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Synopsis

This work analyses the high-strain extensional behavior of long-chain branched polyethylenes,

employing two novel extensional rheometer devices, the filament stretching rheometer and the cross-

slot extensional rheometer. The filament stretching rheometer uses an active feedback loop to control

the imposed strain rate on a filament, allowing Hencky strains of around 7 to be reached. The cross-slot

extensional rheometer uses optical birefringence patterns to determine the steady-state extensional

viscosity from planar stagnation point flow. The two methods probe different strain-rate regimes and in

this paper we demonstrate the agreement when the operating regimes overlap and explore the steady-

state extensional viscosity in the full strain-rate regime that these two complimentary techniques offer.

For long-chain branched materials, the cross-slot birefringence images show a double cusp pattern

around the outflow centre line (named W-cusps). Using constitutive modeling of the observed transient

overshoot in extension seen in the filament stretching rheometer and using finite element simulations

we show that the overshoot explains the W-cusps seen in the cross-slot extensional rheometer, further

confirming the agreement between the two experimental techniques. VC 2013 The Society of
Rheology. [http://dx.doi.org/10.1122/1.4767982]

I. INTRODUCTION

A long standing issue in characterizing polymer stress-strain relationships is their

extensional response. It still remains a challenge both experimentally and constitutively to

capture and explain the extensional stress response of polymer melts over a broad range of

strain rates. The extensional stress growth coefficient provides an excellent material charac-

terizing technique as the flow direction and gradient are parallel, and probes the chain

stretching response. It is much more effective than shear flow in detecting differences in

molecular structure [Bent et al. (2003)]. For branched polymer melts, the stress response

usually exhibits some degree of strain hardening, where the tensile stress growth coefficient

rises above the linear-viscoelastic reference case that is predicted using the Boltzmann

superposition principle [Dealy (1990)].

Extensional flow is commonly achieved by uniaxial stretching [e.g., Cogswell (1972);

Meissner (1971); Meissner and Hostettler (1994); M€unstedt (1979); Sridhar et al. (1991)].

In a series of papers, Meissner, M€unstedt, Laun, and co-workers investigated the strain-rate

and stress dependence of the elongational viscosity as well as the recoverable strain in the

steady state for low-density polyethylene (LDPE) melts [for example, Laun and M€unstedt

(1976, 1978); Raible et al. (1979)]. These constant strain-rate tests were performed on

LDPE samples using a Meissner-type elongational rheometer with rotating clamps. These

tests indicated that the tensile stress runs through a broad maximum as a function of strain.
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This effect was found to be even more pronounced at higher strain rates. However,

M€unstedt and Laun (1981) used the same Meissner-type apparatus to suggest that the stress

maximum may be an artifact, because when the case of decreasing stress at high elongation

occurs the sample homogeneity becomes insufficient to return significant data.

In subsequent studies, steady-state elongational viscosities were determined by creep

tests in elongation [e.g., by M€unstedt and Auhl (2005) for linear and long-chain branched

(LCB) polypropylenes using a M€unstedt type tensile rheometer]. In comparison to

stretching experiments, a steady-state flow in elongation can already be reached in creep

experiments for smaller strain rates. The steady-state values are independent of the flow

type by which they are obtained and can be used to compare to the maximum values

from constant strain-rate experiments. From the prescribed constant stress and the result-

ing steady-state elongational rate, the steady-state elongational viscosities were compared

to the maximum viscosities from stressing experiments. The difference in the results

when comparing steady-state extensional creep and constant strain-rate (maximums)

measurements was similar for linear and weakly branched materials but somewhat larger

for the materials with the highest long-chain branching.

Nonlinear elongational flow behavior is often explored using a double roller stretching

device, the Sentmanat elongational rheometer {SER, Xpansion Instruments [Sentmanat

(2004)]} attached to a standard shear rheometer. Typically different Hencky strain rates

between 0:001 and 30 s�1 are applied to specimens with a width from 3 to 10 mm and a

thickness of about 1 mm [cf., for example, M€unstedt and Auhl (2005)]. However, the

extensional data obtained from the SER never reach a steady-state plateau as stretching

experiments are prone to sample inhomogeneity and sample rupture [cf. McKinley and

Sridhar (2002); Minoshima and White (1986a, 1986b); Aho et al. (2010a, 2010b)] and

these experiments are limited to Hencky strains less than 4.

A maximum in the transient extensional viscosity has been reported for LDPE

[Meissner (1985)] but a steady-state stress after the maximum was not observed. More

recently, Hassager and co-workers have used a filament stretching rheometer (FSR) with

active feedback [Bach et al. (2003); Rasmussen et al. (2005)] to measure the elongational

viscosity of LDPEs at strains beyond the onset of localized necking of the sample. How-

ever, even with active feedback a true steady-state flow condition is impossible to estab-

lish in filament stretching flows [see, for instance, McKinley and Sridhar (2002)] since an

unlimited deformation is required and the sample cross-sections become very small. De-

spite this, the observation of an effective steady-state stress at high strains following a

stress maximum was reported for two LDPE melts (Lupolen3020D and Lupolen1840D)

[Rasmussen et al. (2005)]. In subsequent work, a similar high-strain “steady-state” stress

plateau following a stress maximum has been reported for a model branched (Pompom)

polystyrene of known architecture [Nielsen et al. (2006)].

