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Abstract

Outside normal working hours, UK citizens requiring advice or treatment from a doctor must tele-
phone a local out-of-hours call centre. Each call enters a queue and is subsequently assessed by a
call-handler and classed as urgent or routine. Calls then enter another queue to await a response from a
qualified doctor. A doctor telephones the patient to offer advice, or may arrange a home or centre visit.

From the patient’s perspective, it is necessary to provide care in a timely fashion. From the perspective
of Government funding of health care, resources are limited and certain lengths of queue are deemed
acceptable. Typically, call centres must meet performance targets which relate principally to delays
suffered by patients, as well as to quality of advice and treatment. As such, staff-loads must be carefully
planned.

Planning needs accurate forecasts of incoming call volumes. These vary by hour, day, and season,
and must account for calendar effects such as Christmas. We demonstrate the construction of models
to predict interday and intraday call volumes. We show that simple models capture all the important
features. We show how simulation models may then be used for resource allocation, uncertainty analysis,
and staff scheduling. The data are details of call numbers and queue lengths from all parts of the patient-
advice process for around five years, for a call centre based in Newcastle-upon-Tyne. There are around
350,000 complete cases in total. The methods are easily extended to other kinds of call centre. We
describe the impact Swine flu had on call volumes in the summer of 2009, and our reactions to amend
models in order to maintain forecast quality.

Keywords: Call-centre forecasting; prediction interval; daily arrival pattern; nonhomogenous Poisson
process; patient queue; nurse scheduling.

1 Introduction

Our interest is in forecasting for call centres, and in particular out-of-hours call centres (OOHCC) which
deal with patient requests for medical advice outside normal working hours. For such applications we need
explicitly to take into account that demand varies strongly by day – because of a number of calendar effects,
and by hour – because the call centre only operates at certain times and because demand varies with peaks
typically during the early evening for weekdays and mornings at weekends. We refer to the forecasting
of volume of calls expected each day as interday forecasting, and the pattern of calls arriving within the
day as intraday forecasting. Other kinds of call centre may exhibit different interday and intraday arrival
patterns; however the methodology we suggest should cope easily with other scenarios, without detailed
modification.

The nature of medical emergency call-centre handling is that staffing appropriately is the key consider-
ation. First, callers are patients in difficulty and there is an obligation to treat them as soon as possible,
within reason. Typically there are specified guidelines on the timeliness of such treatment to which the
call-centre needs to adhere. Secondly, patients are treated by qualified physicians. This is a very costly
resource. The call-centre must therefore arrange staffing levels that are sufficient to meet demand subject
to specified constraints, but must avoid prohibitively expensive idle capacity.

∗Durham University, Department of Mathematical Sciences, Stockton Road, Durham DH1 3LE, UK. Email:
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Interday and intraday forecasting can be correlated and as such, are generally modelled together Shen
and Huang (2005, 2008); Weinberg et al. (2007). Avramidis et al. Avramidis et al. (2004) investigate the
property that there is correlation between arrival counts during parts of the day, as well as dependency
between arrival counts on successive days. For our purposes, interday and intraday forecasting need to
be considered in some way separately. Interday forecasts were required to cover a volume of calls from
midnight to midnight, as required by service commissioners to illustrate activity levels. Intraday forecasts
run over staff shifts and are necessary to help with staffing levels at particular times.

Shen and Huang Shen and Huang (2005, 2008) apply an auto-regressive model incorporating an ad-
ditional day-of-week effect to forecast interday rates. This lacks any seasonal or holiday component; for
example, flu has a higher prevalence in winter than summer and demand will be higher then. Patient
case-mix over holidays will also have an effect, for example patients seeking repeat prescriptions of routine
medication may find their local clinic closed for a holiday period. We thus need a framework that will allow
particular modelling of holidays and seasonal effects.

Weinberg et al. Weinberg et al. (2007) build a multiplicative Gaussian model for forecasting call centre
arrival rates. They consider a nonhomogenous Poisson model modelling intraday and interday demand
separately before combining them in a multiplicative model. The dataset used in the study was an eight-
month period between March and October 2003, and again, seasonality and holiday effects were not included.
The dataset in this case spanned over four years, and seasonality and holiday effects could be visualized
quite easily, allowing a sensible model to be built to capture them.

Alternative approaches to modelling interday and intraday call centre demand are well documented in
Shen and Haung’s paper Shen and Huang (2008), which compares competing models by applying them to
a case study. These include a linear model with day of week-and-time-of-day effects (referred to as the
historical average approach), the Bayesian Gaussian model Weinberg et al. (2007), as well as multiplicative
and additive models. Here they found their model performed well against the other methods, however it is
still not adequate for application here without some seasonality and holiday components.

The U.S. Census Bureau’s software package for seasonal adjustment, X-12-ARIMA, may also be consid-
ered, see for example Ladiray and Quenneville (2001). On testing this software, we found that we could not
adapt it to forecast to the level that we wanted - daily, and with calls forecast for each 30-minute arrival
period.

In studying and testing potential methods, we came to the conclusion that none serve very well. Some
are statistically elegant, but are so narrowly focused to specific characteristics of an application scenario
that it becomes difficult or impossible to adapt them to other scenarios. Our requirement is for accurate
(because lives may be at stake) and adaptable (because calendar effects have strong implications for arrivals)
methods. For our OOHCC scenario, we had the advantage of historical information for a small number of
years. As such, fitting simple models to historical data is a natural starting point. As we shall see, one of
the lessons we draw from this work is that simple models, thoughtfully applied, offer excellent performance.
This is in line with Hand’s Hand (2006) view that

the improvements attributed to the more advanced and recent developments are small, and that
aspects of real practical problems often render such small differences irrelevant, or even unreal,
so that the gains reported on theoretical grounds, or on empirical comparisons from simulated
or even real data sets, do not translate into real advantages in practice.

