspective on the origin and nature of the depleted mantle (Niu- 5 wt% SOC is randomly distributed throughout the mantle.
and O’Hara, 2009).

In summarythe compositional stratification in th&Z (Figure Is thee any evidence for the SOC accumulated in
7) is required by the observations: (1) théZLis most consistent
with the presence of a volatile-rich melt phase; (2) a melt-rich Iayerthe deep lower mantle?
atop the WZ (green) is required by the occurrence of metasomatism  We suggest that the two ¢gr low shear wave velocity provinces
at the base of the growing oceanic lithosphere, which is also requiredLLSVPSs) in the lowermost mantle beneath the Pacific Adnida
by the abrupt seismic velocity drop at the lithosph&rsg-boundary may represent the SOC accumulated over Esahilstory These two
(or LAB; Kawakatsu et al., 2009; see Niu et al.,2fiir discussion); large LLSVPs have been recognized for some time (e.g., Dziewonski,
and (3) ridge-ward asthenosphere flow resulting from ridge-suction1984; Grancet al, 1997; Su and Dziewonski, 1997; Ritsema et al.,
(Niu & Hekinian, 2004) to feed MORB requires that the deep portion 1999; Kellogg et al., 1999; Mégnin and Romanowicz, 2000y

of the LVZ is compositionally depleted , i.e., the DMM source. have been interpreted to be excessively hot mantle domains
representing the locations of “superplumes” (e.g., Romanowicz and
Fate of subducted oceanic crust Gung, 2002; Ni et al., 2002), and to be responsible for the

geographically associated surface geoid highs or “superswells”

We have demonstrated above that SOC cannot be the major sour¢®cNutt, 1988) and probably also mantle isotopic anomalies revealed
for OIB. The question then is what may have happened to SOC in thérom volcanism on these highs and their peripheral regions (e.g., Hart,
context of plate tectonics and mantle circulation over Eahtistory 1984, Castillo, 1988). Recent studies suggest that the LLSVPs have
If ocean crust of MORB composition can indeed sink to the lower sharp boundaries with, and higher density (~ 2-5%) than, the ambient
mantle as illustrated by global seismic tomography studies (e.g., vamantle, indicating that they are chemically distinct from the
der Hilst et al., 1997; Grand et al., 1997; Karason and van der Hilstsurrounding mantle (Ni et al., 2002; Becker and Boschi, 2002; Ni
2000), subducted ocean crust (SOC) will not return in bulk to theand Helmbeger, 2003;Wang andVen, 2004;Toh et al., 2005; Ford
upper mantle source regions of oceanic basalts because it is densetal., 2006; Garnert al., 2007)Their origin is not well understood
than the ambient mantle at all depths except the depth interval betweeand their geodynamic fefcts cannot yet be properly modelled (e.g.,
660 and 720 km (see Ono et al., 2001; Niu and O’Hara, 2003; HiroseMcNamara and Zhong, 2004; Lassak et al., 20IBy could be
et al., 2005). If this irreversible process is indeed the case, then thisesidual Fe-rich material from core formation or subducted ocean
has profound implications for the chemical structure of the mantle ascrust (e.g., Garneret al., 2007; Hirose and La2008).

discussed by Niu and O’Hara (2003): Our estimate of ~ 3 wt% SOC in the entire mantle that at present
“As discussed above ... ... oceanic crust subducted into the has accumulated over the course of geological time is similar to the
lower mantle will not eturn in bulk to the upper mantle estimated mass of the LLSVPs, ~ 2 wt% of the mantle, by Burke et
because of the negative buoyancy in both solid and liquid al. (2008). Given the likely uncertainties in these estimates we do not
states. Tansfer of basaltic arst to the lower mantle would wish to overstate the significance of the calculations, but they do
be an ireversible pocess. This supprthe agument for a offer an independent line of reasoning in support of the concept that
hidden component deep in the lower mantle that has notbeen  mantle plumes do note originate from recycled oceanic crust and that
sampled by known volcanism ... ... and would also lead to  subducted ocean crust is too dense to return in bulk to the upper
chemical stratification of the mantle with the mean mantle source regions of oceanic basalts (Niu and O’Hara, 2003).
composition of the lower mantle becomin@gressively
enriched in esidual ocean arst lithologies (i.e., The “buoyant” superswells overlie the dense
‘;Aompos'“ona"y lower in Ca/Al, and higher in Fe/Mg, S ) qypg _ 4 contradiction or natural consequence?