Stretching devices have also been developed to measure the response of materials to

planar extensional flow [Laun and Schuch (1989); Meissner et al. (1982); Meissner et al.
(1981)]. In the linear-viscoelastic limit, the extensional viscosities for these two flow

types differ by a factor of 4/3. However, this difference decreases in the nonlinear strain

hardened regime where the stress response tends to the same steady-state values [as seen,

for example, in the LDPE measurements of Laun and Schuch (1989)] captured by the

multimode Pompom model [Inkson et al. (1999)]. Consequently in this paper, we shall

compare uniaxial and planar extensional data.

Auhl et al. (2011) used a closed cell stagnation point (SP) flow to measure the planar

steady-state extensional response of various polyethylenes produced using flow induced

birefringence (FIB) patterns. Much work has been done to investigate complex flow geo-

metries [e.g., Boukellal et al. (2011); Coventry and Mackley (2008); Crowley et al.
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(1976); Frank and Mackley (1976); Janeschitz-Kriegl (1983); Macosko et al. (1980);

Schoonen et al. (1998); Scrivener et al. (1979); Soulages et al. (2008); Verbeeten et al.
(2001); Winter et al. (1979)], often comparing constitutive predictions to FIB images.

Compared to filament stretching flows, the SP geometries have the advantage that flow

properties can be investigated without free surface flow [Minoshima and White (1986b)].

However, the flow history at other points in flow is more complex and so only at the SP

is the stress the result of simple planar elongational flow.

The use of FIB to measure stress anisotropy requires the stress-optical rule to remain

linear in the strain-hardening regime. Simultaneous measurements of the tensile stress

and birefringence as a function of time at constant tensile strain rate for LDPE were per-

formed by Kotaka et al. (1997) and indicated that a linear stress-optical rule can be

assumed up to about 1 MPa in the case of polyethylene. Koyama and Ishizuka (1989) per-

formed rheo-optical measurements in elongation on molten commercial LDPE using a

Meissner-type elongational rheometer and found a linear stress-birefringence relationship

in the birefringent patterns, even when strain hardening is seen in the nonlinear elonga-

tional viscosity. This is consistent with the relevant polymer physics: Strain-hardening

onset corresponds to stretch at the level of entanglement strands, whereas a breakdown in

the stress-optical linear rule corresponds to stretch at the level of segments [McLeish

(2002)].

Constitutive modeling of polymer melts has evolved to focus on relating molecular

architecture to macroscale stress response. For LCB polymer melts, various versions of

the Pompom model by McLeish and Larson (1998) have been used [e.g., Clemeur et al.
(2003); McLeish (2002); €Ottinger (2001); Verbeeten et al. (2001)]. The molecular stretch

function model [Wagner and Rolon-Garrido (2008)] predicts an overshoot in transient

extension. In this paper, we use an adaptation of the Pompom model that incorporates a

transient overshoot in extension. This is an empirical alteration that we have incorporated

into our finite element simulations. The physical mechanism of the overshoot is yet to be

fully resolved, but the Pompom model used here helps demonstrate the link between the

transient extensional overshoot and the flow features seen in cross-slot flow experiments.

Various constitutive equations have been examined previously in a cross-slot geome-

try. For example, Bogaerds et al. (1999) showed that the Giesekus and Phan-Thien Tan-

ner models fail to predict downstream principal stresses in cross-slot geometry for

polymer solutions due to a failure of capturing extensional stresses. Abedijaberi et al.
(2009) investigated the flow of LDPE branched polymer melts in a lubricated cross-slot

channel by experiments and flow simulations. Hassell et al. (2009) compared the birefrin-

gence patterns of a range of moderately branched (metallocene-catalyzed) polyethylenes

with the predictions of the Pompom model [Blackwell et al. (2000)]. As the degree of

branching increases they observed a transition in the birefringence pattern from a single

cusp along the outflow axis to a double cusp, which they named (W-cusps). This pattern

indicates that the position of maximum stress difference is no longer at the SP, but away

from the outflow axis. While the Pompom model was able to reproduce the general levels

of principal stress difference (PSD), it did not reproduce the W-cusp pattern. Our subse-

quent extensive exploration of the constitutive parameter space of the multimode Pom-

pom model, including fully three-dimensional simulations, has also failed to produce this

phenomenon.

In this paper, we compare extensional stress measurements on a set of LCB polymers

using two different extensional rheometers: The actively controlled FSR [Bach et al.
(2003)] and the cross-slot extensional rheometer (CSER) [Auhl et al. (2011)]. We show

that for range of strain-rates where both instruments can be used that the extensional

stress at large strains is in good agreement, suggesting that it is possible to define an
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effective “steady-state” extensional viscosity for these materials. Finally, we show that

by incorporating a transient maximum in the extensional stress response into the constitu-

tive model we are able to reproduce the W-cusps.