One might reasonably expect that forecasting technology is already routinely embedded within health
services delivery. Alas, this is very far from the case. Few UK OOHCCs have credible statistically-based
forecasting procedures. One reason for this may be a failure of academics to engage; another may be that
existing methods overfit to particular details of a problem and so cannot easily be adapted. Academics
tend to concentrate on publication, and on avant-garde methodology, rather than practical solutions.

In section 2 we describe the scenario for which we developed our methods. In section 3 we explain how
we forecast call volumes arriving on specified days. In section 4 we explain how we forecast the pattern
of arrival of calls during a specified day. In section 5 we discuss some features of operational use of the
forecasts for planning and delivery of services.
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Figure 1: Flow chart of basic patient path through the OOH service

2 Out-of-hours medical call centre

In the UK, A General Practitioner (GP) OOHCC provides doctor cover between 18:30 and 08:00 on week-
days, and all day on weekends and bank (i.e. national) holidays. Companies providing this service are
commissioned by local Primary Care Trusts. A patient rings the OOH number and reaches a non-clinical
call-handler who records some details. Using specified urgency criteria, the patient’s case is assessed at
this stage as being urgent or routine. The call-handler will advise the patient that a GP will return their
call, within a particular time frame. This process is termed triage. In most cases, one of three things will
happen when the GP calls:

1. the patient’s symptoms require advice over the telephone from a GP;

2. the GP decides that face-to-face consultation is necessary and makes an appointment for the patient
at an Urgent Care Centre (UCC);

3. the GP arranges for a GP to visit the patient at their home.

This patient pathway is illustrated in Figure 1. There are key performance indicators (KPIs) for each stage
in the pathway. We focus in this paper on the first stage, the triaging of calls, for which the targets are for
Urgent (Routine) calls to be triaged within 20 (60) minutes. An OOHCC must score at least 95% in all
KPIs to be classed as ‘fully compliant’ by their commissioners.

Nearly all cases are triaged by GPs based at the OOHCC. For centre visit consultations, a GP is based
at an Urgent Care Centre with 10 minute appointment slots. When GPs have gaps in appointments, they
can telephone in and help remotely with the triage queue, known as dipping into the queue. Therefore
there is periodically extra resource available for triaging. For home visit consultations, a GP based at the
OOHCC will be driven to the patient’s home. These tend to be longer visits as they are generally more
complicated cases. Afterwards, the GP will either travel back to the OOHCC, or to another home visit
case. Whilst en route, GPs are encouraged to dip into the triage queue. Planning needs taking into account
how many GPs will be away from telephone triaging and further logistics such as the number of drivers on
shift.

For many call-centres, calls arrive directly as telephone calls. For our case study, as for some other
medical emergency centres, the calls arriving are pre-screened by trained call handlers. There are clear
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guidelines about which cases go through as genuine out-of-hours cases and whether they should be labelled
as routine or urgent. Arrival rates are likely to be related to call handler behaviour; call handlers going on
breaks at the same time, or working at different speeds. We could not observe or model this behaviour.
Consequently, our focus is on pre-screened call arrival volumes.

2.1 Operational forecasting

Core to operational requirements of OOHCCs is appropriate staffing to balance patient care duties with
achievement of KPI thresholds. Some of these questions are as follows. Which services are used more than
others? How long do different services take? How many calls will arrive on any given day? When will
calls arrive throughout a shift? How many GPs should be serving triage queues at any particular time?
How many emergency vehicle drivers will be needed? Do all GPs exhibit the same service rates and level
of quality? In the remainder of this paper, we consider the first, triage, stage of the patient path shown
in Figure 1, and concentrate on two aspects: the volume of calls expected each day (Interday forecasting)
and the pattern of calls arriving within the day (Intraday forecasting). Consideration of subsequent stages
requires further statistical modelling, but employing arrival rates as the key ingredient.

As we noted earlier, we did not find an existing methodology to satisfy all our needs, in particular the
need for good forecasts for highly situational time periods. As a first approach we thus decided to approach
these two aspects separately. For the prediction of call volumes per day we used linear regression. This
worked well as it incorporates dummy variables easily, making handling different holiday effects unprob-
lematic. For the pattern of call arrivals through the day we explored a number of options before settling
on a loess approximation to an assumed Poisson arrival rate with discrete portions of the day, as a feasible
means of getting at the underlying nonhomogenous Poisson process.

3 Interday forecasting

3.1 Data collection

Out-of-hours cases were collected from January 1st 2005, and these were used to build a predictive model to
forecast calls per day. At the start of our work we had available over 200,000 telephone calls per day (CPD)
for around 1,400 consecutive days. Figure 2 shows the dataset for CPD between January 1st 2005 and June
30th 2009. There is a day pattern, with low volumes for weekdays and higher volumes for weekends and
bank holidays. There are high-variation peaks at particular times during the year. There are some cyclical
and seasonal patterns.

