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a  b  s  t  r  a  c  t

GluA1  AMPA  receptor  subunit  knockout  mice  display  a  selective  impairment  on short-term  recognition
memory  tasks.  In this  study  we tested  whether  GluA1  is  important  for short-term  memory  that  is  nec-
essary  for bridging  the  discontiguity  between  cues  in  trace  conditioning.  GluA1  knockout  mice  were
not  impaired  at  using  short-term  memory  traces  of  T-maze  floor  inserts,  made  of  different  materials,  to
eywords:
MPA receptors
onditional learning
race  conditioning
on-spatial memory

bridge  the temporal  gap  between  conditioned  stimuli  and  reinforcement  during  appetitive  discrimina-
tion  tasks.  Thus,  different  aspects  of short-term  memory  are  differentially  sensitive  to  GluA1  deletion.
This  dissociation  may  reflect  processing  of  qualitatively  different  short-term  memory  traces.  Memory
that  results  in  performance  of short-term  recognition  (e.g.  for objects  or places)  may  be  different  from
the  memory  required  for  associative  learning  in  trace  conditioning.

.
patial  memory

Genetically modified mice lacking the GluA1 AMPA receptor
ubunit (henceforth referred to as GluA1−/− mice [1]) display
mpaired short-term memory. For example, GluA1−/− mice fail to
emonstrate short-term memory for recently visited spatial loca-
ions [4,5,11,3,9], or recently experienced objects [7] when assessed
sing novelty preference tests. GluA1 deletion also affects the
xpression of short-term memory for recently presented, visual
timuli in an operant chamber [8]. In contrast, long-term memory
s intact [11,3,9,7] or even enhanced [5] in GluA1−/− mice. Thus,
luA1 plays a specific role in short-term memory.

In trace conditioning a short-term memory trace of the con-
itioned stimulus (CS) is required to bridge the interval or
iscontiguity between the CS and the unconditioned stimulus (US).

t is possible that GluA1 is necessary for short-term maintenance
f memory that is necessary for trace conditioning as well as short-
erm memory required for discriminating between stimuli on the
asis of how recently they have been experienced.

There is some evidence to suggest that GluA1 may  be important
or maintaining memory traces in conditional discriminations. We
ave previously tested GluA1−/− mice on a T-maze task in which

oor inserts made from different materials (A and B) present in the
tart arm acted as conditional cues, indicating whether the left or
ight goal arm (L and R) was rewarded [10; e.g. A: L+R−, B: L−R+].

∗ Corresponding author. Tel.: +44 1865 271377; fax: +44 1865 310447.
E-mail  address: david.sanderson@psy.ox.ac.uk (D.J. Sanderson).
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GluA1−/− mice were able to acquire the task if the floor inserts
extended throughout the entire maze, including the start arm and
both goal arms, but not if the floor inserts were only present in the
start arm of the maze. Thus the absence of the conditional cue (the
floor insert) at the time when the place-reward association was
experienced determined whether or not the mice were impaired.
This may  suggest an important role for GluA1 in short-term mem-
ory for stimuli acting as conditional cues.

To test whether GluA1 is necessary for trace conditioning we
first trained mice on a simple discrimination task in which differ-
ent floor inserts signalled whether food was present or absent in
a particular goal arm of a T-maze (Experiment 1). Task difficulty
was manipulated by increasing the temporal and spatial disconti-
guity between the floor inserts and the presence/absence of food
reward. We  then tested mice on non-spatial versions of the condi-
tional T-maze task, either with or without a discontiguity between
the conditional cues and the goal arm cues (Experiments 2 and 3).

1. Methods

1.1. Subjects

Experimentally naïve, littermate, age-matched female, wild-type (WT) and
GluA1−/− mice, bred in the Department of Experimental Psychology at the Univer-

Open access under CC BY license
sity  of Oxford, served as subjects in the following experiments [see 13, for details of
genetic construction, breeding and subsequent genotyping]. Mice were housed in
group cages and tested during the light phase of the day (0700–1900). They had ad
libitum access to water but were maintained on a restricted feeding schedule at 85%
of their free-feeding weight throughout behavioral testing. All experiments were
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http://www.elsevier.com/locate/bbr
mailto:david.sanderson@psy.ox.ac.uk
dx.doi.org/10.1016/j.bbr.2011.05.016
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


ral Bra

c
b

1

e
i
w
g
t
t
t
p
i
s
r
v
c

i
i
4
o
s
1
w
s
c
o
s
A
a
w
w
t
t
a
p
t
t
t

1

1

5
d
r

1

t
s
o
s
r
t
c
m
o
p
f
p
t

a
o
t
b
e
a
a
d

1

b
(

A.M. Taylor et al. / Behaviou

onducted under the auspices of UK. Home Office Project and Personal licences held
y  the authors.