g, Al, and water insoluble incompatible elements such as

Ti, Nb, T, Zr, and Hf). If subduction of oceanicusts into The geoid highs, superswells, and reduced seismic velocity in
the lower mantle has continued for some time, thengelar the lower mantle are all consistent with mantle “superplumes” initiated
compositional contrast in terms of these elements must exist  close to the CMB or lower mantle beneath the PacificAdrida.
between the upper and lower maritle. However because the LLSVPs at the base of the mantle beneath

these two regions aret buoyantbut rather dense (~ 2-5% denser

We can conduct a simple exercise following thiguanent. By than the ambient mantle), it is filiult to see how they could be the
assuming that (1) plate tectonics began at ~ 4.0 Ga (unknown; sesource of the “superplumesThis apparent contradiction points to a
Stern, 2007), (2) the oldest ocean crust may not be older than 208erious physical problem —how could this relationship be possible in
Myrs before subduction as is the case at present, (3) oceanic crusérms of straightforward physics? Models that apply an imposed plate
has always occupied 65% of the Easthuirface area (vs. 35% area history can result in focusing of the subducted materials into piles at
for the continental crust), (4) the average thickness of the ocean crughe core-mantle boundary beneaitfrica and the Pacific,
is about 6 km with a mean density of 3.0 g%ws. 3.3 g cri for the corresponding to the two LLSVPs (e.g., Garnero et al., 200&kse
mantle), then the amount of SOC since 4.0 Ga would be ~ 3.0 wt% omodels can explain the location of the two LLSVPs, but still cannot
the entire mantleThat is, there is 4 Gyrs/200 Myrs = 20 times the explain the observation that the “massive upwellings” manifested by
present-day ocean crustal mass stored in the deep méhite.  the superswells are underlain by regions of dense materials of huge

June 2012



321

negative buoyancy The “superplume” models suggest that the Transition Zone, and in olivine in the upper mantle (or a vapour phase,
negative buoyancy of the dense materials can be overcome by thermahusing incipient melting), which reduces both the bulk-rock density
buoyancy (cf. Garnero et al., 2007), thus leading to the upwelling ofand the elastic moduli (e.g., Frost, 1999; Litasov et al., 2003; Mao et
the “superplumes’Yet, it seems unlikely that thermal buoyancy can al., 2008a.bYe et al., 2009; Li et al., 2009; Jacobsen et al., 2008),
be suficient to overcome the > 2% density contrast (Niu and Batiza, and (3) refertilized volatile-rich deep portions of the oceanic
1991b,c), especially because of the very low thermal expansiorlithosphere (Figure 7)This means that the subducted lithosphere
coeficients at the deep lower mantle conditions (Birch, 1952; slab will likely separate into the dense crust (SOC) that sinks to the
Anderson, 2007). base of the mantle to form the LLSVPs and the buoyant mantle

Here we suggest that the existence of buoyant superswelldithosphere of the slab (SML) that remains at shallower mantle depths.
overlaying the dense LLSVPs is not a contradiction, but a naturallt is thus possible that the dense LLSVPs (SOC) could be overlain by
consequence in terms of plate tectonics, petrology and mineral physicsuch buoyant subducted mantle lithosphere (SML; Figure 10).
Transformation of the basaltic ocean crust (MORB + gabbroic Because the SML is ~ 15 times the mass of the SOC, it can occupy
cumulates) into eclogite during subduction and further high pressurenuch of the lower and perhaps part of the upper mantle, and because
phase transformation at the 410 km seismic discontinuity facilitateit is buoyant relative to the ambient mantle (e.g., PREM), it will result
subduction. Subducting oceanic lithosphere (or slab) can penetraten a surface manifestation — the geoid high and superswell in the
the 660 km discontinuity (with some fildulty; see van der Hilst et  Pacific and the “poorly-understood high elevation” of &fgcan
al., 1997) and enter the lower mantle, sinking eventually to the corecontinent.
mantle boundary region.