3.2 Linear regression

We use the standard multiple linear regression setup Draper and Smith (1998). Thus, suppose that the
response variable y represents the number of calls per day, with observed value yi on day i, i = 1, . . . , n
collected into the n × 1 vector Y. We fit a model with an intercept and p − 1 covariates to be selected
from those available. The design matrix is X, an n × p matrix whose first column is a vector of ones
and whose remaining columns are the vectors x1, . . . ,xp−1, where xj is the n × 1 vector of values for
covariate j. The coefficient vector is the p × 1 vector β, with β1 giving the model intercept. The linear
model is Y = Xβ + ε, with ε an n× 1 vector representing independent homoscedastic N(0, σ2) errors. The
coefficients are estimated via least squares giving β̂, and these then generate fits as Ŷ = Xβ̂, and residuals
as ε̂i = yi − ŷi. Model adequacy is assessed inter alia through Wald-type tests on individual coefficients, F
tests on the overall fit, and residual and influence diagrams.

3.3 Stepwise regression

The response variable, y, may depend on a number of covariates and their possible interactions. In order
to explore suitable models, we employed stepwise regression Draper and Smith (1998), using a combination
of forward selection and backward elimination and bearing in mind the plausibility of the resultant models.
The covariates we considered are shown in Table 1. In the UK, national holidays are known as bank
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Table 1: List of candidate factors thought to be useful in predicting daily call volumes, CPD. Terms shown
in a bold font term were included in the final model.

Factor Rationale
dow Day of week: OOH service runs for 14.5 hours on weekdays and 24 hours on weekends
month Month: Suspect summer months are quieter than winter months
year Year: Are there differences in demand between years?
time Chronological date: Are there changes in demand over time?
easterbh Easter weekend: Busier than normal Fridays-Mondays in March and April.
easterfri Good Fridays: Busier than normal Fridays in March and April.
eastersat Easter Saturday: Busier than normal Saturdays in March and April.
eastersun Easter Sunday: Busier than normal Sundays in March and April.
eastermon Easter Monday: Busier than normal Mondays in March and April.
eastmarch Easter holidays in March: Expect Easters in March to be busier than April as the

weather tends to be colder.
otherbh Bank Holiday weekends in May and August: We expect these days to be busier than

normal Saturdays-Mondays in May and August.
bhsat Bank Holiday Saturdays: Busier than normal Saturdays in May and August.
bhsun Bank Holiday Sundays: Busier than normal Sundays in May and August.
bhmon Bank Holiday Mondays: Busier than normal Mondays in May and August.
maybhsat Bank Holiday Saturdays in May: Busier than normal Saturdays in May.
maybhsun Bank Holiday Sundays in May: Busier than normal Sundays in May.
maybhmon Bank Holiday Mondays in May: Busier than normal Mondays in May.
augbhsat Bank Holiday Saturdays in August: Busier than normal Saturdays in August.
augbhsun Bank Holiday Sundays in August: Busier than normal Sundays in August.
augbhmon Bank Holiday Mondays in August: Busier than normal Mondays in August.
maybh1 First May Bank Holiday weekend: Busier than other Bank Holiday weekends.
xmaswd Christmas Day falls on a weekday: Busier than a normal weekday in December.
xmaswe Christmas Day falls on a weekend: Different to a normal weekend in December.
xmasbhwd Christmas holidays on weekdays: Public holidays on weekdays will be busier than normal

weekdays in December and January.
xmasbhwe Christmas holidays on weekends: Busier than normal weekends in December and January
nydwd New Years Day falls on a weekday: Busier than a normal weekday in January.
nydwe New Years Day falls on a weekend: Different to a normal weekend in January.
xmas4day1 Days following Christmas when it’s a four-day holiday cycle: Unknown influence of the

difference between a four-day Christmas holiday versus a two-day Christmas holiday.

6



holidays. Although the full data set is very large, we need to take into account that the number of possible
interactions is also very large and we quickly exhaust degrees of freedom – and computational power – in
fitting full models. We need also to take into account that very large sample sizes lead inevitably to tiny,
and often misleadingly small, p-values. Therefore our stepwise modelling will depend partly on checking
for statistical significance, partly on plausibility, and partly on checking residuals to see whether enhancing
a model has practical benefit. In arriving at such models we are guided by the loss or gain in variance
explained using partial F -tests whilst paying attention to model parsimony using criteria such as Akaike’s
information criterion and Mallows’ Cp. Box-Wetz methods Draper and Smith (1998) may be used to check
on whether a model is worthwhile. We bear in mind that stepwise regression modelling is ad hoc, and
knowing where to stop is often a subjective judgement requiring statistical experience.

3.4 Predicting daily call arrival volumes

Table 1 shows the covariates we took into account, with some constructed from others. We explain in the
table our reasons for considering them. After applying stepwise regression, we settled on a model which
included the terms marked in bold font in Table 1, plus interactions between month and we, month and
time, and easterbh and time. This model has a large number of parameters, for example there are six
coefficients for day of week, dow, with Mondays as baseline; and 11 coefficients for month, month, with
January as baseline. There is some confounding to beware. For example we must be careful in interpreting
time, a linear effect intended to capture a steady increase or decrease in demand, with year, which allows
essentially a different baseline for each calendar year.

We omit from this account details of the very many models explored, except to illustrate some of the
considerations. For example, we found that we needed to include explicit terms for each day of the Easter
holiday. On the other hand, May and August bank holiday weekends may be handled through separate
dummy variables for Saturday, Sunday, and Monday effects plus a dummy variable to explain that May
bank holiday call volumes tend to be higher than those for August. Generally, call volumes in the summer
tend to be lower than in the winter, possibly because the North-East regional population drops as people
are away on holiday and possibly because of generally lower prevalence of illness. Public holidays tend to be
significantly busier; Christmas being the busiest, followed by Easter, and May and August Bank Holidays
respectively. Details of models tried and other aspects of the fitting processes may be found in Stirling
(2011), which also contains coefficient values, results of tests, and so forth.