.2. Apparatus

Experiment 1 (Simple trace conditioning) was conducted in a grey-painted,
levated, wooden T-maze that consisted of a start arm (47 cm × 10 cm) and two
dentical goal arms (35 cm × 10 cm) surrounded by a 10 cm high wall. A metal food

ell  was  located 3 cm from the end of each goal arm. A pair of grey-painted wooden
uillotine doors was  present in each goal arm (at a distance of 10 and 20 cm from
he  entrance to the goal arm), creating an antechamber between the floor insert and
he food well in which the mouse could be contained and a delay imposed between
he  discriminanda and the presence/absence of reward. A clear Perspex cover was
laced over each antechamber to prevent the mice climbing out. Wooden floor

nserts (9.5 cm × 9.5 cm)  covered with different materials acted as discriminanda
ignalling the location of the reward (Experiment 1A—blue towel vs. black foam
ubber; Experiment 1B—green plastic circles vs. orange sandpaper or white Perspex
s. wire mesh). Inserts were placed at the entrance to each goal arm, between the
hoice point and the first guillotine door.

Experiment 2 (non-spatial, conditional learning, contiguous version) and Exper-
ment 3 (non-spatial, conditioning learning, discontiguous version) were conducted
n cross-maze of similar construction, which had two  start arms (North and South;
7  cm × 10 cm)  and two goal arms (East and West; 35 cm × 10 cm). The entrance to
ne of the start arms was  always blocked (the North arm), thus creating a T-maze
imilar to that used in Experiment 1. In addition, each goal arm was  blocked off
0 cm from the choice point using a wooden grey block to create goal arms that
ere 10 cm long. Floor inserts of different lengths, made from either white Per-

pex  or wire mesh (5 mm × 5 mm mesh, affixed to a grey painted, wooden backing),
ould be placed into the start arm of the maze to act as conditional cues. A second set
f floor inserts (width × length: 9.4 cm × 10 cm), made from either cream-coloured
andpaper or green plastic circles (diameter 15 mm),  were placed in the goal arms.

 metal food well assembly was located at the extreme far end of each of the goal
rm  inserts. This consisted of a small metal food well (diameter 1 cm;  height 0.5 cm),
hich contained sweetened condensed milk (diluted 50/50 with water). The small
ell was  itself contained in a larger hexagonal well (diameter 2.2 cm;  height 1.1 cm)

hat also contained sweetened condensed milk to act as an odour mask. Access to
he  milk in the larger, hexagonal well was prevented by a fine wire mesh. The over-
ll food well assembly was inclined at a slight angle, facing away from the choice
oint, to ensure that the animals could not see the presence/absence of reward in
he  food wells. A thin metal bar was  positioned 1 cm above the floor and 1.2 cm from
he choice point in each of the goal arms. Entry into an arm was defined as when
he mouse had placed both of its forepaws over the barrier and into the goal arm.

.3.  Procedure

.3.1. Habituation phase
Mice were first habituated to drinking sweetened, condensed milk (diluted

0:50 with water) in their home cages. They were then habituated over several
ays to the maze in which the experiment was  to be conducted until they were
unning freely and readily consuming the reward.

.3.2. Experiment 1A—simple trace conditioning
Experimentally naïve WT (N = 14) and GluA1−/− (N = 12) mice were first trained

o  discriminate between a blue towel insert and black foam rubber insert, with a
patiotemporal discontiguity between the discriminanda and the presence/absence
f reward (Fig. 1A). Mice were assigned to either towel or foam insert groups which
ignified which cue was  associated with reward, and this was counterbalanced with
espect to group, such that equal numbers of knockout and wildtype animals were
rained to each of the inserts. Animals were rewarded with 0.1 ml of sweetened
ondensed milk (diluted 50/50 with water) for choosing the correct insert. If the
ouse chose the incorrect insert, it was removed from the maze immediately with-

ut  receiving reward. A choice was defined as when a mouse had placed all four
aws onto an insert. The goal arm (left/right) in which the correct insert was placed
or each trial was  determined by a pseudorandom sequence (with equal numbers of
lacements in the two arms in any one session, and no more than three consecutive
rials to the same arm).