II. EXPERIMENTAL

Three different branched polyethylene melts were studied: A highly branched LDPE

Dow 150R and two moderately branched high-density polyethylenes (HDPE) HDB4 and

HDB6 (see Table I). These materials have been used in a number of previous rheological

studies. The linear rheology of HDB4 and HDB6 has been reported by Das et al. (2006)

and that of Dow150R by Hassell et al. (2008). The shear and uniaxial extension rheology

were measured at the same temperature as the subsequent cross-slot and FSR experiments

[Auhl et al. (2011)]. Shear flow experiments were conducted with an ARES rheometer

(Advanced Rheometric Expansion System, Rheometric Scientific) in order to obtain both

the linear rheological and nonlinear shear flow behavior. The nonlinear flow behavior in

uniaxial elongation was measured using the uniaxial stretching device SER (Xpansion

Instruments) attached to the ARES rheometer [Sentmanat (2004)]. Specimen dimensions

(compression molded to 1 mm thick and 10 mm wide samples) at test temperature were

corrected to consider thermal expansion by using the room-temperature density and the

thermal expansion coefficient of the samples. All of the rheological experiments were

carried out under a nitrogen atmosphere. Further rheological tests to assess the thermal

stability of the samples were conducted to ensure that the molar mass distribution and the

molecular structure did not change during experiments. Thermal stability of at least 104s

was found for all materials.

A. Filament stretching rheometry

Extensional measurements using the SER rheometer are limited to cases where the

sample remains homogeneous. In order to explore higher strains as the deformation

becomes inhomogeneous, we require an experiment in which the material whose stress is

being measured experiences a kinematically steady extensional flow. These measure-

ments are performed with an FSR equipped with an oven to allow measurements up to

about 200 �C [Bach et al. (2003)]. The key feature of this rheometer is that it uses active

feedback through the measurement of the midplane diameter to control the strain rate at

the midplane of the filament, which provided that a critical strain rate _�sag ¼ qgL0=g0 is

exceeded [McKinley and Sridhar (2002)] in the thinnest part of the filament. Therefore,

on-line measurements of the midplane diameter serve the dual purpose of recording the

actual strain and strain-rate at the midfilament plane and providing input for the feedback

control on the plate motion to achieve desired kinematics. Specifically, the Hencky strain

and the mean value of the stress difference over the midfilament plane [Szabo (1997)] are

calculated from observations of the diameter D(t) and the force on the bottom plate F(t)
as

TABLE I. Material properties of polyethylenes studied.

Sample Code MW (kg/mol) MW=MN T (�C) g0 (kPa s) �sb (s)

LDPE1 Dow150R 242 11 160 368 428

HDPE1 HDB4 96 2.1 155 200 56

HDPE2 HDB6 68 2.2 155 50 28
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�ðtÞ ¼ �2 lnðDðtÞ=D0Þ (2.1)

and

hrzz � rrri ¼
FðtÞ � mf g=2

pRðtÞ2
; (2.2)

where the angular brackets denote an average over the symmetry plane, R(t)¼D(t)/2 is

the radius of the filament, g the gravitational acceleration, and mf the weight of the poly-

mer filament. Consequently on the assumption that the stress is uniform across the mid-

plane, the force measurement gives the normal stress difference at the midplane of the

filament where the fluid has experienced a constant extension-rate, even though the over-

all extension-rate of the filament is nonuniform. Each material was tested a number of

times to ensure reproducibility of the results.

Since the initial sample length is L0 ¼ 2:5 mm compared with a plate radius

R0 ¼ 4:5 mm, the initial sample aspect is small, and consequently at small strains not all

of the stress difference is due to the extensional viscosity. Part of the stress difference

comes from a radial pressure variation in the cross-section due to the shear flow that is

unavoidable at small aspect ratios. To compensate for this effect, we define the corrected

transient uniaxial elongation viscosity by

�gþcorr ¼
hrzz � rrri

_�0

1þ expð�5 �=3� K3
0Þ

3K2
0

 !�1

; (2.3)

where K0 ¼ L0=R0 is the initial aspect ratio. The correction is a modification [Rasmussen

et al. (2010)] of the relation derived from a lubrication analysis at small strains [Spiegel-

berg et al. (1996)]. For large strains, the correction vanishes and the radial variation of

the stress in the symmetry plane becomes negligible [Kolte et al. (1997)].

B. Cross-slot extensional rheology

The cross-slot flow experiments to measure the steady planar extensional rheology were

performed using the CSER, in which a cross-slot insert is used in the Cambridge multipass

rheometer (MPR) [Mackley et al. (1995)]. This instrument allows simultaneous measurement

of pressure and optical birefringence as detailed in Coventry and Mackley (2008) and used for

a number of different polymer melt flow studies [e.g., Hassell and Mackley (2008, 2009);

Hassell et al. (2009)]. The birefringence was measured using a circularly polarized monochro-

matic light beam of 514 nm using polarizers and quarter waveplates either side of the optical

test section which contained stress free quartz windows. The stress-induced birefringence

patterns were captured by a digital video camera [Collis and Mackley (2005)]. From the top

and bottom reservoirs, the polymer material is driven in opposite directions along two perpen-

dicular channels by pistons at a controlled rate through the cross-slot into two horizontal side

channels capped by slave pistons [Fig. 1(a)]. Thereby, the material is maintained within the

MPR and can be forced back by nitrogen pressure through the cross-slot insert into the top

and bottom reservoirs for subsequent runs. The cross-slot geometry insert used in this study

consists of four perpendicular, intersecting coplanar channels with a depth of 10 mm and as-

pect ratio of approximately 7 [Fig. 1(b)]. This generates a pure and controllable elongational

deformation in the neighborhood of the stagnation line along the middle section of the centre-

axis of the cross, but essentially simple shear near the outer walls, e.g., Coventry and Mackley

(2008) and Hassell et al. (2008). Full three-dimensional flow simulations and experiments

have been performed for both linear polystyrene [Lord et al. (2010)] and LCB-polyethylenes
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[Hoyle (2011)] in this geometry, where it was demonstrated that this aspect ratio is sufficiently

large for the flow to be approximated as a two-dimensional planar flow within the experimen-

tal uncertainty of the stress measurements themselves, confirming previous simulation studies

of Clemeur et al. (2004).