The standardized residual plot shown in Figure 3, is mostly highly satisfactory. There are some high
residuals, but almost all relate to the Christmas and New Year periods. One reason for this is that we
have very limited data available for these holiday periods, once it is recognized that the particular location
of Christmas day within the week has a strong effect on call patterns. For example, it is thought that
call volumes can be exceptionally high on the Saturday immediately following Christmas day whenever
this occurs. Partly because of lack of data, our model cannot yet capture well all possible Christmas and
New Year configurations. As such, the resulting predictions for such periods have larger variability. These
will be better resolved as fresh data arrives. Historically, the partner OOHCC has very high uncertainty
concerning call volume patterns over the Christmas period, with the result that shift planning frequently
is inappropriate and KPIs are missed by very wide margins.

Such linear models routinely provide confidence intervals on the mean response and prediction intervals
for particular forecasts. Thus, one output to call-centre managers is a forecast of call volume for any day
in the year, together with a prediction interval. As an example, Table 2 shows the call volume forecast
and prediction interval for the days of the second UK May Bank Holiday in 2009. Generally, the forecasts
using the model have been highly trustworthy but with occasional poor forecasts occurring particularly at
Christmas. Forecasting over the Christmas 2008 period showed a large underfit, and there was overfitting
for Christmas 2009. This can partly be explained by operational reasons such as telecommunications failure
and unexpected staff absence.

3.5 Model updating and validation

In operational terms, we began applying these ideas with around 2-3 years data, with initial results available
from linear modelling for the Christmas 2008 period, as this is the time of year for which forecasts are most
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Figure 3: Standardized residual plot for the model for the period 01/11/2004 to 30/06/2009

Table 2: Forecasts, prediction intervals and observations for May Bank Holiday 2009

Date Forecast 95% Prediction Interval Observed

23/05/2009 (Sat) 726 (649,802) 713

24/05/2009 (Sun) 652 (575,729) 606

25/05/2009 (Mon) 649 (571,721) 613
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keenly sought. As time progressed, we periodically updated our models. Typically this means retaining
existing model terms, with slighter sharper estimates reflecting more data and higher certainty. As much
more data arrives it is possible to add new terms to the model, with the interpretation that more data
allows us to pick up previously undetectable influences. Each forecast is compared to the corresponding
observation as it arrives. This allows us to diagnose potential model inadequacy, but usually investigation
reveals an operational cause for the discrepancy.

We were fortunate to obtain access to an earlier data set covering two months from 2004, partial in the
sense of the full patient pathway shown in Figure 1, but complete in terms of call arrivals. Therefore we
were able to validate our model based on post-2005 data to predict 2004 outcomes. We found no obvious
residual or temporal discrepancies, and comparison of residuals from the model data set and the validation
data set revealed no significant differences.

3.6 Adapting the model to other scenarios

Linear modelling employing dummy variables for calendar effects works very well as a pragmatic solution
and is easy to implement. As a second example, while we were working on OOHCC forecasting, we were
approached by Sustrans, a UK charity concerned with encouraging environmentally friendly travel. The
data consisted of counts of cycles in 6 UK cities for 2005-2009. For each city, there are several cycle counters
which automatically record cycle traffic. In total there were 111 locations with counters. Interest is in the
seasonal pattern of cycle use, together with the implications of covariates such as route type, amount of
street lighting, proximity of school, and so forth. The number of observations is approximately 125,000.
To analyze the data, we employed essentially the same methodology to assess seasonal calendar effects for
each counter separately.

The standard linear multiple regression model was tried, both on the raw counts and taking square
roots of counts as theory suggests these have a more Gaussian distribution. These gave reasonable fits,
with typically around 85% variation explained, depending on location. Unlike the call-centre counts, these
cycle counts can be much smaller and so it is more satisfactory to model the counts directly as Poisson.
As such, a generalized linear model was also fitted using Poisson regression (log link). These also gave
good fits but tended to suggest overdispersion. Consequently, negative binomial regression models were
also tried, and this was the final model accepted. In checking assumptions and model fit, there were no
worrying discrepancies. There were no obvious missing seasonal or other terms, and relatively few very
large standardized residuals. Results from the analysis were ultimately used by the UK Department of
Transport to address policy.

3.7 Unexpected shocks to the system

Managers may need to adapt models when there are shocks to the system, typically a new and unexpected
external factor which must be taken into account. An example is provided by the Swine flu panic of 2009,
which had a major impact on call volumes coming into the OOHCC. Headlines concerning Swine flu began
to be reported towards the end of April 2009. By July 2009 there was a massive surge in activity levels for
healthcare providers across the world; completely uncharacteristic and unprecedented. Patients with even
quite mild flu symptoms began to call the OOHCC for advice where previously they would have managed the
symptoms themselves. Part of our task with our parter institution, was urgently to model the implications
of the epidemic on call volumes. No methodology can handle such shocks straightforwardly. However, one
advantage of the regression approach is that extra model terms can be added and explored quite easily.
The basic model already provided forecasts of call volumes in the absence of Swine flu; therefore the excess
between observations and daily forecasts can be assumed to be due to extra calls generated by the panic,
plus random variation. This provides a sequence of pseudo-observations which may be modelled explicitly
to capture the shape of the epidemic process – we chose a simple moving average. Once a reasonable model
for the epidemic has been found, it can be added to the basic model for the duration of the epidemic. This
strategy worked very well in practice, but requires the assumption that the epidemic is not confounded with
parallel changes in underlying healthcare needs.
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Table 3: Dates in August used for the production of forecasts for ‘Saturdays in August’

Year Dates Year Dates

2005 6th, 13th, 20th 2008 2nd, 9th, 16th, 30th

2006 5th, 12th, 19th 2009 1st, 8th, 15th, 22nd

2007 4th, 11th, 18th 2010 7th, 14th, 21st

4 Intraday forecasting

Intraday forecasting is necessary to plan staffing to cope with an expected pattern of call arrivals during
the day. Call arrival rates are not constant, but exhibit peaks and troughs in demand, depending on the
time of day. Our aim is to produce a forecast of the arrival rate for every 30 minute period of every day
in the year, taking into account all calendar effects. We choose to simplify by discretizing to 30-minute
periods rather than modelling the corresponding continuous time problem, at least partly because this suits
real-world practicalities of arranging work periods.