On day 1 of testing, each animal received 6 forced trials to each of the rewarded
nd non-rewarded insert arms prior to commencement of free-choice testing in
rder to habituate them to the inserts and overcome any innate aversion to either of
he  cues. During these forced trials the mouse was forced into one of the goal arms
y the presence of a grey-painted wooden block in the opposite arm, preventing
ntry into that arm. The mice then received reward or no reward according to their
llocations. On choice trials the animal was  placed in the start arm facing the wall
nd allowed to enter one of the goal arms. Animals received 10 trials per day for 10
ays with an ITI of approximately 5–10 min.
.3.3. Experiment 1B—simple trace conditioning with an additional delay
The memory demands of the simple trace conditioning task were increased

y  adding a 15 s delay being the insert cues and the presence/absence of reward
Fig. 1C). This was achieved by holding the mouse in the antechamber between the
in Research 224 (2011) 8– 14 9

pair of guillotine doors for 15 s. Mice previously trained in Experiment 1A were
trained on the trace conditioning task with the additional delay using new pairs of
floor inserts. The mice were first habituated to experiencing a delay, using the previ-
ously experienced towel/foam inserts (Experiment 1A). They received 10 trials per
day for 3 days. On the first day they were contained in the antechamber, between
the floor insert and the food well, for 5 s prior to obtaining the reward, on the second
day  for 10 s and on the third day for 15 s.

The mice were then assigned to two new insert pairs: (i) sandpaper vs. plastic cir-
cles  and (ii) wire mesh vs. Perspex. One insert pair was associated with an additional
delay (15 s delay vs. no delay). This was counterbalanced such that approximately
25%  of the animals began the experiment with a delay-sandpaper vs. circles task,
25% with no delay-sandpaper vs. circles, 25% with delay-wire vs. Perspex and 25%
with no delay-wire vs. Perspex tasks. It was  also counterbalanced with respect to
which insert was rewarded in each pair. The animals then received 6 forced trials to
each of the rewarded and non-rewarded insert arms, with delay or no delay included
as  appropriate.

The animals were placed in the start arm facing the end wall and allowed to
choose one of the two inserts placed just inside the goal arm. The goal arm (left/right)
in  which the rewarded insert was placed was  determined for each trial by a pseu-
dorandom sequence (with equal numbers of placements in the two arms in any one
session, and no more than three consecutive trials to the same arm). The guillotine
door nearest the food well was  closed and the door nearest the start arm was open
at  the start of the trial. Animals assigned to the delay condition were retained in the
antechamber for 15 s before the door nearest the food well was raised and they were
permitted access to the reward (if they had chosen correctly). Animals choosing the
non-rewarded insert were also contained for 15 s. For animals assigned to the no
delay condition the door nearest the reward was raised immediately after choosing.

Animals received 10 trials per day until they reached a criterion of 17 or more out
of  20, across 2 consecutive days of testing. Once the animal had achieved criterion,
it  received a further day of testing during which the correct insert/arm was  baited
only  after the animal had made its choice (post-choice baiting).

The animal was then assigned a second task, but with a new pair of floor inserts
and  the opposite delay/no-delay condition. Thus, the effect of additional delay on
trace conditioning was  assessed using a within-subjects design. For example, if a
given mouse was  first trained on a delay-wire mesh vs. Perspex problem, it would
then be assigned a no delay-sandpaper vs. plastic circles problem. The mouse again
first  received 6 forced trials to each of the new inserts prior to free choice testing.
It  was then trained until reaching the same criterion of 17 or more out of 20, across
2  consecutive days of testing, prior to a single test session of 10 post-choice baiting
trials.