At steady state, a molecule at a point along the stagnation line experiences a constant

extension-rate _eC that is approximately proportional to the piston speed, but varies with

polymer rheology due to changes in the flow pattern. To determine the extension-rate for

each experiment, we performed flow simulations using a multimode Pompom model fit-

ted to the measured rheology of the material. We have shown previously [Hassell et al.
(2009); Hoyle (2011)] that changes in the velocity field at points around the stagnation

line measured using laser Doppler velocimetry are captured by the Pompom model and

further are dependent upon the level of LCB present in a material.

The steady-state elongational viscosity gþP is calculated from the tensile stress differ-

ence rstd along the stagnation line and the extension-rate _eC there

gþP ¼
rstd

_eC
: (2.4)

Here, rstd ¼ ðrxx � ryyÞ is the PSD between the extensional x and the compressional y
axes. This was determined from the fringe-counting [using the method detailed in Auhl

et al. (2011)] as rstd ¼ Dn
C , where C is the stress-optical coefficient. Stress-optical coeffi-

cients taken from Hassell et al. (2008) were used, which are in quantitative agreement

with the range given in the literature for polyethylene of 1:2� 2:4� 10�9Pa�1 [Macosko

(1994)]. According to the theory of rubber elasticity and experiments, the stress-optical

coefficient is only weakly dependent on temperature [Koyama and Ishizuka (1989)] and

so the same stress-optical coefficient was used for the experiments at 155 and 160 �C. In

all cases, the stresses are below the 1 MPa limit where the stress-optical rule is expected

to be valid [Kotaka et al. (1997); Koyama and Ishizuka (1989); McLeish (2002)].

III. CONSTITUTIVE MODELING AND FINITE ELEMENT SIMULATION
TECHNIQUES

The rheology for highly entangled polymers is strongly dependent on molecular topol-

ogy. McLeish and Larson [McLeish and Larson (1998); McLeish (2002)] developed a

FIG. 1. (a) Schematic outlining the Cambridge MPR core and (b) the dimensions and flow direction for the cross-

slot geometry insert as used in the midsection of the MPR. The associated flow directions are indicated by arrows.
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constitutive model for branched polymers based upon the molecular theory for a melt of

Pompom molecules, consisting of a backbone chain connecting two identical star poly-

mers. Although derived with this particular molecular architecture in mind, the Pompom

model captures the essential physics of branched melt rheology, and can be applied to

more general architectures. A multimode Pompom model was introduced by Inkson et al.
(1999) and later modified by Blackwell et al. (2000) to account for polydispersity and

high complexities of multilevel branching.

In the multimode Pompom model, the extra stress tensor is formed as sum of products

of the square of the backbone stretch, kiðtÞ, and orientation tensor, SiðtÞ, from each mode,

r ¼ M�1
XN

i

Gik
2
i ðtÞSiðtÞ; (3.1)

where Gi are the linear viscoelastic moduli and M�1 is a dimensionless constant that

depends upon the equation used to obtain the orientation tensor. The original Pompom

model uses an integral equation for which M�1 ¼ 15
4

. However, since this form is compu-

tationally expensive a differential approximation based on the upper-convected Maxwell

model was introduced for which M�1 ¼ 3. The differential model is more commonly

used particularly in complex flow calculations as it is computationally simpler.

The differential approximation uses an auxiliary tensor Ai, for each mode i, that satis-

fies the upper-convected Maxwell constitutive equation

DA

Dt
¼ K � Aþ A � KT � 1

sb
ðA� IÞ: (3.2)

Here (and from now on) we have suppressed the mode index, i from A and sb. The orien-

tation is given by the unit tensor

S ¼ A

trA
: (3.3)

The dynamic equation describing the stretched backbone is given in Blackwell et al.
(2000) and McLeish (2002) as

D

Dt
kðtÞ ¼ kðtÞK : S� 1

ss
ðkðtÞ � 1Þe��ðkðtÞ�1Þ; (3.4)

with �� ¼ 2
q�1

, for k up to a maximum value of q, at which point the branch points retract

into the backbone tube.

A number of variants of this model have been developed including: a thermodynami-

cally motivated differential model suggested by €Ottinger (2001), the extended Pompom

(XPP) differential model [Verbeeten et al. (2001)], and the double convected Pompom

(DCPP) [Clemeur et al. (2003)]. These models drop the maximum stretch condition and

improve the quantitative agreement with the integral model, in particular, to give a non-

zero second normal stress difference in shear.

The various versions of the Pompom model have been shown to be able to quantita-

tively fit the transient shear and extensional behavior of a variety of different branched

polymers up to the maximum in the extensional viscosity [Blackwell et al. (2000); Inkson

et al. (1999); Verbeeten et al. (2001)]. However, the Pompom constitutive model cannot
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produce a transient overshoot in extension, such as that seen by Bach et al. (2003),

Nielsen et al. (2006), and Rasmussen et al. (2005). This is because once the tube segments

align with the flow axis, K : S ’ _e and the stretch equation reduce to an autonomous first

order ordinary differential equation, and so k cannot overshoot its steady-state value.