To establish forecasts, we employ a version of the dataset discussed earlier, but extended to take into
account fresh data arriving up to September 2010. Between 01/01/2005 and 01/09/2010 we have a total
of 594,980 individual out-of-hours observations (individual phone calls) over the various days, times and
seasons. For operational reasons, the forecasting periods are defined by shifts, for example Monday 18:00:00
to Tuesday 07:59:59 and Saturday 08:00:00 to Sunday 07:59:59. Weekdays have 28 non-overlapping 30-
minute time periods. Weekend days and bank holidays have 48 time periods. As with the calls per day
model, we assess bank holidays explicitly. We take into account that days adjoining bank holidays, such as
the Saturday preceding August bank holiday, may need special treatment. The simplest way of proceeding
is to assume that a reasonable forecast for arrival patterns within a given day can be generated by averaging
in some way the patterns of arrivals from all the other days which we deem to be sufficiently similar.

There are three key challenges. The first is in deciding which days are similar. The second is to find
ways to average the patterns that we can see, and the third is to provide some kind of uncertainty envelope
for them. Guided by modelling of interday volumes, we classify days by weekday, month, and special
calendar effects such as bank holiday. This allows us to capture variation in pattern of arrival due to day
of week, which we know to be substantial. By specifying month, we are allowing for some general seasonal
differences. For example, we might expect in summer some calls in early evening due to sporting injuries,
an activity probably reduced in winter. Such a classification is guided by discussion with representatives
from the organization.

Figure 4 shows observations for Saturdays in August, with the dates of these observations detailed in
Table 3. We exclude Saturdays during a bank holiday period, as we consider these separately. We use only
these observations to make forecasts for Saturdays in August 2011. There are a total of 960 observations;
20 observations for each of the 48 time points. There is a clear pattern with a sharp increase between 08:00
and 09:29, a steady decrease between 09:30 and 12:59, a slower decrease between 13:00 and 23:59, and a
quieter period overnight between 00:00 and 06:59. This corresponds closely with what call centre managers
know intuitively. Note that there is quite significant variation in the number of calls arriving into each time
slot, and this variation does not seem to be constant.

We may fit the arrival patterns using a number of different methods. One would be to employ classical
time series. Another would be to use functional data analytic methods Ramsey and Silverman (2005),
which might reveal interesting features through the functional principal components. Instead, we begin
with simple possibilities.

4.1 Locally Weighted Regression

Locally weighted regression is a multivariate smoothing procedure which fits a regression surface to a set
of data points Cleveland (1979) Cleveland and Devlin (1988). Let yi, i = 1, ..., n be measurements of a
response variable and let xi = (xi1, ..., xip), i = 1, ..., n be the corresponding vector of measurements of p
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Saturdays in August
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Figure 4: Previous half-hourly observations with random variation
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predictors. The relationship between the response and predictors is

yi = g(xi) + εi,

where we assume εi ∼ N(0, σ2) are random errors and g is a smooth function of the predictors. Locally
weighted regression provides an estimate ĝ(x) at each value xj , (j = 1, ..., p). The estimate of g at xj is
obtained from a neighbourhood of points, weighted according to their distance from xj . Points close to
xj have a large weight, and points far away from xj have a small weight. To carry out locally weighted
regression we need a distance function, ρ, a weight function, W , and the specification of a neighbourhood
size. For further details, see for example Chambers and Hastie (1993). To make the fits we employ the
loess function provided in the R package R Development Core Team (2009). Fitting is performed locally.
Because of the curvature evident in Figure 4, we use locally quadratic fitting by least squares.

The variation of the overall pattern shows some, but not much, unusual behaviour. The observations
at each time period seem roughly evenly spread with possible exceptions early in the morning, around
12:30, and 17:00. These correspond to opening times and lunchtime and end-of-work times. We thus begin
with the assumption that errors are Gaussian. In what follows, the span is always less than 1, so the
neighbourhood includes a proportion of the points, and these have tricubic weighting.

For a fixed day in the year, the response variable is the volume of calls per time period, which we will
denote by C (arranged in a p× n matrix), and the predictor is the half-hourly time period T (arranged in
a p× 1 matrix), which we may arrange as the p× (n+ 1) matrix:

Ap,n+1 =


t1 c1,1 · · · c1,n
t2 c2,1 · · · c2,n
...

...
. . .

...
tp cp,1 · · · cp,n


where p = 48, n = 20, ci = (c1,i, ..., c48,i), i = 1, ..., 20, are the previous observations for day i, (the
response), and t = (t1, .., t48) are the 30 minute time periods running from 08:00 on the Saturday until
07:59 the next Sunday. This matrix is principal input to the loess procedure, along with a span choice. A
span of 0.15 was chosen because it worked well in practice, as shown in Figure 5. A higher span choice
tended to underestimate the 08:00 peak. A lower choice results in the fit becoming too spiked as in Figure 6.
Choosing a span of 0.15 for weekdays (14 hour periods) and weekends (24 hour periods) means the smoothing
will be slightly different for weekdays and weekends. However, in practice this choice worked well to capture
arrival rates, and was adopted in the partner organization.