1.3.4. Experiment 2—non-spatial, conditional learning, contiguous-version
Experimentally naïve WT  (N = 7) and GluA1−/− mice (N = 7) mice were trained

on  a conditional learning task in which a floor insert (Perspex vs. wire mesh,
57  cm × 10 cm), covering the whole of the start arm and extending right across to
the wall opposite the start arm at the junction of the maze, acted as a conditional cue
indicating which of two goal arm inserts (sandpaper vs. plastic circles) was associ-
ated  with a milk reward. Thus, in this experiment the start arm insert was contiguous
with both of the goal arm inserts (Fig. 2A). For half of the mice the presence of the
Perspex insert indicated that the 0.1 ml  milk reward was available in the goal arm
containing the sandpaper floor insert. In contrast, the reward was in the plastic cir-
cles  insert/goal arm if the start arm contained the wire mesh, floor insert. For the
remaining mice, the opposite pair of start arm/goal arm insert/reward contingen-
cies applied (e.g. Perspex/plastic circles, wire mesh/sandpaper). The relationships
between the floor inserts in the start arm and the rewarded/non-rewarded goal arm
inserts were constant for each animal throughout the experiment. Mice received 28
sessions comprising 12 trials per session with an ITI of 5–10 min. Each session con-
sisted of equal numbers of trials with each of the two start arm floor inserts, and no
more than 3 consecutive trials with the same start arm insert, according to a pseu-
dorandom sequence. The left/right orientation of the sandpaper and plastic circles
goal arm inserts also varied from trial to trial, according to another, superimposed
pseudorandom sequence, with the reward being in the left or right goal arm on an
equal numbers of trials, and with no more than 3 left or right correct choices in a
row. At the start of each trial, the mouse was placed into the start arm at the end
furthest from the choice point, and allowed a free choice of either goal arm. A cor-
rect choice was rewarded with 0.1 ml of milk. If the mouse chose incorrectly, it was
immediately removed form the maze without any reward.

1.3.4.1. Probe sessions—cued vs. non-cued trials. Once the mice had acquired the task
a  set of probe trials (2 blocks of 12 trials each) was  conducted to determine whether
the  mice were able to solve the task by seeing or smelling the milk rewards from the
choice point. Normal “cued” trials in which the start arm floor insert was present
were interleaved with “non-cued” trials in which no start arm insert was present.
Cued trials were run according to the same procedure as during training with the
full-length start arm insert present. For non-cued trials there was no start arm insert

present, only goal arm inserts, and the milk reward was allocated to one of the two
goal arms according to a pseudorandom sequence. The absence of the conditional
cue  renders the task insoluble and performance should fall to chance. Cued and
non-cued trials were interleaved according to a pseudorandom sequence with no
more than 3 trials of each condition in a row. The left/right position of the goal arms
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Fig. 1. Experiment 1: Simple appetitive trace conditioning is unaffected by GluA1 deletion. (A) Experimental design. WT and GluA1−/− mice were required to learn which of
two  floor inserts was  associated with reward. There was  a discontiguity between the discriminanda and the presence/absence of reward. (B) Mean ± S.E.M. percent correct
choices per block of 10 trials for WT  and GluA1−/− mice. Dashed line equals chance level of performance (50%). (C) Experimental design with an additional 15 s delay between
floor  insert stimuli and reward/non-reward. (D) Mean ± S.E.M. errors to obtain a criterion score of at least 17 correct choices out of 20 trials over 2 consecutive days of testing
for  WT and GluA1−/− mice, with either minimal delay (left) or an additional delay of 15 s (right). Mice received 10 trials per day for 10 days with an ITI of approximately
5–10  min throughout Experiment 1.

Fig. 2. Experiment 2: Non-spatial, conditional discrimination (contiguous version) is unaffected by GluA1 deletion. (A) Experimental design. Mice were trained on a conditional
learning task in which a floor insert (e.g. Perspex vs. wire mesh), covering the whole of the start arm acted as a conditional cue indicating which of two goal arm inserts (e.g.
sandpaper vs. plastic circles) was  associated with a milk reward. (B) Mean ± S.E.M. percent correct choices per block of 48 trials for WT and GluA1−/− mice. Dashed line equals
chance  level of performance (50%). Mice received 12 trials per day for 28 days with an ITI of approximately 5–10 min throughout Experiment 2.
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Fig. 3. Experimental design for probe trials in which the length of the start arm
floor insert conditional cue was reduced, after mice had already acquired the task
(Experiment 2). First, the length of the start arm insert was reduced to 47 cm,  such
that it stopped at beginning of the choice area (reduced start arm probe 1). Then
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he  length of the start arm insert was further reduced to 35 cm,  and now covered
pproximately 60% of the start arm (reduced start arm probe 2). This resulted in a
2  cm discontiguity between the start arm insert and goal arm inserts.

nserts and the location of the reward were also fully counterbalanced across each
lock of 12 trials (each block contained 6 cued and 6 non-cued trials).