Figure 9 shows that under lower mantle conditions, ocean crustpWhy do LIPeruption sites carespond to edges of
with MORB composition is significantly denser (~ 3.6%) than the the LLSVPs?
ambient mantle (PREM), and will tend to sink. By contrast, the mantle ’
lithosphere portion must be less dense than the ambient mantle Burke andlorsvik (2004) found that 24 active hotspot volcanoes
(PREM) because it contains: (1) a thick section (< 30 to 60 km) ofcan be projected to the DVs = -1% contours along the edges of the
MORB melting residues beneath the crust that are less dense, (2)LSVPs (also se&horne et al., 2004; Garnero et al., 2007). Burke
water because of incomplete subduction-dehydration (Niu, 2004),et al. (2008) further showed that all L{Rirge igneous province)
which is hosted in serpentine before subduction (developed near ridgesruption sites with ages < 300 Ma lie above the DVs = -1% contours
and the trench-outer rise), in DHMS phases during subduction, inat the LLSVP edges, which they called plume generation zones
perovskite in the lower mantle, in ringwoodite/wadsleyite in the (PGZs), suggesting that the LLSVPs may have remained unchanged
for at least the past 300 MEhe latter is expected if the LLSVPs are

6.5 Data sources: T T T indeed piles of SOC because (1) ocean crust of MORB composition
éﬁee L189&91\*§[J 42 12001 is much denser than the ambient materials at the base of the mantle in
6.0 Hirtoa;;e, a,?fz(f{)g] ] both solid state and liquid form (see Figure 9; also Figure 7 of Niu
and O’Hara, 2003), and (2) if our calculations are reasonable, then at
’g 3.5 300 Ma, the LLSVPs would already have ~ 92.5% of their present
m: mass/volume. Localized ultra-low velocity zones Y2l beneath,
g >0F or in the vicinity of, the LLSVPs just above the CMB (e.g., Garnero
& etal., 1998Williams et al., 1998) may be localized melt layers within
? 4.5 the SOC induced by core heating. Such melt would be too dense to
g 10 rise (Figure 9).
ME It is puzzling why LIP eruption sites should correspond to the
edges (vs. centres/interiors) of the LLSVPs. Burke et al. (2008)
35 . . .
speculated that “hot material that has been heated by conduction from
- Lower Mantle g . .
ol T the core in the basal part of the slab graveyard may be driven toward
' 1000 1400 1800 2200 2600 3000 the PGZs (i.e., the edges of the LLSVPSs) by slabs or slab fragments
Depth (km) acting like push brooms.” Our explanation is much simpler as shown

Figure 9 Densities of various Earth materials as a function of depth,
simplified from Niu & O’Hara (2003) based on the experimant
data of Agee (1998), Ofaini & Maeda (2001) and the more recent
density da& for MORB (solid) by Hirose et al. (2005) to show that
under lower mantle conditions, subducted ocean crust of MORB
composition [MORB (solid)] is significantly denser (~ 3.6%) than
the ambient mantle represented by PREM (Dziewonskiglerson,

in Figure 10.At the edge of the LLSVPs, which act as thermal
insulators, the subducted mantle part of the lithosphere (SML) loses
its negative buoyancy by heating from the core and \gater may
facilitate partial melting in this hot setting, and because peridotite
melt is ~ 12% less dense than the ambient mantle (e.g., PREM, see
Figure 9), this partially molten peridotitic system will readily rise as
diapirs (or initial “plumes” if one prefers to call so), explaining why
1981). In the molten site, especially at deep lower mantle major hotspot volcanoes and LIP eruption sites correspond to the
conditions, molten ocean crust [MORB (melt)] is denser than edges (vs. the interiors) of the LLSVPs. Some “small” volcanoes do
komatiite melt (by ~ 8.6%), and even denser than the ambient mantle occur on the topographic highs or swells, for which our interpretation
(by ~ 13%). Imporantly, peridotite melt under lower mantle s given in Figure 10 (represented by “g”).

conditions has the lowest density; it is ~ 12% less dense than the  If the above diapirs are indeed the source for OIB, then, as we
ambient mantle, and is ~ 17% less dense than the solid ocean crusthave agued above, the OIB source materials are likely peridotitic in
[MORB (solid)]. composition and could include the recycled deep portions of ancient
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Subducted Ocean Crust piles
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Outer Core Heating

Figure 10 Cartoon (not to scale, excluding complications due to phase changes etc.

oceanic lithosphere of metasomatic origin (i.e.,
SML or portions of SML; see Figure 7he
SOC is likely forever stored at the base of the
mantle so long as the plate tectonics continues,
even though we do not rule out the possibility
that volumetrically insignificant fragments of
the SOC could be incorporated in the rising
diapirs.