4.2 Establishing a Prediction Interval

After establishing a reasonable method for predicting future patterns of call arrivals, we now need to place
confidence bounds on these predictions. However, with loess as the fitting procedure there is no agreed way
to do this. We may obtain a standard error for the fit, sF , but there is no accepted standard error for a
prediction, sP . We now explore two possibilities for constructing prediction intervals.

4.2.1 Approximate t-based errors

First we adapt an idea from ordinary least squares (OLS) regression. Recall the relationship between the
response and predictor; yi = g(xi) + εi, where εi ∼ N(0, σ2), σ is unknown, and g is a smooth function. In
OLS, when σ is unknown, we generate standard errors of the fitted values Draper and Smith (1998) using

sF = σ̂

√
1

n
+

(x− x̄)2

sxx
, (1)

where σ̂ is the usual estimate of σ and sxx =
∑n

i (xi− x̄)2. These standard errors are used when generating
approximate confidence intervals on the mean response, ŷ± t1−α/2sF , assuming Normality of errors, where
t is the t distribution with n − p parameters, and α is the level of significance. When we are trying to

12



Saturdays in August

Time

C
al

ls

0
10

20
30

40

08
:0

0
08

:3
0

09
:0

0
09

:3
0

10
:0

0
10

:3
0

11
:0

0
11

:3
0

12
:0

0
12

:3
0

13
:0

0
13

:3
0

14
:0

0
14

:3
0

15
:0

0
15

:3
0

16
:0

0
16

:3
0

17
:0

0
17

:3
0

18
:0

0
18

:3
0

19
:0

0
19

:3
0

20
:0

0
20

:3
0

21
:0

0
21

:3
0

22
:0

0
22

:3
0

23
:0

0
23

:3
0

00
:0

0
00

:3
0

01
:0

0
01

:3
0

02
:0

0
02

:3
0

03
:0

0
03

:3
0

04
:0

0
04

:3
0

05
:0

0
05

:3
0

06
:0

0
06

:3
0

07
:0

0
07

:3
0

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●
●

●

●
●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●

●

● ● ●
●

● ●

●

● ● ● ● ● ●
●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
● ●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

● ●

● ●
●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

● ●

●
●

●
● ●

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ● ●

●
●

● ● ●
● ●

●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

● ● ●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

● ●

●

●

●

●

●
● ●

●

●

● ●
● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

● ●
● ● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

● ●

● ●

●
●

●
●

●
●

●
●

●
● ● ●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

● ●
● ● ● ●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

● ●

●
●

●

● ●
●

●

● ●
●

●

●

●

● ●●

● ●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●

●
● ●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●
● ●

● ●
● ●

●

●

●
● ●

● ●
●

●
● ●

●

●

Figure 5: Previous half-hourly observations with random variation with loess fit using span=0.15
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Figure 6: Previous half-hourly observations with random variation with loess fit using span=0.05
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predict a new observation y0 = g(x0) + ε0, at a proposed value x0, the corresponding prediction interval is
based on the standard error for the prediction:

sP = σ̂

√
1 +

1

n
+

(x0 − x̄)2

sxx
, (2)

with prediction intervals generated by ŷ0 ± t1−α/2sP . The fits are the same whether generating confidence
or prediction intervals, but the prediction interval is wider than the confidence interval to account for
uncertainty in the error at x0 as well as uncertainty in the mean response. The standard errors are related
as s2P = σ̂2 + s2F . This suggests that if we have reasonable estimates from the loess fits for σ2 and sF , we
can generate an approximate prediction error sP . To do so, and assuming we wish to base intervals on the
tn−p distribution, we need to have some idea of the equivalent number of parameters p implicit within a
loess fit. A by-product of loess fitting is lp, representing the equivalent number of parameters used in the
loess fit, and which depends on the span chosen for the fit Chambers and Hastie (1993). As such we base
our intervals on the tn−lp distribution, taking lp = max(2, lp).

In practice this method produced intervals which worked well over busy parts of the shift, but where
the upper limit tended to be too generous for the overnight part of the shift. This is illustrated in Figure 7.
This shows the previous observations for Saturdays in August, with the central line illustrating the loess fit,
and the upper and lower lines giving the prediction interval. Also shown is a Normal quantile plot of the
residuals (left) and a scatter plot of the standardized residuals (right). There is curvature in the quantile
plot, suggesting that Normality of errors is an unsafe assumption. The standardized residuals appear not
randomly scattered, suggesting model deficiency.

4.2.2 Approximate Poisson-based errors

Usual models for call arrivals start with a Poisson assumption for arrival rates and thus an exponential
assumption for inter-arrival times. Indeed, a more sophisticated approach would be to take the arrival
times as resulting from a continuous time nonhomogenous Poisson process, with intensities dependent on
calendar covariates and time of day. This has been the approach taken elsewhere, for example Weinberg
et al. (2007). However, we may make weaker assumptions based simply on the idea that numbers of arrivals
within a given 30-minute time period are Poisson with rate λt, independently of non-overlapping intervals.
Goodness-of-fit tests using counts of arrivals from several separate time periods for several days showed
that this assumption is reasonably safe, though not perfect. We thus proceed under this assumption.