.3.4.2. Probe sessions—reducing the length of the start arm insert. In a second set
f  probe sessions, a discontiguity was introduced between the start arm insert and
he  goal arm inserts by reducing the length of the start arm insert (Fig. 3). First, the
ength of the start arm insert was reduced to 47 cm,  such that it stopped at beginning
f  the choice area (reduced start arm probe 1, Fig. 3). Otherwise, the experimental
rocedure was the same as during training, and mice received a total of 48 trials with
his condition. Then the length of the start arm insert was further reduced to 35 cm,
nd  now covered approximately 60% of the start arm (reduced start arm probe 2,
ig.  3). This resulted in a 12 cm discontiguity between the start arm insert and goal
rm inserts. Mice received 24 trials in total with this arrangement.
.4. Experiment 3—non-spatial, conditional learning–discontiguous version

Experimentally naïve WT (N = 10) and GluA1−/− mice (N = 10) mice were trained
n  the same conditional learning task, but now using the shorter start arm floor

ig. 4. Experiment 3. Non-spatial, conditional discrimination (discontiguous version) is en
rained on the conditional learning task, but now using a shorter start arm floor insert du
f  the start arm and resulted in a 12 cm discontiguity between the start arm and goal arm
B)  Mean ± S.E.M. percent correct choices per block of 48 trials for WT  and GluA1−/− mice
ay  for 36 days with an ITI of approximately 5–10 min  throughout Experiment 2.
in Research 224 (2011) 8– 14 11

insert (35 cm × 10 cm), during acquisition of the task. This start arm insert covered
approximately 60% of the start arm and resulted in a 12 cm discontiguity between
the start arm and goal arm floor coverings (Fig. 4A). Otherwise the testing protocol
was the same as for Experiment 2.

1.4.1.1. Probe trials—cued vs. non-cued trials
A  set of cued and non-cued probe trials (two blocks of 16 trials/block) were

conducted, as in Experiment 2, to determine whether the mice were able to solve
the task by seeing or smelling the milk rewards from the choice point. Normal “cued”
trials in which the start arm floor insert was present were interleaved with “non-
cued” trials in which no start arm insert was present.

1.4.1.2. Probe trials—neutral goal arms inserts
A  final set of probe trials (four blocks of 16 trials/block) was conducted to deter-

mine whether the mice acquired the task by learning to approach the rewarded
goal arm insert in the presence of a particular start arm insert, or to avoid the unre-
warded goal arm insert in the presence of a given start arm cue, or by adopting
a  combination of both stratagems. Either the rewarded or non-rewarded goal arm
insert was  replaced by a neutral, goal arm insert, of the same dimensions, and made
from grey foam rubber. The mice had no prior exposure to this insert. Within each
block of 16 trials, 8 trials were run as normal trials with both the rewarded and non-
rewarded inserts in place, as during training. Eight probe trials were interleaved with
the  normal training trials, according to a pseudorandom sequence. Furthermore, for
the  8 probe trials in each block, the neutral insert replaced either the rewarded or
non-rewarded goal arm insert on an equal number of trials, again according to a
pseudorandom sequence. The left/right location of the neutral insert was also fully
counterbalanced across each block of 16 trials.