The molecular origin of a transient overshoot in extensional flow is not currently under-

stood. By incorporating the effect of tube pressure into the integral molecular stretch func-

tion, constitutive models [Rolon-Garrido and Wagner (2009); Wagner and Rolon-Garrido

(2008)] were able to fit the experimental data on a melt of Pompom shaped molecules in

Nielsen et al. (2006). However, the existence of a tube pressure that occurs when the tubes

are deformed is a controversial idea whose molecular origin is unclear. The model predicts

an overshoot followed by a steady state for all strain rates. The Pompom melt experimental

data used did not reach steady state and so it could not be determined if the correct steady

state was predicted by the model. In order to explore the consequences of extensional over-

shoots in the cross-slot flow, we choose at this point to proceed phenomenologically, sus-

pending judgment on the underlying molecular reasons for such behavior.

To produce an overshoot, the Pompom model requires an additional stretch relaxation

process that is dependent upon S. This is included as an additional relaxation rate s�1
� in

the stretch equation (3.4) to give

Dk
Dt
¼ kS : K � 1

ss
þ 1

s�

� �
ðk� 1Þe��ðk�1Þ: (3.5)

If this additional relaxation mechanism arises from advection by the flow, then it should

be proportional to the extension-rate along the tube segments; hence, the relaxation time

should be of the form

1

s�
¼ f ðSÞjS : Kj; (3.6)

where f is a function of the degree of alignment. Since this relaxation process becomes signifi-

cant only once the tube segments become highly aligned, we choose a form for f so that it

switches from 0 to a positive value CR as the orientation tends to perfect alignment, by setting

f ðSÞ ¼ CRðS : STÞa; (3.7)

where the parameter a is used to define how aligned the material should be to trigger this

additional relaxation. In a strong planar extensional flow (i.e., one for which the orienta-

tion Weissenberg number Wib ¼ _esb � 1), the scalar S : ST ’ 1� 2 expð�2eÞ where e is

the Hencky strain, _et so that this function switches on the additional relaxation after a

Hencky strain of approximately 1
2

logeð2aÞ. So that, for this relaxation to trigger after a

Hencky strain of 2.6, requires a value of a of around 100. In uniaxial extension,

S : ST ’ 1� 4
Wib

expð�2eÞ.
The effect of varying the value of a is illustrated in Fig. 2. Figure 2(a) shows the

extensional viscosity for a one mode Pompom model with G¼ 100 Pa, sb ¼ 5s, q¼ 10,

ss ¼ 1:25s for strain rates of 0.01, 0.1, 1, and 10 s�1 (giving orientation Weissenberg

numbers of Wib ¼ _esb ¼ 0:05; 0:5; 5, and 50 and stretch Weissenberg numbers of

Wis ¼ _ess ¼ 0:0125, 0.125, 1.25, and 12.5, respectively). The different lines show vari-

ous choices of the power a with a fixed value of CR ¼ 2. The figure shows that the

steady-state value of the overshoot Pompom (OPP) model does not depend on a, but that

the value of a controls the strain at which the additional relaxation is triggered.
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Figure 2(a) shows the value of ðS : STÞa for the same one mode Pompom model in

uniaxial extension, seen in Fig. 2(a). Only the highest strain rates (1 and 10 reciprocal

seconds, or Wis ¼ 1:25 and 12.5) align enough material for s� to become nontrivial,

which coincide with the stretch Weissenberg number being greater than unity. For these

two strain rates the various choices of a are shown and as before, the higher the value of

a the larger the strain required to orientate the material sufficiently for this extra relaxa-

tion to contribute. For a ¼ 10, 100, and 1000, the Hencky strain at which steady state is

observed is approximately 3, 4, and 5, respectively.

Figure 3(a) shows the effect of varying CR for a fixed value of a ¼ 100. As the param-

eter CR is increased so does the contribution of s� and the steady-state value of exten-

sional viscosity decreases. Varying CR [cf. Fig. 3(a)] makes little difference in the

Hencky strain at which steady state is achieved (approximately a Hencky strain of 4.5).

The inclusion of this additional stretch relaxation means that the backbone tubes are

no longer fully extended at steady state. Indeed in Fig. 2(a), the maximum stretch condi-

tion (q¼ 10) was only reached for CR ¼ 0. For lower values of q, it is still possible to

achieve maximum stretch during the transient. This is illustrated in for the case q¼ 3 in

Fig. 3(b) where we consider the one mode Pompom model with G¼ 100 Pa, sb ¼
10s; ss ¼ 2:5s for choices of q¼ 3, 10, and 20 where the overshoot parameters are a ¼
1000 and CR ¼ 2. Thus with the exception of cases where q is small, the restriction of

Eq. (3.5) to k < q becomes redundant and so removes one of the differences between the

Pompom model and the XPP and DCPP models. However, the steady-state value still

depends upon the value of q since �� ¼ 2
q�1

.

In transient shear flow, the extra stretch relaxation is negligible (as the orientation ten-

sor S does not become sufficiently aligned) and the stress response is left unchanged.