For our first method, we noted some uneven variation. When a variable is Poisson distributed, its square
root is approximately normally distributed with expected value of about

√
λ and with variance of about

1/4. This is an example of a variance-stabilizing transformation. This suggests an alternative strategy.
We begin by transforming to approximate Normality by taking c̃tj =

√
ctj , j = 1, . . . , n, for each time

period. This also helps to stabilize the variance. We then apply loess to these transformed values. This
gives a predicted value for the mean response within that interval, which we take to be an estimate of

√
λt,

where λt is the arrival rate for time interval t. The use of loess fitting assures that the arrival rates are
reasonably smoothly related from one interval to the next. For each time interval we may now generate a
forecast and a prediction interval for the number of calls arriving in that interval based upon a Poisson(λt)
distribution. This provides a piecewise prediction interval for arrival rates for a specific (day*month) or
calendar effect combination. The predicted mean arrival rates are then normalized so that the daily forecast
total for intraday matches the prediction arising from the interday modelling. In practice, these give very
good results with no substantial anomalies.

This is illustrated in Figure 8. The method has produced a plausible fit and a prediction interval
which captures the heteroscedasticity far better. The fit to the observations appears superior. The Normal
quantile plot shows no deficiencies, and the standardized residual plot has improved from Figure 7. There
does appear to be pattern in the residuals on the overnight part of this shift, between 22:30 - 07:59. The
pattern occurs because there is very little forecast activity and the residuals are due to discrepancies between
small forecast non-integers and small integer observations.
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Saturdays in August
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Figure 7: Observations with loess fit and t-based errors with 95% prediction interval.
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Figure 8: Observations with loess fit, Poisson-based errors, and 95% prediction interval.
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Figure 9: Triage queue plot

5 Operational delivery given forecasts

The main part of this paper has described how we may obtain good interday and intraday forecasts of call
arrivals. Given these forecasts we now discuss some of the possibilities in using them.

5.1 Monitoring queues and staff service times

Call centre managers need quick effective tools to monitor performance and diagnose problems. With regard
to the service rates of staff handling patients, these will vary according to patient needs and because of
differences between staff. In order to maximize the value of the service offered by the organization, there is
a need to identify good and poor practice in staff. This is difficult to assess for medical call centres because
we have no means of identifying whether a treatment offered to a patient was appropriate to their illness.
Ideally we would trace patients through the full system and try to relate patient outcome (appropriateness
of treatment) to the pathway followed; however this is not yet feasible. Instead we have only the amount
of time each GP took to triage each patient. It is not necessarily true that short triage times are preferred
to long service times, as a long triage time may properly reflect the level of treatment required. However,
it may be reasonable to assume that, given sufficient numbers, the caseloads assigned to different staff
members may be representative of the underlying caseload. Under this assumption, we compare the service
times of GPs.

All out-of-hours cases were collected from January 2007 until 24th November 2009. From these, 250,000
telephone consultations were recorded and classified by clinician. Service times were modelled adjusting
for urgency (urgent cases typically take longer) and case outcome (for example, home visits need to be
arranged). There is some clear dependency of service time on calendar or shift effects. Typically GPs tend
to triage more quickly when there are patients in the queue, and this tends to be the case when staffing
does not appropriately reflect intraday and interday forecasts. An example of the build up of the triage
queue is shown in Figure 9, a typical diagnostic we may offer managers. However, we do not wish to build
low/high caseload features into a model. We will assume that service times broadly follow an exponential
distribution, in which case a generalized linear model employing Gamma family errors (log link) is suitable.
Our focus is then on residuals from this model, summarized by clinician.

Figure 10 shows a boxplot of differences from the mean service time, classified by clinician, for weekday
evenings in the second quarter of 2010. Each service time has been adjusted for case type and outcome.
Eight ‘quicker’ GPs appear in the left of the graph and five ‘slower’ GPs appear in the right. All these GPs
had 75% of triages below (above) the adjusted average. 33 GPs behaving similarly to the adjusted average
are omitted from the picture as we wish only to identify aberrant behaviour. We restrict model fitting
to those clinicians dealing with at least 20 patients. The box widths are proportional to size of caseload
per GP. Observe that some of the faster GPs tend to have larger caseloads, suggesting that experience
is relevant to service time. Such analyses are invaluable to managers. They quickly identify differences
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Figure 10: Comparing GP triage lengths: Weekday evenings

between members of staff. The interpretation made in this example is that faster GPs tend to be those
with most experience. This lead to enhanced training for new members of staff and review procedures for
some other staff. In addition, the organization adjusted their staff shifts in order to match experienced and
inexperienced staff. The features revealed in this analysis correlated quite closely with the organization’s
prior judgements.

5.2 Shift Allocation

Given good forecasts of call volumes, it is relatively simple to use simulation techniques to establish the
number of GPs that need to be on duty. The triaging queue that we describe is an example of a non-
preemptive priority queue with two priority classes (routine and urgent) and different service rates. See, for
example, D. Gross and Harris (2008) for analytic rate-balance equations for this scenario. The ingredients
to the simulation study are service time distributions for routine and urgent triages, and the arrival rates
for each type of patient. From data, service times for patients classified as urgent do not seem to vary
during the day, which is what we would expect. Service times for patients classified as routine appear to
be slightly shorter at busier times of the day, suggesting perhaps that GPs take a more relaxed approach
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during off-peak periods. We don’t initially want to build such a feature into the simulation and so take
service rates as averages across the data set. Note that there are subtle issues involved here. Clearly one
could set the service rate at that which GPs could achieve during peak periods, but is it desirable to require
staff to be operating at peak stress throughout a shift?