Summary

1 The geochemically enriched trace element
signatures of OIB are Igely inherited from
their enriched fertile mantle source
materials, including recycled deep portions
of subducted oceanic lithospherd”(in
Figure 7), but can also be enhanced by
mixing with a melt-rich layer atop th&/iZ

(“II” in Figure 7) and by assimilation of
earlierformed metasomatic vein lithologies
(“I1'” in Figure 7) in the oceanic

lithosphere prior to eruptiod peridotite
source (1”) is required, and (1”) and
) ("Il ") are not; howeverthe participation

to illustrate our explanations for some perplexing features observed seismically (in the of the latter two can lead to extremely

deep mantle) and geologically (at the surface) in terms of some familiar geological cancept

enriched OIB compositions (e.g., basanite

[a], the LLSVPs, which are made up of piles of subducted ocean crust (SOC) - the and nephelinite melt).

permanent ‘graveyard’ of subducted ocean crust. They also act as a thermal “insulator”,
preventing efective core-to-mantle heat transfefb], accumulated piles of subducted

2 Subducted ocean crust (SOC) is too
depleted (i.e., [La/Sm]< 1) to act as a

mantle lithosphere (SML), that is less dense than and separated from the dense [a]. [c], major source material for highly enriched

“normal mantle” like “PREM”. [d], ultra-low velocity zone (ULVZ) represented by highly
localized melt layers/pockebf highest density (Figure 7). [e], edge regions of the LLSVPs
at the CMB, where hot diapirs [f] of SMIdevelop and rise. The hot diapirs may caint

OIB (e.g., [La/Sm] >>1) (Figs. 1-3), which
is not surprising because SOC, once
entering the lower mantle, is too dense to

a peridotitic melt phase, and their ascent is driven by compositional (vs. thermal) buayancy rise back again to upper mantle depths

They may feed volumetrically significant surface volcanism. [g], possible compositional

(Figure 9). The revised ROC-model

diapirs originating from SML at shallow depths that may also feed some surface volcanism. involving olivine-free pyroxenite as the

Note the mean density relationships among theséedént constituens at a comparable
depth: [d] > [a] > [c] > [b] > [9] » [f] (see Figure 7). Note that the lower density of [b] than

source for Hawaiian OIB is apparently
attractive, but has many problems. For

[c] is largely due to compositional buoyancy contrast. The subducted mantle lithosphere example, this olivine-free pyroxenite,

[b] contains (i) MORB melting residue, which is less dense, (i) water probably hosted in

postulated to result from the interaction of

DHMS phases (dense hydrous magnesium silicates) derived from incompletely subduction- SOC and harzbgite remains too depleted
dehydrated serpentine beneath the crust developed near ocean ridges, (iii) serpentine to explain the highly enriched geochemical
developed in the deep lithosphere at the trench-outer-rise, and (iv) refertilized volatile signature of OIB.

rich deep portions of the lithosphere (see Figure X)ater can reduce both density and
elastic moduli. Consequentlythe surface “superswells” are caused by the “density
deficiency” of [b], which is not in contradiction to the dense [a]. The thermal insulation
of [a] makes [b] not thermally buoyant, but at the edges of [a] the materials of the SML
can be heated up and melt. The compositional buoyancy of the &htlLits melt facilites

3 Subducted continental sediments (CC) can
be introduced into source regions of OIB,
but there is no convincing evidence for their
significance as a major enriched component
in the global OIB source in terms of the

the development of diapirs and their ascent as “plumes”. This explains why sites of major  familiar CC-like signatures. One possibility
volcanoes and LIPs are associated with the edges, not the interiors of, the LLSVPs. Note is that subducted continental sediments as

also that the OIB source materials are NOT [a] (or SOC) that is permanentlydethe

well as subduction-eroded continental

base of the mantle, but SML of peridotite compositions for logical and petrological reasons materials may have beendaty mixed with

discussed in the text (also see Niu & O’Hara, 2003). In this cartoon, we show for simplicity
that disintegration (crust-mantle lithosphere separation) of the subducted slabs aiay t

and diluted by the ambient mantle with the
otherwise distinct CC-like signatures lost

place at the CMB, but this is not required and the separation can happen at any depths in before transported to OIB source regions.
the lower mantle with the dense crust sinking, adding to the LLSVPs at the base of the4 The observation that OIB are not only

mantle and the compositionally buoyant mantle lithosphere in the mid mantle, which can
also develop into “chemical plumes”.

enriched in incompatible elements, but also
enriched in the progressively more
incompatible elements with respect to major
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