A. Finite element solutions

Two-dimensional calculations of the flow of the Pompom model in the cross-slot ge-

ometry were performed using a finite element method to compute strain-rate and PSD.

FIG. 2. (a) The transient extensional viscosity for a single mode overshoot Pompom model fG ¼ 100 Pa; sb ¼
5s; q ¼ 10; ss ¼ 1:25 sg in uniaxial extension. The four set of curves shows the effect of variations in the power

law a from 10 to 1000 with CR ¼ 2 for various stretch Weissenberg numbers (Wis ¼ _ess). As a is increased so

does the amount of alignment needed for the extra relaxation time, s�, to become dominant. This has the effect

of delaying relaxation until a higher Hencky strain has been reached causing a bigger difference between the

maximum and the steady-state extensional viscosity. (b) A plot of the measured alignment, ðS : STÞa, for the

same stretch Weissenberg numbers. As a is increased so does the strain taken for the measured alignment to

approach unity and thus delays the transient overshoot.
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Details of the numerical scheme are given in the references [Tenchev et al. (2008); Lord

et al. (2010)]. Due to symmetry, only one quarter of the cross-slot domain was calculated.

Upstream we impose fully developed channel flow equivalent to the chosen experimental

volume flux. Spatial convergence was checked by comparing solutions obtained on two

different meshes of 970 and 2600 nodes. Simulations took up to 48 h on a 1.7 GHz proc-

essor depending on mesh refinement and time step interval.

Since Eq. (3.2) allows unlimited stretch of the auxiliary tensor A, a finitely extensible

nonlinear elastic modification was made to the relaxation term to limit the trace of A to

1000. A penalty scheme was used to limit the stretch variable to the range 0 � kðtÞ � q,

though as noted above this now occurs rarely due to the additional relaxation term.

B. The OPP model in cross-slot flow

In cross-slot flow, the difference between the maximum extensional stress and the

steady-state value determines the size of the W-cusp and transient development of the

extensional stress overshoot will determine the shape of the W-cusps. This is illustrated

in Fig. 4 where in Fig. 4(a) the effect of varying the power law parameter on the shape of

a PSD contour (of value 3 kPa) for a fixed CR ¼ 2 is shown. At the lowest power law,

a ¼ 10 [see Fig. 2], the stretch relaxes at a lower strain and so the double cusps are

shorter and wider than for the higher power laws.

Figure 4(b) shows how varying CR affects the position of the 0.3 kPa contour. The

W-cusps are now all the same width (which as we have seen is associated with the value

of a); however, the length of the cusp is shorter for higher values of CR where the stretch

relaxation is faster at high strains.

Figure 5 compares the magnitude of the PSD and the degree of orientation S : ST

along the SP streamline as functions of the distance from the SP. Figure 5(a) shows the

effect of changes to a, which occurs mainly upstream from the SP. Here, the stress ini-

tially grows toward the SP and overshoots as a function of strain history, with the various

power laws showing the same behavior as in Fig. 2. The small differences at and

FIG. 3. (a) The transient extensional viscosity for a single mode overshoot Pompom model fG ¼ 100 Pa; sb ¼ 5s;
q ¼ 10; ss ¼ 1:25 sg in uniaxial extension. The four set of curves shows the effect of variations in parameter CR

from 1 to 5 with a ¼ 100 for various stretch Weissenberg numbers (Wis ¼ _ess). The parameter CR does not affect

the strain needed to achieve an overshoot but it does affect the magnitude of s� and thus determines the steady-state

extensional viscosity. (b) The effect of the branch number q on transient extensional viscosity for a single mode

overshoot Pompom model fG ¼ 100 Pa; sb ¼ 5 s; ss ¼ 1:25 s; CR ¼ 2; a ¼ 100g in uniaxial extension. The four

set of curves shows the effect of variations in parameter q from 3 to 20 for the same stretch Weissenberg numbers.

In the case q¼ 3 maximum stretch is achieved during the transient, but for larger values q¼ 10 and 20, k remains

strictly less than q for all time and the differences are due only to the change to ��.
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downstream of the SP arise from flow modification, since a does not affect the steady-

state stress. Similarly, the changes in the transient development of S : ST arise from

changes in the flow pattern near the SP.

In Fig. 5(b), the three choices of CR do not change the values of S : ST demonstrating

that it is a rather than CR which has the dominant effect on flow pattern. Similarly

changes to the PSD occur only at high strains affecting the maximum and steady-state

values of the PSD in the same way as in the uniaxial stretching flow shown in Fig. 3. The

smallest maximum and steady state are associated with the largest value of CR since this

provides the strongest stretch relaxation.

IV. RESULTS

First, we compare the extensional viscosity measurements from the FSR, the Sentma-

nat extensional rheometer (SER), and the CSER. Figure 6 shows the steady-state

FIG. 4. (a) Computed contours of constant principal stress difference for the one mode Pompom model used in

Fig. 2, examining how the power law a affects W-cusps in cross-slot flow. The dashed line shows a ¼ 10, the

solid line a ¼ 100, and the dotted line a ¼ 1000. (b) The effect of varying CR on the W-cusps in the cross-slot

flow using the single mode Pompom models used in Fig. 3. The dotted line shows CR ¼ 5, the solid line shows

CR ¼ 2, and the dashed line shows CR ¼ 1.