1.5. Spatial working memory testing

All mice from Experiments 1–3 were tested on spatial working memory (non-
matching to place; NMTP [3]). Mice received 20 trials of discrete trial, rewarded
alternation testing using the same elevated T-maze but with no floor inserts present.
Each trial consisted of a sample run and a choice run. On the sample run the mice
were forced either left or right by a wooden block to obtain a milk reward, according
to  a pseudorandom sequence (with equal numbers of left and right turns per session,

and with no more than 3 consecutive turns in the same direction). The block was
then removed and the mouse placed, facing the experimenter, at the end of the
start arm and allowed a free choice of either arm. The time interval between the
sample run and the choice run was approximately 15 s. The mouse was rewarded
for  choosing the previously unvisited arm (i.e. for alternating).

hanced by GluA1 deletion. (A) Experimental design. Separate groups of mice were
ring acquisition of the task. This start arm insert now covered approximately 60%

 floor coverings. Otherwise the testing protocol was the same as for Experiment 2.
. Dashed line equals chance level of performance (50%). Mice received 16 trials per
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Fig. 5. Spatial working memory is impaired by GluA1 deletion. Rewarded alter-
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ation performance in WT and GluA1−/− mice in Experiments 1–3. Mice received
0 trials of rewarded alternation. The mean percentages of correct alternation
esponses (±S.E.M.) are shown. The dashed line indicates chance performance.

. Results

.1. Experiment 1A—simple trace conditioning

Both WT  and GluA1−/− mice acquired the simple, appetitive,
race discrimination, and at an equivalent rate (effect of block,
(9,216) = 21.6; p < 0.0001; no significant effect of group, F < 1, nor
roup by block interaction, F(9,216) = 1.1; p > 0.20; Fig. 1B).

.2. Experiment 1B—simple trace conditioning with an additional
elay

When the delay between the floor inserts and the pres-
nce/absence of reward was increased, mice took longer to acquire
he simple discriminations (effect of delay, F(1,24) = 12.5; p < 0.002;
ig. 1D). However, the WT  and GluA1−/− groups were still indistin-
uishable (effect of genotype and delay by genotype interaction, F
alues < 1). Mice performed significantly above chance on the post-
hoice baiting sessions, confirming that the mice were not solving
he task by smelling the rewards (minimal delay: WT,  85.7 ± 2%
.E.M., GluA1−/−, 90.0 ± 1.7% S.E.M.; 15 s delay: WT,  84.3 ± 1.4%
.E.M., GluA1−/−, 83.3 ± 1.4% S.E.M., all one-sample t-test p val-
es < 0.0005, effect of group, F < 1).

.2.1. Spatial working memory
On completion of the trace memory study, all mice received

0 trials of rewarded alternation (spatial working memory) test-
ng. In agreement with previous research [3],  GluA1−/− mice were
mpaired relative to their WT  controls (t(24) = 3.5; p < 0.002, Fig. 5).

.3. Experiment 2—non-spatial, conditional learning,
ontiguous-version

Both WT  and GluA1−/− mice acquired the contiguous version of
he non-spatial conditional task (Fig. 2B). There were no differences
etween the groups (effect of group and group by block interaction,
oth F values < 1; effect of block, F(6,72) = 22.4; p < 0.001).

.3.1. Probe sessions—cued vs. non-cued trials
The data for one GluA1−/− mouse was lost for the probe ses-

ions and for the subsequent spatial working memory testing. On
robe trials during which the start arm conditional cue floor insert
as absent from the maze, performance of both WT  and GluA1−/−

ice fell to near-chance levels (Fig. 6A). In contrast, performance
n the inter-leaved trials, during which the start arm insert was still

resent (as during training), remained high in both groups. Analy-
is of variance (ANOVA) revealed a highly significant main effect of
rial-type (cued vs. non-cued; F(1,11) = 65.1; p < 0.001), but neither

 main effect of group (F < 1), nor a group by trial-type interaction
in Research 224 (2011) 8– 14

(F(1,11) = 1.1; p > 0.20). Both groups failed to perform significantly
above chance when the conditional cue was absent (WT, t(6) = 2.3;
GluA1−/−, t(5) = 1.8, p values > 0.05).

2.3.2. Probe sessions—reducing the length of the start arm insert
Reducing the length of the start arm insert to 47 cm such that

it stopped at the beginning of the choice area (Fig. 3, left) had lit-
tle, if any effect on choice accuracy. Both WT (80.4 ± 3.1% correct)
and GluA1−/− mice (82.6 ± 4.3% correct) maintained a high level of
performance and there was  no group difference (t < 1). However, a
further reduction in the length of the start arm (35 cm), such that
there was  now a 12 cm discontiguity between the conditional cue
and the goal arm inserts (Fig. 3, right), resulted in a dramatic drop
in performance to chance levels in both the wild type (54.8 ± 1.9%
correct) and GluA1−/− mice (55.6 ± 2.3% correct), although again
there was no group difference (t < 1).