For this data set, lengths of service times are taken to be exponentially distributed with mean 543 (582)
seconds for routine (urgent) triages. The other ingredients to the simulation are the arrival rates. These
vary by time of day and calendar day, as modelled in earlier sections. Therefore, we must run a separate
simulation for each different kind of calendar day. In section 4 we showed how to estimate arrival rate of
calls during each half-hour period. We now suppose more formally that arrival rates during a day follow a
nonhomogenous Poisson process with arrival rates given by our estimates. There are 48 half-hourly periods
with estimated arrival rates; two examples are shown in Figure 11. In order to simulate from this process,
we use the procedure described in Ross (1985); see Goegebeur (2011) for a summary algorithm. Thus,
imagine arrival rates λ(1), . . . , λ(48). To simulate from this process, we choose λ such that λ(t) ≤ λ for all
t ≤ T = 48. We then generate events according to a Poisson process with rate λ, and accept an event at
time t, with probability λ(t)/λ and independently of preceding decisions. The process of counted events
then constitutes a nonhomogenous Poisson process with the required intensities.

Given simulated patterns of call arrivals during a day, we may explore the implications of different
allocations of resource (GPs) to handle the calls. The driving criterion is satisfaction of KPIs, for example
that the number of breaches of triage waiting times for patients is no greater than 5% of call volume. For
our example, the cost of idle resource is irrelevant insofar as patient treatment within reasonable time is
all that matters. However, for other scenarios, for example call centres for banks, we may wish to optimize
according to both KPI targets and to costs of idle call handlers. The optimization itself is constrained by
allowable shift patterns. Typically GPs work a fixed number of hours, essentially continuously. Further,
shift solutions are expected to align with customary starting and ending times. The constraints set by
the collaborating institution are that the minimum (maximum) shift lengths are 4 (8) hours. There are
a number of other constraints to be taken into account. This problem falls into a general class of hard
problems known as the nurse scheduling problem; for a recent detailed approach see Parr and Thompson
(2007).

However, the following heuristic offers a reasonable solution. To find a starting solution, note that
theoretical analysis Ross (1985) requires that the utilization factor of the servers, ρ = λ/(cµ) < 1, where c
is the number of servers, λ the mean arrival rate, and µ the mean service rate. As for each half hour we
have reasonable estimates of µ, λ, this suggests a starting value for the number, c, of GPs required in each
half-hour interval to achieve better than equilibrium. Once a starting solution has been found, and once
that solution has been modified to suit shift constraints, it is reasonably simple to add or withdraw shifts
and assess the effect on targets.

Further related simulation studies are required for, for example, allocation of emergency vehicle drivers
for GPs assigned to home visits. We noted earlier that GPs on their way to or from a home visit may help
remotely with the triage queue; data on such piecemeal triaging needs to be collected and the effects on
queue lengths can then be simulated as periodic extra resource. One of the outputs from the simulation
study is a better understanding of some of the uncertainties inherent. Given sufficient simulations, we can
produce an estimated probability distribution for various outcomes: number of breaches of targets, and
so forth. In particular it is very easy to model the effects of local shocks to the system. It is well known
that small unexpected surges in demand can have severe effects on time of wait in queue as the number of
servers struggle to catch up. For this scenario, we can use simulation to explore queue build and triggers
to bring extra servers online to cope. Of course, such simulation strategies have a long history in this area,
for example see Banks et al. (2010).

6 Conclusion

In this paper we have described statistical approaches to a number of complicated and interrelated issues
involved in planning, forecasting, and monitoring for an out-of-hours medical call centre. We have provided
methods to forecast daily call volumes and the pattern of calls arriving during the day. These work very
well and are now embedded within the practice of our collaborating organization. These straightforward
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Figure 11: Estimates of arrival rates per half-hour for typical Saturdays and Sundays each December.
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methods capture a high proportion of explainable variation. We have provided methods showing how we
may begin to monitor staff activity having adjusted for relevant factors. We show how simulation methods
may build on inputs from the forecasts to allocate staff resource. It is relatively trivial to adapt the methods
to other kinds of call-centre.

We have not yet linked interday and intraday forecasting statistically. As we noted, we normalize our
intraday forecasts to the volumes suggested by the interday modelling, and this ignores discrepancies that
may arise between them, and fails to take account of correlations between them. From the operational
perspective, this is a reasonable feasible solution. KPIs tend to focus on daily activity such as call volumes
and queue lengths (interday), whereas for planning work rotas and shifts it is more useful to forecast arrival
rates over a shift (intraday).

It is worth describing the intellectual resource required in implementing this methodology. One re-
quirement is the availability of historical data allowing sufficient degrees of freedom to estimate regression
model parameters. Longer historical time periods permit finer details to be captured by the modelling.
Cleaning the data often exposes problems in its original collection, requires resolution of ambiguities, and
so forth. These are themselves valuable from the institution’s perspective and tend to lead to improved
data collection processes. The basic modelling described in section 3 and section 4 has to be carried out
by a competent statistician, who will also be responsible for addressing resource allocation via simulation.
Once these have been carried out, software can provide routine forecasts and diagnostics and these can be
managed by junior staff without day-to-day supervision from a statistician. For our work, we used the R
package R Development Core Team (2009) for the background modelling and for provision of daily forecasts,
and a Microsoft Excel front end Neuwirth et al. (2010) to present all outputs in a format acceptable to
our collaborating institution, and which could be readily tied in with their KPI systems. It is necessary
to maintain contact with the statistician for several reasons. The two most important are to monitor per-
formance and diagnose discrepancies in model behaviour, and to handle extra modelling when there are
external shocks to the system, such as unforeseen epidemics. This is critical because otherwise the value of
the models decays and institution staff begin to lose trust in the forecasts.
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