FIG. 5. PSD and S : ST along the SP streamline as a function of distance from the SP showing variations in (a) a
and (b) CR. Negative distance from the SP corresponds to the inlet channel and positive distance the outlet channel.
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extensional viscosity measurements from the FSR and the CSER for the three polyethyl-

ene samples used in this work (cf. Table I). The FSR values are obtained from the aver-

age stress measurement at large strains and the CSER from the steady-state birefringence

patterns. For two of the materials, there are sufficient data to examine the overlap of the

two experimental methods (Dow150R and HDB6) where there is good agreement between

the two. This is despite the differences in the nature of the flows, with the FSR being uniax-

ial and the CSER planar extensional flow. Even for HDB4, where there is a gap in the data,

the steady-state stress values still show the close agreement to the same trend.

For strain rates where data are available, we also compare the transient stress growth in

Figs. 7 and 8. Figure 7 shows the two LCB-HDPEs named HDB4 and HDB6 with data

measured from the SER and CSER and Fig. 8 shows the LDPE Dow150R. Details of the

materials are given in Table I. The comparison of transient data shows good agreement

between the two filament stretching methods up to the point at which the SER samples rup-

ture and break, at Hencky strains of around 4 (the FSR is capable of Hencky strains up to

7). As a general observation for these three materials, the transient build up of stress meas-

ured by the FSR is faster than that of the SER. Also, as anticipated the SER never goes far

enough in Hencky strain to observe an extensional stress maximum or steady-state value.

In contrast, the FSR data show a clear overshoot in stress. The presence of a steady state in

Figs. 7 and 8 is obscured by the logarithmic axes that compress the large time results.

In Fig. 8, we also show the fit of the OPP model to both the transient startup flow (a)

and for the steady-state extensional viscosity (b). The OPP model was parameterized

with 12 modes. The linear Maxwell parameters (sbi and Gi) were fitted to linear oscilla-

tory rheology using RepTate.1 The nonlinear parameters (ssi and qi for each mode,

together with CR and a) were fitted by hand to extensional data starting from values from

FIG. 6. A comparison of the steady-state extensional viscosity measurements from the FSR and the CSER for

three polyethylene samples detailed in Table I. The open symbols show the FSR results and the closed symbols

show the CSER data.

1Ramirez, J., and A. E. Likhtman, RepTate: Rheology of Entangled Polymers, Toolkit for Analysis of Theory

and Experiment (2007), http://www.reptate.com
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a previous fit to the non-OPP model [Auhl et al. (2011); Hoyle (2011)]. The overshoot

parameters are chosen to be the same for all modes to reduce the number of variables.

This provides some unwanted overshoots at low strain rates, but we tolerate this as we

are focusing on modeling the CSER birefringence images and so we aim to optimize the

fit to this range of extensional strain rates.

The OPP model captures the startup extensional stress of Dow150R well [Fig. 8(a)]

and for the three higher strain rates, where an overshoot in the stress is observed, the

model also captures this. For the two lower strain rates, no large experimental overshoot

is observed; however, the parameterized OPP model still displays one. This is reflected in

the steady-state predictions of the FSR, the CSER, and the OPP model [Fig. 8(b)]. The

OPP model fits the CSER data well but for lower strain rates the model under predicts the

FIG. 7. A comparison between the transient extensional stress response as measured by the FSR (closed) and

the SER (open) for HDB6 (left) and HDB4 (right). The figure shows a good agreement of the initial stress

growth, until sample rupture limits the SER to Hencky strains of around 4.

FIG. 8. (a) A plot comparing extensional data and OPP theory for Dow150R. Strain rates range from 0:003 to

0:3 s�1. The closed symbols show the SER data and the open symbols data from the FSR achieving higher

Hencky strains than the SER. The lines show the theoretical prediction from the OPP model. (b) The steady-

state extensional viscosity values from the FSR and the CSER are compared to the prediction of the Pompom

model fitted to the data.
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steady-state stress due to the presence of the overshoot in the model that is not seen

experimentally. The reason the OPP model overshoots for these slow strain rates is

because the overshoot parameters are kept constant for all modes, but as previously stated

we are most interested in the strain-rates measured in the CSER.

In Fig. 9, we show the fit of the OPP model to the HDPE material HDB6. HDB4 is not

plotted but is similar. For this material, the FSR is not able to function at the strain-rates

used in the CSER, and so for these strain-rates we used the transient data from the SER

in fitting the model. As with the LDPE, Dow150R, the transient build up of the exten-

sional viscosity is well captured by the model. As with the Dow 150R material the high

strain-rate regime is fitted well by the data, but simultaneously fitting the low strain-rate

regime is not possible with a single overshoot parameter CR.

In Fig. 10, finite element simulations of Dow150R with the spectrum used in Fig. 8

are compared to the experimental birefringence stress patterns for flow rates giving SP

extension-rates of _eC ¼ 0:035s�1; _eC ¼ 0:070s�1, and _eC ¼ 0:174s�1, correspond to

Weissenberg flow numbers of Wi ¼ _eC�sb ¼ 15; 30, and 75, respectively (where �sb is the

viscosity averaged relaxation time). The simulations show an excellent agreement with

the birefringence patterns, predicting not only the number of fringes around the SP but

also the shape of the fringe pattern including the correct position of the W-cusps at each

flow rate.