2.3.3. Spatial working memory
On completion of this non-spatial conditional task, 20 trials of

rewarded alternation testing revealed a spatial working memory
deficit in the GluA1−/− mice relative to WT controls (t(11) = 8.8;
p < 0.001, Fig. 5).

2.4. Experiment 3—non-spatial, conditional learning,
discontiguous version

Both WT  and GluA1−/− mice acquired the discontiguous, non-
spatial conditional task (Fig. 4B). However, the performance of
the knockout mice was  slightly superior to that of the con-
trols across training (overall performance: WT,  65.3% correct ± 0.8
S.E.M., GluA1−/−, 67.4% correct ± 0.5 S.E.M; effect of genotype,
F(1,18) = 5.34, p < 0.05; effect of block, F(11,198) = 45.13, p < 0.001;
block by genotype interaction, F < 1).

2.4.1. Probe trials—cued vs. non-cued trials
Performance fell slightly below chance level in both groups of

mice (WT, t(9) = 2.7, p < 0.03; GluA1−/−, t(9) = 2.3, p < 0.05) when
there was no floor insert present in the start arm, confirming that
mice are solving the task by attending to the maze inserts rather
than seeing or smelling the rewards (Fig. 6B). ANOVA confirmed
that there was a highly significant main effect of trial type (cued
vs. non-cued F(1,18) = 182.0; p < 0.001). There was no main effect of
group (F(1,18) = 1.7; p > 0.20), nor any group by trial type interaction
(F < 1).

2.4.2. Probe trials—neutral goal arms inserts
Replacing either the “to be rewarded; S+” goal arm insert or the

“not to be rewarded, S−” goal arm insert with a neutral insert had
no effect on performance in any of the groups of mice. GluA1−/−

and WT  mice maintained a high level of performance on all trial
types (Fig. 7). ANOVA indicated that there was  no effect of trial
type (normal vs. S+ replaced vs. S− replaced; F < 1), no effect of
group (F(1,18) = 1.5; p > 0.20), and no group by trial type interaction
(F < 1).

2.4.3. Spatial working memory
The GluA1−/− mice exhibited a spatial working memory deficit

during T-maze rewarded alternation testing (t(18) = 2.5; p < 0.025,
Fig. 5).

3. Discussion
The results show that GluA1−/− mice were not impaired on
trace conditioning tasks in which they had to maintain a short-
term memory of floor inserts made of different materials in
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Fig. 6. Performance of WT and GluA1−/− mice on cued vs. non-cued probe trials. Mean ± S.E.M. percent correct choices on normal trials (cued) and on trials during which
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different memory states determine the extent of short-term recog-
nition memory and the extent of trace conditioning. In the case of
short-term recognition a recently presented stimulus’ representa-
he  start arm conditional cue was removed. Under these conditions the task shou
on-spatial version of the task (Experiment 2). (B) Discontiguous, non-spatial versi

rder to obtain reward. They successfully acquired a simple dis-
rimination, with and without additional delays (Experiment 1),
nd a non-spatial, conditional discrimination, with and without

 discontiguity between the start arm conditional cue and the
oal arm cues (Experiments 3 and 2, respectively). This con-
rasts with the impairments in both spatial and non-spatial,
hort-term recognition memory displayed by GluA1−/− mice
4,5,7,8].

The successful acquisition of the discontiguous, non-spatial con-
itional task is also in contrast to the impairment seen on the spatial
ersion in which a start arm floor insert indicated whether the
eft or right goal arm was rewarded [10]. This dissociation shows
hat these tasks are supported by different neurobiological mech-
nisms, and suggests that they may  be solved in different ways.
t is possible the dissociation is caused by the different types of
nformation used (i.e. spatial/nonspatial) in the conditional tasks.
owever, the short-term memory deficit is not specific to spa-

ial information in GluA1−/− mice [7,8]. Furthermore, whilst GluA1
eletion impairs some spatial tasks such as spatial working mem-
ry [3,9] and short-term spatial recognition memory [4,5], it also
pares spatial reference memory [3,9] and even enhances long-
erm spatial recognition memory [5].  This may  imply that it is
nlikely that the dissociation between the tasks is simply due to
he information content. Another possibility is that the tasks dif-
er in the type of psychological operation being performed. For