We achieve a similar level of agreement for HDB6. The experimental flow rates corre-

spond to strain rates of _eC ¼ 0:70s�1; _eC ¼ 1:74s�1, and _eC ¼ 3:48s�1 giving Weissen-

berg numbers of 19.6, 48.7, and 97.4, from top to bottom in Fig. 11. Again, the number

of fringes and the shape of the fringe pattern are estimated well. It is also noticeable that

the shape of the W-cusps is different between the Dow150R and HDB6. We note that

this is not a consequence of orientation Weissenberg number as these are similar. The

shape of the cusps for the LDPE Dow150R is highly extended compared to that of HDPE

HDB6, as a consequence of the increased level of branching in the LDPE. Also, the

W-cusps for Dow150R are also more highly stretched (i.e., the distance from the tip of

the double cusps to the centre line dip) compared to HDB6, which is also due to the level

of LCB [Auhl et al. (2011)].

The OPP model captures the W-cusp rheology well, predicting both the form of the

fringe pattern and the fringe number to within half a fringe for all three Weissenberg

FIG. 9. The transient (a) and steady-state (b) data for HDB6 are plotted along side the OPP model fitted to the

data (lines). For the transient fit, the slower strain rates were measured by the FSR and the higher rates by the

SER. The steady-state data came from the FSR and the CSER.
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numbers. However, the phenomenology of the OPP model does not account for every

detail of the flow. For example, the size of the W-cusps is over predicted near the SP. As

with the original Pompom model, the OPP model fails to capture the overall pattern col-

lapse [cf. Hassell and Mackley (2009)] observed for all W-cusping materials. The overall

pattern collapse is seen as a decrease in the total number of fringes observed over time.

That is, the number of fringes at steady state is usually less than the highest number of

fringes observed by a half or one whole fringe. Also the transient development of the pat-

tern is much faster in simulations than in experiments. In experiments, the W-cusps ini-

tially occur at a strain of around 5, whereas in transient simulations, not shown, W-cusps

first occur at a strain of 2.

The clarity of the steady-state experimental FIB images means that we can determine

the PSD as a function of position along the stream line through the SP, which is shown in

Fig. 12. These results confirm the visual agreement of the PSD contours. However, the

simulations overpredict the stress difference slightly for the two lower Weissenberg num-

bers and also overpredict the magnitude of PSD overshoot.

Downstream of the SP the stress relaxation of the cusps is not predicted well. Visually,

this corresponds to simulations not predicting the appearance of the lower fringe orders

away from the SP along the outflow centre line.

FIG. 10. A comparison of between FIB in cross-slot flow and 2D simulations of the OPP parameterization for

LDPE Dow150R. The values of overshoot parameters are Cr ¼ 0:8 and a ¼ 1000, and the transient extensional

rheology is shown in Fig. 8. The black lines in the simulations represent the black contours of the experimental

PSD for initial strain rates of _eC ¼ 0:035s�1; _eC ¼ 0:070s�1, and _eC ¼ 0:174s�1 from top to bottom.
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V. CONCLUSIONS

In this paper, we compared three experimental techniques for measuring the exten-

sional viscosity of LCB polymer melts. The two filament stretching devices (the SER and

the FSR) measure startup of uniaxial extensional flow, but with FSR capable of reaching

higher Hencky strains due to its feedback control. The CSER measures the steady-state

planar extensional viscosity through the stress birefringence at the SP. (The transient vis-

cosity can also be inferred from the stress growth on the incoming stagnation streamline.)

All three experimental techniques show excellent agreement for strain-rates at which

they can all operate. However, in general the experimental windows of the FSR and the

CSER are complimentary to one another with the FSR operating in a low strain-rate re-

gime and the CSER operating in a high strain-rate regime. Hence, we have a robust tech-

nique for probing a materials extensional behavior. For the three materials we

investigated here, we could accurately characterize the steady-state extensional viscosity.

The experiments revealed consistent and striking phenomena unique to strain-hardening

melts (seen for all LCB melts); in the FSR, this is manifest as overshoots in the transient

stress, which produce W-cusps in the CSER.

FIG. 11. A comparison of between FIB in cross-slot flow and 2D simulations of the OPP parameterization for

HDPE HDB6. The values of overshoot parameters are Cr ¼ 2:0 and a ¼ 1000, and the transient extensional rhe-

ology is shown in Fig. 9. The black lines in the simulations represent the black contours of the experimental

PSD for initial strain rates of _eC ¼ 0:70s�1; _eC ¼ 1:74s�1, and _eC ¼ 3:48s�1 from top to bottom.
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We have modified the Pompom model to capture this nonmonotonic stress growth in

order to fit the full extensional rheology in both transient and steady-state response.

Although this modification is not based on molecular physics, it allows us to make a crucial

link between the two flow investigated here. By fitting this model to extensional data, we

are able to reproduce the birefringence patterns observed in the cross-slot device. From this,

we conclude that the spatial W-fringes are the consequence of the temporal stress overshoot

in extension of LCB melts. (It should be noted that our extensive investigations with the

original Pompom model failed to reproduce the W-fringe pattern.) The current overshoot

model, however, fails to capture the relaxation dynamics observed downstream of the SP. A

clear future goal would be to derive a constitutive model that is based on molecular detail

and captures the full range of characteristics observed in extensional experiments.
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