xample, it is possible that the start arm insert acts as an occa-
ion setter, modulating the associative strength of the goal arm
nserts, or alternatively, the discrimination may  be solved by the

ig. 7. Performance of WT and GluA1−/− mice on probe trials during which either
he S+ or S− goal arm inserts were removed and replaced by a neutral insert after
cquisition of the discontiguous, non-spatial version of the task (Experiment 3).
ean ± S.E.M. percent correct choices on normal trials (normal) and on trials during
hich either the S+ (neutral S+) or the S− (neutral S−) insert was  replaced. Dashed

ine  equals chance level of performance (50%).
insoluble. Dashed line equals chance level of performance (50%). (A) Contiguous,
he task (Experiment 3).

start and goal arm inserts forming distinct configural cues [e.g. 2].
The validity of these different accounts requires further investiga-
tion.

Our data suggest that different aspects of short-term mem-
ory are differentially sensitive to GluA1 deletion. It is possible
that different short-term memory traces are necessary for trace
conditioning and recency-dependent recognition. Wagner [12]
suggested that a stimulus presentation leads to activation of a
mnemonic representation in two different memory states, A1 and
A2. Whereas trace conditioning may  rely on the A1 state memory,
short-term recognition, as indicated by novelty preference, may
rely on A2 state memory.

According to Wagner [12] when a stimulus is presented a rep-
resentation of the stimulus increasingly enters a primary activity
state (A1) before decaying into a secondary activity state (A2)
where it remains before eventually returning to an inactive state
(I, Fig. 8). The temporal dynamics of the transitions betweens these
Fig. 8. The states of activation, which stimulus representations can reside, and the
permissible transitional routes between states, according to Wagner [12]. When a
stimulus is presented its representation increasingly enters the A1 state from the
inactive state (I). From the A1 state representations rapidly decay to the A2 state
before eventually returning to the inactive state. Short-term recognition memory is
dependent on the strength of activation in the A2 state, whereas trace conditioning
is  dependent on the strength of activation in the A1 state (see main text). Associative
retrieval of information into short-term memory is permissible by the route from
the  I to A2.
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ion will have decayed to the A2 when the stimulus is subsequently
resented after a short-interval. A2 state representations cannot
eturn to the A1 state when a stimulus is re-presented. They are
lso less able to activate responding than representations active
n the A1 state. A consequence of this is that a recently expe-
ienced stimulus will elicit less exploration than a novel or less
ecently experienced stimulus (i.e. novelty preference). If, as we
ave previously proposed [6],  GluA1 deletion reduces the rate at
hich representations transfer to from the A1 state to the A2 state

hen the A2 state memory, caused as a result of a recent stimu-
us presentation, would be weaker than in GluA1−/− mice than in
ontrol mice, resulting in impaired short-term recognition memory
4,5,7,8].

In the case of trace conditioning the strength of associative
earning is dependent on the strength of stimulus representations
n A1. Stimuli whose representations are coactive in A1 are able to
orm excitatory associations. Therefore, if an interval is placed in
etween the CS and US such that the CS’s representation has par-
ially decayed to the A2 state when the US is presented, then the
xtent of associative learning that can take place is reduced. If, as
entioned previously, GluA1 deletion reduces the rate of at which
1 state representations transfer to the A2 state then it would not
e predicted that GluA1 deletion would impair trace conditioning.
he results of Experiments 1–3 are consistent with this prediction.
urthermore, a reduction in the rate of transfer from the A1 state
o the A2 state in GluA1−/− mice may  lead to actually enhancing
race conditioning, relative to control mice, due to increasing the
trength of the A1 representation at the time at which the US is pre-
ented. This prediction is consistent with the results of Experiment

 in which learning was enhanced in GluA1−/− mice when there
as a discontiguity between the cues that predicted food reward.
t present, we cannot rule out the possibility that this enhance-

ent reflects non-specific effects such as differences in running

peeds between groups. Thus, further studies are required to ascer-
ain whether conditions can be found under which trace memory
s facilitated in GluA1−/− mice.
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